Design and Characterization of a Burst Mode 20 Mfps Low Noise CMOS Image Sensor
<p>(<b>a</b>) Simplified cross-section of a narrow PPD. (<b>b</b>) Electrostatic potential along the red-dashed line.</p> "> Figure 2
<p>(<b>a</b>) Photodiode finger shapes with different electric fields. (<b>b</b>) Conceptual layout of a pixel with a built-in 900 V/cm electric filed.</p> "> Figure 3
<p>Electrostatic potential along the charge transfer path for various photodiode designs.</p> "> Figure 4
<p>(<b>a</b>) Conceptual layout of the proposed high-speed pixel. (<b>b</b>) Operation timing of a charge-sweep-gate based pixel.</p> "> Figure 5
<p>TCAD 3D model of the proposed pixel with expanded view.</p> "> Figure 6
<p>Electrostatic potential plots along the charge transfer path during charge transfer.</p> "> Figure 7
<p>TCAD transient simulation result of the proposed pixel.</p> "> Figure 8
<p>(<b>a</b>) Schematic of the proposed high-speed pixel. (<b>b</b>) Capacitance distribution at FD node.</p> "> Figure 9
<p>(<b>a</b>) 3D TCAD model of the default buried channel NMOS and its cross-section. (<b>b</b>) 3D TCAD model of the proposed buried channel NMOS and its cross-section.</p> "> Figure 10
<p>DC sweep simulation results of buried channel NMOSs.</p> "> Figure 11
<p>In-pixel CDS circuit.</p> "> Figure 12
<p>(<b>a</b>) schematic and (<b>b</b>) layout of in-pixel storage unit.</p> "> Figure 13
<p>Complete pixel schematic with 108 sample-and-hold capacitors.</p> "> Figure 14
<p>(<b>a</b>) The microscopic image of the designed image sensor chip. (<b>b</b>) The protype test system.</p> "> Figure 15
<p>(<b>a</b>) Test setup for video capturing. (<b>b</b>) LED array and its driver circuit. (<b>c</b>) Images captured by the sensor at 400 Kfps. LEDS are on for frames 1–6 and off for remaining frames.</p> ">
Abstract
:1. Introduction
2. Pixel Core Design
3. In-Pixel CDS and Memory Bank
4. Sensor Noise Estimation
5. Characterization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suzuki, M.; Sugama, Y.; Kuroda, R.; Sugawa, S. Over 100 Million Frames per Second 368 Frames Global Shutter Burst CMOS Image Sensor with Pixel-wise Trench Capacitor Memory Array. Sensors 2020, 20, 1086. [Google Scholar] [CrossRef] [Green Version]
- Tochigi, Y.; Hanzawa, K.; Kato, Y.; Kuroda, R.; Mutoh, H.; Hirose, R.; Tominaga, H.; Takubo, K.; Kondo, Y.; Sugawa, S. A Global-Shutter CMOS Image Sensor with Readout Speed of 1-Tpixel/s Burst and 780-Mpixel/s Continuous. IEEE J. Solid-State Circuits 2013, 48, 329–338. [Google Scholar] [CrossRef]
- Suzuki, M.; Kuroda, R.; Kumagai, Y.; Chiba, A.; Miura, N.; Kuriyama, N.; Sugawa, S. An over 1Mfps global shutter CMOS image sensor with 480 frame storage using vertical analog memory integration. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; IEEE Xplore: Piscataway, NJ, USA, 2016. [Google Scholar]
- Dao, V.T.S.; Ngo, N.; Nguyen, A.Q.; Morimoto, K.; Shimonomura, K.; Goetschalckx, P.; Haspeslagh, L.; De Moor, P.; Takehara, K.; Etoh, T.G. An Image Signal Accumulation Multi-Collection-Gate Image Sensor Operating at 25 Mfps with 32 × 32 Pixels and 1220 In-Pixel Frame Memory. Sensors 2018, 18, 3112. [Google Scholar] [CrossRef] [Green Version]
