[go: up one dir, main page]

Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Time-difference-of-arrival positioning based on visible light communication for harbor-border inspection

Not Accessible

Your library or personal account may give you access

Abstract

In view of the complexity of port ship supervision and the influence of external factors such as electromagnetic interference in harbor-border inspection, an efficient system combining an unmanned aerial vehicle (UAV) and visible light positioning (VLP) is proposed for locating maritime targets. In this system, a rotatable receiver with five photodetectors (PDs) installed obliquely on UAV is designed for expanding the positioning range and allowing a lower flight altitude. On this basis, we propose the Chan–Taylor (CT) method based on time difference of arrival (TDOA) for target positioning. First, the localization problem is reformulated as a weighted least squares (WLS) problem and provides a good initial estimate via the two-step WLS (TWLS) method. Then, based on Taylor expansion of TDOA equations, estimated error is calculated using the initial estimate, which can correct the estimated position of the target iteratively. To offset the error, weighted centroid CT (WCCT) is proposed by endowing different weights based on error difference to estimated results. For further improving accuracy, a restricted-region fingerprinting positioning based on CT (CT-RFP) is proposed. In restricted area determined by CT, a certain number of fingerprints is generated based on received signal strength (RSS) for matching. Simulation results show that CT is significantly improved over the previous methods. Compared with TWLS, the accuracy of CT is improved by 49.71%. For WCCT, the maximum error is reduced from 8.65 to 6.91 cm, which effectively reduces the influence of error. Moreover, CT-RFP can achieve an accuracy within millimeter level via the appropriate number of fingerprints and ensemble runs of CT, even at high noise levels.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Harbor-border inspection for unmanned aerial vehicle based on visible light source tracking

Renhai Feng, Zhaolin Zhang, Zhimao Lai, Sheng Xie, and Xurui Mao
Appl. Opt. 60(31) 9659-9667 (2021)

RSS-based visible light positioning based on channel state information

Kaiyao Wang, Yongjun Liu, and Zhiyong Hong
Opt. Express 30(4) 5683-5699 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel