Indoor Visible Light Positioning System Based on Point Classification Using Artificial Intelligence Algorithms
<p>Overview of indoor visible light positioning system based on RSSI.</p> "> Figure 2
<p>Overview of indoor visible light channel.</p> "> Figure 3
<p>Normalized impulse response at different locations. (<b>a</b>) Normalized impulse response at (0.1, 0.1, 0.85). (<b>b</b>) Normalized impulse response at (0.5, 2.5, 0.85). (<b>c</b>) Normalized impulse response at (2.5, 2.5, 0.85).</p> "> Figure 4
<p>Flow of height estimation model training.</p> "> Figure 5
<p>Ratio distribution of channel response between first-order reflection and LOS.</p> "> Figure 6
<p>Flow of point classification model training.</p> "> Figure 7
<p>Flow of received power mapping net training.</p> "> Figure 8
<p>Flow of proposed VLP system.</p> "> Figure 9
<p>Data planes for simulation testing. (<b>a</b>) Data planes, respectively, at 0.5 m, 1.0 m, 1.5 m. (<b>b</b>) Zigzag plane.</p> "> Figure 10
<p>Performance of best height estimation model.</p> "> Figure 11
<p>Performance of point classification model.</p> "> Figure 12
<p>Positioning results for different test data. (<b>a</b>) 0.5 m plane. (<b>b</b>) 1.0 m plane. (<b>c</b>) 1.5 m plane. (<b>d</b>) Zigzag plane.</p> "> Figure 12 Cont.
<p>Positioning results for different test data. (<b>a</b>) 0.5 m plane. (<b>b</b>) 1.0 m plane. (<b>c</b>) 1.5 m plane. (<b>d</b>) Zigzag plane.</p> ">
Abstract
:1. Introduction
1.1. Background
1.2. Motivation
1.3. Contributions
2. VLP System Model
2.1. Channel Model
2.2. RSSI under Multi-Path Effect
2.3. Distance Calculation
2.4. Location Estimation Using Least Squares
3. Proposed VLP Process
3.1. Height Estimation
3.2. Point Classification
3.3. Received Power Mapping
3.4. Complete Process
4. Simulation Results and Discussions
4.1. Height Estimation Error
4.2. Point Classification Error
4.3. Received Power Mapping Error
4.4. Positioning Error through Complete Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial neural network |
AOA | Angle of arrival |
CDF | Cumulative distribution function |
FOV | Field of view |
GA | Genetic algorithm |
GLONASS | Global navigation satellite system |
GPS | Global positioning system |
LED | Light-emitting diode |
LOS | Line-of-sight |
NLOS | Non-line-of-sight |
PD | Photo-detector |
PSO | Particle swarm optimization |
RFID | Ratio frequency identification |
RMSE | Root mean square error |
RSSI | Received signal strength indicator |
SVM | Support vector machine |
SVR | Support vector regression |
TDOA | Time difference of arrival |
TOA | Time of arrival |
UWB | Ultra wide band |
VLC | Visible light communication |
VLP | Visible light positioning |
WLAN | Wireless local area network |
References
- Do, T.H.; Yoo, M. An in-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors 2016, 16, 678. [Google Scholar] [CrossRef] [PubMed]
- El-Rabbany, A. Introduction to GPS: The Global Positioning System, 2nd ed.; Artech House Mobile communications Series; Artech House: Boston, MA, USA, 2006. [Google Scholar]
- Dardari, D.; Closas, P.; Djurić, P.M. Indoor Tracking: Theory, Methods, and Technologies. IEEE Trans. Veh. Technol. 2015, 64, 1263–1278. [Google Scholar] [CrossRef]