- Etoh, T.G.; Okinaka, T.; Takano, Y.; Takehara, K.; Nakano, H.; Shimonomura, K.; Ando, T.; Ngo, N.; Kamakura, Y.; Dao, V.T.S.; et al. Light-In-Flight Imaging by a Silicon Image Sensor: Toward the Theoretical Highest Frame Rate. Sensors 2019, 19, 2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Bello, D.S.S.; Coppejans, P.; Craninckx, J.; Süss, A.; Rosmeulen, M.; Wambacq, P.; Borremans, J. Analysis and Design of a CMOS Ultra-High-Speed Burst Mode Imager with In-Situ Storage Topology Featuring In-Pixel CDS Amplification. Sensors 2018, 18, 3683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kagawa, K.; Horio, M.; Pham, A.N.; Ibrahim, T.; Okihara, S.-I.; Furuhashi, T.; Takasawa, T.; Yasutomi, K.; Kawahito, S.; Nagahara, H. A Dual-Mode 303-Megaframes-per-Second Charge-Domain Time-Compressive Computational CMOS Image Sensor. Sensors 2022, 22, 1953. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, F.; Kagawa, K.; Okihara, S.-I.; Seo, M.-W.; Zhang, B.; Takasawa, T.; Yasutomi, K.; Kawahito, S. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor. Opt. Express 2016, 24, 4155–4176. [Google Scholar] [CrossRef] [PubMed]
- Theuwissen, A.J. Solid-State Imaging with Charge-Coupled Devices; Springer Science & Business Media: Dordrecht, The Netherlands, 2006; pp. 27–31. [Google Scholar]
- Fossum, E.R.; Hondongwa, D.B. A review of the pinned photodiode for CCD and CMOS image sensors. IEEE J. Electron Devices Soc. 2014, 2, 33–43. [Google Scholar] [CrossRef]
- Krymski, A.; Feklistov, K. Estimates for scaling of pinned photodiodes. In Proceedings of the 2005 IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, Nagano, Japan, 9–11 June 2005; pp. 60–63. [Google Scholar]
- Park, S.; Uh, H. The effect of size on photodiode pinch-off voltage for small pixel CMOS image sensors. Microelectron. J. 2009, 40, 137–140. [Google Scholar] [CrossRef]
- Takeshita, H.; Sawada, T.; Iida, T.; Yasutomi, K.; Kawahito, S. High-speed charge transfer pinned-photodiode for a CMOS time-of-flight range image sensor. In Proceedings of the IS&T/SPIE Electronic Imaging, San Jose, CA, USA, 17–21 January 2010. [Google Scholar]
- Liu, L.; Yang, S.; Yan, M.; Li, B.; Guo, Y.; Guo, M.; Li, G.; Zhou, E. The effect of photodiode shape on pinning potential for charge transfer in CMOS image sensors. Microelectron. J. 2023, 131, 105651. [Google Scholar] [CrossRef]
- Streetman, B.G.; Banerjee, S.K. Solid State Electronic Devices, 6th ed.; Prentice Hall: Boston, MA, USA, 2016; p. 105. [Google Scholar]
- Roy, K.; Mukhopadhyay, S.; Mahmoodi-Meimand, H. Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 2003, 91, 305–327. [Google Scholar] [CrossRef]
- Cao, X.; Gäbler, D.; Lee, C.; Ling, T.P.; Jarau, D.A.; Tien, D.K.C.; Chuan, T.B.; Bold, B. Design and optimisation of large 4T pixel. In Proceedings of the 2015 International Image Sensor Workshop (IISW), Vaals, The Netherlands, 8–11 June 2015; pp. 112–115. Available online: https://www.imagesensors.org/Past%20Workshops/2015%20Workshop/2015%20Papers/Sessions/Session_5-Posters1/5-08_X-CAO.pdf (accessed on 15 June 2023).
- Marcelot, O.; Estribeau, M.; Goiffon, V.; Martin-Gonthier, P.; Corbiere, F.; Molina, R.; Rolando, S.; Magnan, P. Study of CCD Transport on CMOS Imaging Technology: Comparison Between SCCD and BCCD, and Ramp Effect on the CTI. IEEE Trans. Electron Devices 2014, 61, 844–849. [Google Scholar] [CrossRef] [Green Version]
- Borg, J.; Johansson, J. Evaluation of a Surface-Channel CCD Manufactured in a Pinned Active-Pixel-Sensor CMOS Process. IEEE Trans. Electron Devices 2011, 58, 2660–2664. [Google Scholar] [CrossRef]
