Online Monitoring of Sensor Calibration Status to Support Condition-Based Maintenance
<p>Simulated signal with production equipment error and deviation in one of the sensors.</p> "> Figure 2
<p>Correlations shown in each of the signal phases.</p> "> Figure 3
<p>Correlations between each sensor pair over signal time.</p> "> Figure 4
<p>Correlation features normalized by Z-score over study time.</p> "> Figure 5
<p>Pareto chart with the percentage of information for each PC.</p> "> Figure 6
<p>Data movement of the first 10 PCs processed by PCA.</p> "> Figure 7
<p>SSE Analysis to determine n° of clusters.</p> "> Figure 8
<p>Cluster (optimal observable states) over study time.</p> "> Figure 9
<p>Hidden States (health states of the production equipment) over the study time.</p> "> Figure 10
<p>Original signal with overlapping HMM states.</p> "> Figure 11
<p>Original signal after HMM filter.</p> "> Figure 12
<p>Methodology used to detect sensor errors individually.</p> ">
Abstract
:1. Introduction
1.1. The Importance of Sensors in CBM
1.2. Industrial Metrology to Support CBM
1.3. Online Calibration Monitoring (OLM)
1.4. Methodology Developed for OLM
1.5. Related Work
2. Methodology
2.1. Signal Simulation
2.2. Generation of Correlation Features
- Pearson Correlation
- is the covariance of X and Y;
- is the variance of the random variable X.
- Spearman Correlation
- is the covariance of the variables in ranks;
- and are the standard deviations of the variables in ranks.
- ;
- n is the number of observations.
- Kendall Correlation
2.3. Normalization
- is the mean of the dataset X;
- is the standard deviation of X.
2.4. Dimensional Reduction through Principal Components Analysis (PCA)
2.5. Clustering through K-Means
- Examines the underlying structure of the data;
- Identifies patterns and categories in the data in order to establish the similarity between the points;
- Performs dimensionality reduction, with the aim of grouping and simplifying the data in an understandable way.
- is the centroid of the cluster ;
- V is the objective function or the criterion;
- is the optimal arrangement of centroids.
- Specify the number of clusters (k);
- Randomly select k data points as initial centroids;
- Assign the dataset to the nearest centroid using the Euclidean distance (Equation (9));
- Next, all data points are redistributed using the previous process to find the next clusters. The process continues like this until the elements in each cluster are no longer changed.
- Perform a centroid-based clustering variance of each clustering result, e.g., sum of squared errors algorithm, such as K-means, for each ;
- Calculate the (SSE) for K-means;
- Plot the results on a graph;
- Select the elbow curve on the graph.
2.6. Behavior Classification of Production Equipment Using HMM
- The evaluation problem—which computes the probability of the observed fusion outcome sequence , given the model . This is performed using the forward–backward algorithm.
- The training problem—which adjusts the model parameters, , to maximize the probability of the observed sequence, i.e., given a chain of observable states, which model best fits, . This is performed using the Baum–Welch algorithm.
- The prediction problem—calculates the most probable hidden state sequence according to the observation sequence and the model parameters. Through the model and the observation sequence O, it is possible to detect the best hidden state sequence S. It can be solved by the Viterbi algorithm.