- Dong, Y.; He, G.; Arslan, T.; Yang, Y.; Ma, Y. Crowdsourced Indoor Positioning with Scalable WiFi Augmentation. Sensors 2023, 23, 4095. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.H.; Chen, Y.S.; Jen, G.T.; Lu, T.W. An intelligent positioning approach: RSSI-based indoor and outdoor localization scheme in Zigbee networks. Int. Conf. Mach. Learn. Cybern. 2010, 6, 2754–2759. [Google Scholar] [CrossRef]
- Abed, F.A.; Hamza, Z.A.; Mosleh, M.F. Indoor Positioning System Based on Wi-Fi and Bluetooth Low Energy. In Proceedings of the 2022 8th International Engineering Conference on Sustainable Technology and Development (IEC), Erbil, Iraq, 23–24 February 2022; pp. 136–141. [Google Scholar] [CrossRef]
- Wang, F.; Tang, H.; Chen, J. Survey on NLOS Identification and Error Mitigation for UWB Indoor Positioning. Electronics 2023, 12, 1678. [Google Scholar] [CrossRef]
- Sertatıl, C.; Altınkaya, M.A.; Raoof, K. A novel acoustic indoor localization system employing CDMA. Digit. Signal Process. 2012, 22, 506–517. [Google Scholar] [CrossRef]
- Manman, Z.; Peng, L.; He, X.; Ruchuan, W. RFID Indoor Positioning Based on AP Clustering and Improved Particle Swarm Algorithm. J. Sens. 2022, 2022, e4121016. [Google Scholar] [CrossRef]
- Arnon, S. (Ed.) Visible Light Communication, 1st ed.; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Maheepala, M.; Kouzani, A.Z.; Joordens, M.A. Light-Based Indoor Positioning Systems: A Review. IEEE Sens. J. 2020, 20, 3971–3995. [Google Scholar] [CrossRef]
- Huang, T.; Lin, B.; Ghassemlooy, Z.; Jiang, N.; Lai, Q. Three-Dimensional NLOS VLP Based on a Luminance Distribution Model for Image Sensor. IEEE Internet Things J. 2023, 10, 6902–6914. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, X.; Sun, Y.; Yang, Y.; Zhang, L.; Deng, X.; Chen, L. High-Accuracy Height-Independent 3D VLP Based on Received Signal Strength Ratio. Sensors 2022, 22, 7165. [Google Scholar] [CrossRef]
- Hsu, L.S.; Chow, C.W.; Liu, Y.; Chang, Y.H.; Tsai, T.T.; Hung, T.Y.; Lin, Y.Z.; Jian, Y.H.; Yeh, C.H. Utilizing single light-emitting-diode (LED) lamp and silicon solar-cells visible light positioning (VLP) based on angle-of-arrival (AOA) and long-short-term-memory-neural-network (LSTMNN). Opt. Commun. 2022, 524, 128761. [Google Scholar] [CrossRef]
- Feng, R.; Zhang, Z.; Lai, Z.; Mao, X. Time-difference-of-arrival positioning based on visible light communication for harbor-border inspection. Appl. Opt. 2022, 61, 8833. [Google Scholar] [CrossRef]
- Xie, C.; Guan, W.; Wu, Y.; Fang, L.; Cai, Y. The LED-ID Detection and Recognition Method Based on Visible Light Positioning Using Proximity Method. IEEE Photonics J. 2018, 10, 1–16. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, J.; Fu, Y.; Shi, A. Theoretical Accuracy Analysis of Indoor Visible Light Communication Positioning System Based on Received Signal Strength Indicator. J. Light. Technol. 2014, 32, 4180–4186. [Google Scholar] [CrossRef]
- Lam, E.W.; Little, T.D.C. Resolving Height Uncertainty in Indoor Visible Light Positioning Using a Steerable Laser. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Hao, X.; Sun, W.; Chen, J.; Yu, C. Vertical measurable displacement approach for altitude accuracy improvement in 3D visible light positioning. Opt. Commun. 2021, 490, 126914. [Google Scholar] [CrossRef]
- Chen, H.; Guan, W.; Li, S.; Wu, Y. Indoor high precision three-dimensional positioning system based on visible light communication using modified genetic algorithm. Opt. Commun. 2018, 413, 103–120. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, Z.; Han, Z.; Liu, H.; Shen, Q.x.; Wu, Z. LED based high accuracy indoor visible light positioning algorithm. Optik 2021, 243, 166853. [Google Scholar] [CrossRef]
- Chaochuan, J.; Ting, Y.; Chuanjiang, W.; Mengli, S. High-Accuracy 3D Indoor Visible Light Positioning Method Based on the Improved Adaptive Cuckoo Search Algorithm. Arab. J. Sci. Eng. 2022, 47, 2479–2498. [Google Scholar] [CrossRef]
- Li, D.; Wei, Z.; Yang, G.; Yang, Y.; Li, J.; Yu, M.; Lin, P.; Lin, J.; Chen, S.; Lu, M.; et al. Deep Learning-Based Robust Visible Light Positioning for High-Speed Vehicles. Photonics 2022, 9, 632. [Google Scholar] [CrossRef]
- Lin, C.; Lin, B.; Tang, X.; Zhou, Z.; Zhang, H.; Chaudhary, S.; Ghassemlooy, Z. An Indoor Visible Light Positioning System Using Artificial Neural Network. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Lin, D.C.; Chow, C.W.; Peng, C.W.; Hung, T.Y.; Chang, Y.H.; Song, S.H.; Lin, Y.S.; Liu, Y.; Lin, K.H. Positioning Unit Cell Model Duplication With Residual Concatenation Neural Network (RCNN) and Transfer Learning for Visible Light Positioning (VLP). J. Light. Technol. 2021, 39, 6366–6372. [Google Scholar] [CrossRef]
- Salama, W.M.; Aly, M.H.; Amer, E.S. VLC localization: Deep learning models by Kalman filter algorithm combined with RSS. Opt. Quantum Electron. 2022, 54, 584. [Google Scholar] [CrossRef]
- Almadani, Y.; Ijaz, M.; Adebisi, B.; Rajbhandari, S.; Bastiaens, S.; Joseph, W.; Plets, D. An experimental evaluation of a 3D visible light positioning system in an industrial environment with receiver tilt and multipath reflections. Opt. Commun. 2021, 483, 126654. [Google Scholar] [CrossRef]
- Martínez-Ciro, R.A.; López-Giraldo, F.E.; Luna-Rivera, J.M.; Ramírez-Aguilera, A.M. An Indoor Visible Light Positioning System for Multi-Cell Networks. Photonics 2022, 9, 146. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, H.; Zeng, W.; Cao, X.; Hong, X.; Chen, J. Demonstration of Three-Dimensional Indoor Visible Light Positioning with Multiple Photodiodes and Reinforcement Learning. Sensors 2020, 20, 6470. [Google Scholar] [CrossRef]
- Tanaka, Y.; Haruyama, S.; Nakagawa, M. Wireless optical transmissions with white colored LED for wireless home links. In Proceedings of the 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC 2000. Proceedings (Cat. No.00TH8525), London, UK, 18–21 September 2000; Volume 2, pp. 1325–1329. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, Z.; Sun, L.; Li, X.; Dong, Z.; Zhang, Y. Based on reflected light depolarization characteristics optimization method for improving indoor visible light positioning accuracy. Opt. Eng. 2022, 61, 056101. [Google Scholar] [CrossRef]
- Tanaka, Y.; Komine, T.; Haruyama, S.; Nakagawa, M. Indoor visible communication utilizing plural white LEDs as lighting. In Proceedings of the 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001. Proceedings (Cat. No.01TH8598), San Diego, CA, USA, 30 September–3 October 2001; Volume 2. [Google Scholar] [CrossRef]
- Chaudhary, N.; Younus, O.I.; Alves, L.N.; Ghassemlooy, Z.; Zvanovec, S.; Le-Minh, H. An Indoor Visible Light Positioning System Using Tilted LEDs with High Accuracy. Sensors 2021, 21, 920. [Google Scholar] [CrossRef]
- Komine, T.; Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 2004, 50, 100–107. [Google Scholar] [CrossRef]
- Zhuang, Y.; Hua, L.; Qi, L.; Yang, J.; Cao, P.; Cao, Y.; Wu, Y.; Thompson, J.; Haas, H. A Survey of Positioning Systems Using Visible LED Lights. IEEE Commun. Surv. Tutor. 2018, 20, 1963–1988. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, Z.; Li, X.; Li, H. Indoor Visible Light Positioning Based on Improved Particle Swarm Optimization Method with Min-Max Algorithm. IEEE Access 2022, 10, 130068–130077. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Emitting power of LED, | 4 W |
Half power angle of LED, | |
Area of PD, A | 1 cm |
FOV PD, | |
Gain of optical filter, | 1 |
Refractive index of the optical concentrator, n | 1.5 |
Ceiling reflectance, | 0.8 |
Wall reflectance, | 0.8 |
Floor reflectance, | 0.3 |
Plane height interval, | 1 cm |
Wall edge interval, | 0.5 m |
Corner edge interval, | 1 m |
Artificial Intelligence Algorithm | Average Height Estimation Error (cm) |
---|---|
Linear Regression | |
Traditional SVR | |
GA-SVR | |
PSO-SVR | |
ANN |
Different Data Planes | Average Height Estimation Error (cm) |
---|---|
0.5 m | 3.81 |
1.0 m | 0.85 |
1.5 m | 5.59 |
Zigzag plane | 1.42 |
Parameter | Value |
---|---|
Random seed | 2000 |
Train data set | 80% |
Test data set | 20% |
Population number | 10 |
Max iteration number | 20 |
Range of c | [0.1, 100] |
Range of g | [0.01, 1000] |
Different Data Planes | Average Point Classification Accuracy |
---|---|
0.5 m | 99.52% |
1.0 m | 100% |
1.5 m | 99.52% |
Zigzag plane | 99.92% |
Type of Data Set | Size of Data Set | Number of Neurons | Epoch | MSE | Average Error |
---|---|---|---|---|---|
Original point | 34,669 | 64 | 1000 | 2.61% | |
All data | 63,125 | 64 | 1000 | 5.1% | |
Edge point | 23,464 | 128 | 2000 | 3.16% | |
All data | 63,125 | 128 | 2000 | 4.15% | |
Blind point | 4992 | 128 | 5000 | 0.58% | |
All data | 63,125 | 128 | 5000 | 3.84% |
Different Data Planes | Average Received Power Mapping Error |
---|---|
0.5 m | 3.85% |
1.0 m | 2.67% |
1.5 m | 3.35% |
Zigzag plane | 2.65% |
Received Power Error | Received Power (W) | Distance Calculation | Positioning Error (cm) |
---|---|---|---|
LOS | (, , , ) | (2.3, 2.76, 3.54, 3.86) | |
LOS+1% error | (, , , ) | (2.3, 2.77, 3.53, 3.85) | |
LOS+2% error | (, , , ) | (2.29, 2.76, 3.51, 3.84) | |
LOS+3% error | (, , , ) | (2.28, 2.75, 3.51, 3.83) | |
LOS+4% error | (, , , ) | (2.28, 2.75, 3.45, 3.82) | |
LOS+5% error | (, , , ) | (2.27, 2.74, 3.45, 3.81) |
Different Data Planes | Positioning Error (cm) | ||
---|---|---|---|
Minimum | Maximum | Average | |
0.5 m | 0.60 | 82.56 | 12.91 |
1.0 m | 0.25 | 25.88 | 5.88 |
1.5 m | 0.69 | 72.77 | 10.67 |
Zigzag plane | 0.27 | 80.72 | 8.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Q.; Zhang, J.; Cao, L.; Wang, W. Indoor Visible Light Positioning System Based on Point Classification Using Artificial Intelligence Algorithms. Sensors 2023, 23, 5224. https://doi.org/10.3390/s23115224
Long Q, Zhang J, Cao L, Wang W. Indoor Visible Light Positioning System Based on Point Classification Using Artificial Intelligence Algorithms. Sensors. 2023; 23(11):5224. https://doi.org/10.3390/s23115224
Chicago/Turabian StyleLong, Qianqian, Junyi Zhang, Lu Cao, and Wenrui Wang. 2023. "Indoor Visible Light Positioning System Based on Point Classification Using Artificial Intelligence Algorithms" Sensors 23, no. 11: 5224. https://doi.org/10.3390/s23115224