- Stefanov, K.D.; Prest, M.J.; Downing, M.; George, E.; Bezawada, N.; Holland, A.D. Simulations and Design of a Single-Photon CMOS Imaging Pixel Using Multiple Non-Destructive Signal Sampling. Sensors 2020, 20, 2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusuhara, F.; Wakashima, S.; Nasuno, S.; Kuroda, R.; Sugawa, S. Analysis and reduction technologies of floating diffusion capacitance in CMOS image sensor for photon-countable sensitivity. ITE Trans. Media Technol. Appl. 2016, 4, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Seo, M.-W.; Kawahito, S.; Kagawa, K.; Yasutomi, K. A 0.27e-rms Read Noise 220-μV/e-Conversion Gain Reset-Gate-Less CMOS Image Sensor with 0.11-μm CIS Process. IEEE Electron Device Lett. 2015, 36, 1344–1347. [Google Scholar] [CrossRef]
- Boukhayma, A.; Kraxner, A.; Caizzone, A.; Yang, M.; Bold, D.; Enz, C. Comparison of Two in Pixel Source Follower Schemes for Deep Subelectron Noise CMOS Image Sensors. IEEE J. Electron Devices Soc. 2022, 10, 687–695. [Google Scholar] [CrossRef]
- De Wit, Y.; Walschap, T.; Cremers, B. In-Pixel Correlated Double Sampling Pixel. U.S. Patent 12/766,798, 28 October 2010. [Google Scholar]
- Miyauchi, K.; Takeda, T.; Hanzawa, K.; Tochigi, Y.; Sakai, S.; Kuroda, R.; Tominaga, H.; Hirose, R.; Takubo, K.; Kondo, Y.; et al. Pixel structure with 10 nsec fully charge transfer time for the 20m frame per second burst CMOS image sensor. In Proceedings of the 2014 IS&T/SPIE Electronic Imaging, San Francisco, CA, USA, 2–6 February 2014; NASA ADS: Cambridge, MA, USA, 2014; Volume 9022, p. 902203. [Google Scholar] [CrossRef]
- Deng, W.; Fossum, E.R. 1/f Noise Modelling and Characterization for CMOS Quanta Image Sensors. Sensors 2019, 19, 5459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, X.; Fossum, E.R. Simulation and design of a burst mode 20Mfps global shutter high conversion gain CMOS image sensor in a standard 180nm CMOS image sensor process using sequential transfer gates. Electron. Imaging 2023, 35, 328-1–328-5. [Google Scholar] [CrossRef]
- Teranishi, N. Dark current and white blemish in image sensors. In Proceedings of the 2013 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, Taiwan, 22–24 April 2013; IEEE Xplore: Piscataway, NJ, USA, 2013. Available online: https://ieeexplore.ieee.org/document/6545639 (accessed on 4 May 2023).
- Shockley, W.; Read, W.T. Statistics of the Recombinations of Holes and Electrons. Phys. Rev. 1952, 87, 835–842. [Google Scholar] [CrossRef]
- Liu, E. The Physics of Semiconductors, 7th ed.; Publishing House of Electronics Industry: Beijing, China, 2017; pp. 131–135. [Google Scholar]
- Millet, L.; Vigier, M.; Sicard, G.; Uhring, W.; Margotat, N.; Guellec, F.; Martin, S. A 5 Million Frames Per Second 3D Stacked Image Sensor with In-Pixel Digital Storage. In Proceedings of the ESSCIRC 2018-IEEE 44th European Solid State Circuits Conference (ESSCIRC), Dresden, Germany, 3–6 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 62–65. [Google Scholar]
CTI | 10% | 1% | 0.5% | 0.1% | Unit |
---|---|---|---|---|---|
E400 | 10.2 | 41.2 | 51.3 | 75.2 | ns |
E500 | 0.6 | 17.4 | 25.8 | 47.0 | ns |
E600 | 0.6 | 5.0 | 11.0 | 28.3 | ns |
E700 | 0.7 | 1.5 | 5.1 | 19.3 | ns |
E800 | 0.8 | 1.1 | 3.7 | 15.5 | ns |
E900 | 0.9 | 1.3 | 3.6 | 13.6 | ns |
SF Length (µm) | Gap Dist. (µm) | Gain@Vg = 2.5 V (V/V) | Gain@Vg = 1.5 V (V/V) | Cgs (fF) | Cgd (fF) |
---|---|---|---|---|---|
0.3 | 0.0 | 0.82 | 0.77 | 0.52 | 0.22 |
0.3 | 0.1 | 0.87 | 0.85 | 0.57 | 0.17 |
0.3 | 0.2 | 0.83 | 0.88 | 0.66 | 0.15 |