2.7. HMM Filter
2.8. Classification of Sensor Behaviour
3. Discussion of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CBM | Condition-Based Maintenance |
CC | Calibration Certificates |
CPS | Cyber-Physical Systems |
HMM | Hidden Markov Models |
IoT | Internet of Things |
ML | Machine Learning |
OLM | Online Calibration monitoring |
PCA | Principal Component Analysis |
PCs | Principal Components |
SVM | Support Vector Machine |
TCFD | Trend-Correlation-based Fault Detection |
VSM | Vector Space Model |
WSNs | Wireless Sensor Networks |
References
- Martins, A.B.; Farinha, J.T.; Cardoso, A.M. Calibration and Certification of Industrial Sensors—A Global Review. WSEAS Trans. Syst. Control. 2020, 15, 394–416. [Google Scholar] [CrossRef]
- Chaudhary, K.P.; Dubey, P.K.; Gahlot, A.; Dahiya, A. Advances in Sensors and Measurements for Metrological Applications. MAPAN J. Metrol. Soc. India 2021, 36, 211–213. [Google Scholar] [CrossRef]
- Mateus, B.; Mendes, M.; Farinha, J.; Martins, A.; Cardoso, A. Data Analysis for Predictive Maintenance Using Time Series and Deep Learning Models—A Case Study in a Pulp Paper Industry. In Proceedings of IncoME-VI and TEPEN 2021; Springer: Cham, Switzerland, 2023; pp. 11–25. [Google Scholar] [CrossRef]
- Li, Y.; Wei, X.; Li, Y.; Dong, Z.; Shahidehpour, M. Detection of False Data Injection Attacks in Smart Grid: A Secure Federated Deep Learning Approach. IEEE Trans. Smart Grid 2022, 13, 4862–4872. [Google Scholar] [CrossRef]
- Antunes, J.; Torres, J.; Mendes, M.; Mateus, R.; Cardoso, A. Short and long forecast to implement predictive maintenance in a pulp industry. Eksploat. Niezawodn. Maint. Reliab. 2022, 24, 33–41. [Google Scholar] [CrossRef]
- Mateus, B.C.; Mendes, M.; Farinha, J.T.; Assis, R.; Cardoso, A.M. Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press. Energies 2021, 14, 6958. [Google Scholar] [CrossRef]
- Simões, A.; Viegas, J.M.; Farinha, J.T.; Fonseca, I. The State of the Art of Hidden Markov Models for Predictive Maintenance of Diesel Engines. Qual. Reliab. Eng. Int. 2017, 33, 2765–2779. [Google Scholar] [CrossRef]
- Kou, L.; Li, Y.; Zhang, F.; Gong, X.; Hu, Y.; Yuan, Q.; Ke, W. Review on Monitoring, Operation and Maintenance of Smart Offshore Wind Farms. Sensors 2022, 22, 2822. [Google Scholar] [CrossRef]
- Huhne, M.; Krystek, M.; Odin, A. Traceability of Measurement Results in Industrial Metrology. In Simposio de Metrología; Physikalisch-Technische Bundesanstalt: Braunschweig, Germany, 2004; pp. 1–6. [Google Scholar]
- Aswal, D.K. Metrology for Inclusive Growth of India, 1st ed.; Springer: Singapore, 2020; p. 1084. [Google Scholar] [CrossRef]
- Pais, J.; Raposo, H.D.; Farinha, J.; Cardoso, A.J.M.; Marques, P.A. Optimizing the life cycle of physical assets through an integrated life cycle assessment method. Energies 2021, 14, 6128. [Google Scholar] [CrossRef]
- Sousa, J.; Pedro, J.; Machado, J. A generic interface and a framework designed for industrial metrology integration for the Internet of Things. Comput. Ind. 2022, 138, 103632. [Google Scholar] [CrossRef]
- Kaya, M.C.; Nikoo, M.S.; Schwartz, M.L.; Oguztuzun, H. Internet of Measurement Things Architecture: Proof of Concept with Scope of Accreditation. Sensors 2020, 20, 503. [Google Scholar] [CrossRef] [Green Version]
- Kunzmann, H.; Pfeifer, T.; Schmitt, R.; Schwenke, H.; Weckenmann, A. Productive Metrology—Adding Value to Manufacture. CIRP Ann. 2005, 54, 155–168. [Google Scholar] [CrossRef]
- Gadelrab, M.S.; Abouhogail, R.A. Towards a new generation of digital calibration certificate: Analysis and survey. Measurement 2021, 181, 109611. [Google Scholar] [CrossRef]
- Mester, C. The role of national metrology institutes, the International System of Units and the concept of traceability. In Proceedings of the First International Colloquium on Smart Grid Metrology, Split, Croatia, 24–27 April 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Hall, B.D. An opportunity to enhance the value of metrological traceability in digital systems. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 IoT), Naples, Italy, 4–6 June 2019; pp. 16–21. [Google Scholar] [CrossRef]
- Jones, B. Sensors in industrial metrology. J. Phys. Sci. Instrum. 1987, 20, 1113. [Google Scholar] [CrossRef]
- Kim, M.; Kang, S.; Lee, J.; Cho, H.; Cho, S.; Su, J. Computers & Industrial Engineering Virtual metrology for copper-clad laminate manufacturing. Comput. Ind. Eng. 2017, 109, 280–287. [Google Scholar] [CrossRef]
- Levin, S.F. General problems of metrology and measurement technique calibration and verification of measuring instruments: Conceptual transformation. Meas. Tech. 2022, 64, 8–18. [Google Scholar] [CrossRef]
- Lai, Y.; Tong, L.; Liu, J.; Wang, Y.; Tang, T.; Zhao, Z.; Qin, H. Identifying malicious nodes in wireless sensor networks based on correlation detection. Comput. Secur. 2022, 113, 102540. [Google Scholar] [CrossRef]
- Tipireddy, R.; Lerchen, M.; Ramuhalli, P.; Northwest, P. Virtual sensors for robust on-line monitoring (OLM) and diagnostics. In Proceedings of the NPIC & HMIT 2017, San Francisco, CA, USA, 11–15 June 2017. [Google Scholar]
- Hines, J.W.; Rasmussen, B. Online Sensor Calibration Monitoring Uncertainty Estimation. Nucl. Technol. 2017, 151, 281–288. [Google Scholar] [CrossRef]
- Rao, M.S.; Rao, D.N.; Reddy, P.C.; Shree, V.U. Fault prediction based on spatial correlation analysis using VSM in distributed sensor network. Mater. Today Proc. 2021, 2214–7853. [Google Scholar] [CrossRef]
- Berjab, N.; Le, H.H.; Yokota, H. A Spatiotemporal and Multivariate Attribute Correlation Extraction Scheme for Detecting Abnormal Nodes in WSN. IEEE Access 2021, 9, 135266–135284. [Google Scholar] [CrossRef]
- Lee, S.; Chai, J. An enhanced prediction model for the on-line monitoring of the sensors using the Gaussian process regression. J. Mech. Sci. Technol. 2019, 33, 2249–2257. [Google Scholar] [CrossRef]
- Fu, X.; Wang, Y.; Li, W.; Yang, Y.; Postolache, O. Lightweight Fault Detection Strategy for Wireless Sensor Networks Based on Trend Correlation. IEEE Access 2021, 9, 9073–9083. [Google Scholar] [CrossRef]
- Li, L.; Liu, G.; Zhang, L.; Li, Q. Sensor fault detection with generalized likelihood ratio and correlation coef fi cient for bridge SHM. J. Sound Vib. 2019, 442, 445–458. [Google Scholar] [CrossRef]
- Rajesh, G.; Chaturvedi, A. Correlation analysis and statistical characterization of heterogeneous sensor data in environmental sensor networks. Comput. Netw. 2019, 164, 106902. [Google Scholar] [CrossRef]
- Karmakar, G.C.; Das, R.; Kamruzzaman, J. IoT Sensor Numerical Data Trust Model Using Temporal Correlation. IEEE Internet Things J. 2020, 7, 2573–2581. [Google Scholar] [CrossRef]
- Biswas, P.; Samanta, T. A Method for Fault Detection in Wireless Sensor Network Based on Pearson’s Correlation Coefficient and Support. Wirel. Pers. Commun. 2022, 123, 2649–2664. [Google Scholar] [CrossRef]
- Hoffmann, M. PEANO—A Tool for On-Line Calibration Monitoring PEANO—A Tool for On-Line Calibration Monitoring; OECD Halden Reactor Project—Institute for Energy Technology: Halden, Norway, 2014. [Google Scholar]
- Coble, J.; Ramuhalli, P.; Meyer, R.; Hashemian, H.; Shumaker, B.; Cummins, D. Calibration Monitoring for Sensor Calibration Interval Extension: Identifying technical gaps. In Proceedings of the Future of Instrumentation International Workshop (FIIW) Proceedings, Gatlinburg, TN, USA, 8–9 October 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Kleber, N.; Dietlein, C.R.; Chisum, J.D. Cooperative Cross-Correlation Algorithm to Optimize Linearity of Fused RF Sensors. IEEE Sens. J. 2020, 20, 3766–3776. [Google Scholar] [CrossRef]
- Chen, H.; Hsu, J.y.; Hsieh, J.Y.; Hsu, H.y.; Chang, C.h.; Lin, Y.J. Predictive maintenance of abnormal wind turbine events by using machine learning based on condition monitoring for anomaly detection. J. Mech. Sci. Technol. 2021, 35, 5323–5333. [Google Scholar] [CrossRef]