0.3 | 0.3 | 0.47 | 0.68 | 0.68 | 0.12 |
0.6 | 0.0 | 0.89 | 0.89 | 0.79 | 0.26 |
Noise Source | Cap Size (pF) | Stage Noise (µV) | Stage Gain (V/V) | Noise Contribution (µV2) | Noise Percentage (%) | Total Noise (µV) |
---|---|---|---|---|---|---|
1. 1st-Stg SF | 374 | 0.81 | 213,193 | 33 | ||
2. Rst2 kTC | 0.080 | 233 | 0.96 | 82,819 | 13 | |
3. 2nd-Stg SF | 191 | 0.90 | 74,485 | 12 | ||
4. S/H kTC | 0.078 | 236 | 0.78 | 113,788 | 18 | |
5. Rst3 kTC | 169 | 1.00 | 95,849 | 15 | ||
6. 3rd-Stg SF | 095 | 0.89 | 38,237 | 06 | ||
7. Out Buffer | 082 | 1.00 | 28,488 | 04 | ||
Noise @ FD | 804 | |||||
Noise @ Pad | 414 |
Noise Source | Cap Size (pF) | Stage Noise (µV) | Stage Gain (V/V) | Noise Contribution (µV2) | Noise Percentage (%) | Total Noise (µV) |
---|---|---|---|---|---|---|
1. 1st-Stg SF | 385 | 0.81 | 225,918 | 34 | ||
2. Rst2 kTC | 0.080 | 233 | 0.96 | 82,819 | 13 | |
3. 2nd-Stg SF | 191 | 0.90 | 74,485 | 11 | ||
4. S/H kTC | 0.078 | 236 | 0.78 | 113,788 | 17 | |
5. Rst3 kTC | 169 | 1.00 | 95,849 | 15 | ||
6. 3rd-Stg SF | 095 | 0.89 | 38,237 | 06 | ||
7. Out Buffer | 082 | 1.00 | 28,488 | 04 | ||
Noise @ FD | 812 | |||||
Noise @ Pad | 418 |
Sensor Characteristics Summary | |||||
---|---|---|---|---|---|
Process | 180 nm standard PPD CIS | Unit | |||
Pixel Pitch | 52.8 × 52.8 | µm × µm | |||
Pixel Fill Factor | 9.7 | % | |||
Pixel Array Size | 64 × 64 | pix × pix | |||
Recording Length | 108 | frames | |||
Pixel Variant | Baseline | HCG | |||
Measurement/Simulation | Mesa. | Sim. | Meas. | Sim. | |
Charge Transfer Time | ≤10 | ≤10 | ≤10 | ≤10 | ns |
Conversion Gain | 98 | 136 | 183 | 178 | µV/e− |
Output-Referred Noise | 415 | 414 | 457 | 418 | µV |
Input-Referred Noise | 8.7 | 5.8 | 5.1 | 4.6 | e− |
Image Lag | ≤0.1 | ≤0.5 | ≤3 | ≤0.1 | % |
FWC | 6.0 | 7.0 | 5.0 | 5.6 | Ke− |
Low Light Linearity | ±0.5 | ±0.2 | ±0.5 | ±0.2 | % |
Dark Current (300 K) | 6.9 × 10−1 | 1.6 × 10−4 | 4.6 × 10−1 | 1.6 × 10−4 | e−/ns/pixel |
Dark Current (256 K) | 1.0 × 10−2 | N/A | 9.2 × 10−3 | N/A | e−/ns/pixel |
Ref. | Node (nm) | Process Modi? | Array (H × V) | Pitch (µm) | CG (µV/e−) | FWC (Ke−) | Frame Rate (Mfps) | Record Length | Noise (e−) |
---|---|---|---|---|---|---|---|---|---|
[1] | 180 FSI | Yes | 50 × 108 | 35 | 99 | 11 | 100 | 368 | N/R |
[2] | 180 FSI | Yes | 400 × 256 | 32 | 74 | N/R | 10 | 128 | N/R |
[3] | 180 FSI | Yes | 96 × 128 | 32 | 112 | 10 | 10 | 480 | N/R |
[4] | 130 BSI | Yes | 32 × 32 | 72.5 | N/R | N/R | 25 | 1220 | N/R |
[5] | 130 CCD | Yes | 512 × 575 | 12.7 | N/R | 7 | 100 | 5 | N/R |
[6] | 130 BSI | N/R | 32 × 84 | 30 | 105 | 6 | 20 | 108 | 8.4 |
[7] | 110 FSI | Yes | 212 × 188 | 22.4 | 32 | 33 | 303 | 12 | 85 |
[8] | 110 FSI | Yes | 320 × 324 | 11.2 | N/R | 10 | 200 | 15 | >167 |
[31] | 90 + 40 | N/R | 20 × 20 | 50 | 7.3 | 137 | 5 | 52 | >81 |
This work | 180 FSI | No | 64 × 64 | 52.8 | 183 | 5 | 20 | 108 | 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Fossum, E.R. Design and Characterization of a Burst Mode 20 Mfps Low Noise CMOS Image Sensor. Sensors 2023, 23, 6356. https://doi.org/10.3390/s23146356
Yue X, Fossum ER. Design and Characterization of a Burst Mode 20 Mfps Low Noise CMOS Image Sensor. Sensors. 2023; 23(14):6356. https://doi.org/10.3390/s23146356
Chicago/Turabian StyleYue, Xin, and Eric R. Fossum. 2023. "Design and Characterization of a Burst Mode 20 Mfps Low Noise CMOS Image Sensor" Sensors 23, no. 14: 6356. https://doi.org/10.3390/s23146356