- Alqahtani, A.; Ali, M.; Xie, X. Deep Time-Series Clustering: A Review. Electronics 2021, 10, 3001. [Google Scholar] [CrossRef]
- Qiu, K.; Qin, T.; Pan, J.; Liu, S.; Shen, S. Real-Time Temporal and Rotational Calibration of Heterogeneous Sensors Using Motion Correlation Analysis. IEEE Trans. Robot. 2021, 37, 587–602. [Google Scholar] [CrossRef]
- Lu, W.; Wen, R.; Teng, J.; Li, X.; Li, C. Data correlation analysis for optimal sensor placement using a bond energy algorithm. Measurement 2016, 91, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Dash, L.; Pattanayak, B.K.; Mishra, S.K.; Sahoo, K.S.; Jhanjhi, N.Z.; Baz, M.; Masud, M. A Data Aggregation Approach Exploiting Spatial and Temporal Correlation among Sensor Data in Wireless Sensor Networks. Electronics 2022, 11, 989. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Li, W.; Lu, X. Heterogeneous sensors-based feature optimisation and deep learning for tool wear prediction. Int. J. Adv. Manuf. Technol. 2021, 114, 2651–2675. [Google Scholar] [CrossRef]
- Kendall, B. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Awasthi, S.; Travieso-González, C.; Sanyal, G.; Singh, D. Artificial Intelligence for a Sustainable Industry 4.0; Springer: Cham, Switzerland, 2021; pp. 1–311. [Google Scholar] [CrossRef]
- Azar, K.; Hajiakhondi-meybodi, Z.; Naderkhani, F. Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study. Reliab. Eng. Syst. Saf. 2022, 222, 108405. [Google Scholar] [CrossRef]
- Martins, A.; Fonseca, I.; Farinha, J.; Reis, J.; Cardoso, A. Maintenance prediction through sensing using hidden markov models—A case study. Appl. Sci. 2021, 11, 7685. [Google Scholar] [CrossRef]
- Schiff, A.J. Power Plant Surveillance and Diagnostics. In Power Systems; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–384. [Google Scholar] [CrossRef]
- Rafiee, H.; Aminizadeh, M.; Hosseini, E.M.; Aghasafari, H.; Mohammadi, A. A Cluster Analysis on the Energy Use Indicators and Carbon Footprint of Irrigated Wheat Cropping Systems. Sustainability 2022, 14, 4014. [Google Scholar] [CrossRef]
- Shen, X.; Lin, X.; Zhang, K. Encyclopedia of Wireless Networks; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–1566. [Google Scholar] [CrossRef]
- Peng, K.; Tan, J.; Zhang, G. A Method of Curve Reconstruction Based on Point Cloud Clustering and PCA. Symmetry 2022, 14, 726. [Google Scholar] [CrossRef]
- Stapathy, S.; Bhateja, V.; Favorskaya, M.; Adilakshmi, T. Smart Innovation, Systems and Technologies. In Proceedings of the Fourth International Conference on Smart Computing and Informatics; Satapathy, S.C., Bhateja, V., Favorskaya, M.N., Adilakshm, T., Eds.; Springer: Singapore, 2021; Volume 1. [Google Scholar] [CrossRef]
- Yousefi-Darani, A.; Babor, M.; Paquet-Durand, O.; Hitzmann, B. Model-based calibration of a gas sensor array for on-line monitoring of ethanol concentration in Saccharomyces cerevisiae batch cultivation. Biosyst. Eng. 2020, 198, 198–209. [Google Scholar] [CrossRef]
- Zhang, Y.; Wijeratne, L.O.H.; Talebi, S.; Lary, D. Machine Learning for Light Sensor Calibration. Sensors 2021, 21, 6259. [Google Scholar] [CrossRef]
- Thrun, M.C.; Ultsch, A. Using Projection-Based Clustering to Find Distance- and Density-Based Clusters in High-Dimensional Data. J. Classif. 2021, 38, 280–312. [Google Scholar] [CrossRef]
- Abdullah, D.; Susilo, S.; Ahmar, A.; Rusli, R.; Hidayat, R. The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data. Qual. Quant. 2021, 56, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Fasaee, K.; Monghasemi, S.; Reza, M.; Shafiee, M.E.; Zechman, E.; Hashempour, P. A K-Sensor correlation-based evolutionary optimization algorithm to cluster contamination events and place sensors in water distribution systems. J. Clean. Prod. 2021, 319, 128763. [Google Scholar] [CrossRef]
- Zhao, X.; Nie, F.; Wang, R.; Li, X. Neurocomputing Improving projected fuzzy K-means clustering via robust learning. Neurocomputing 2022, 491, 34–43. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Jia, R.; Chen, X. Research on Load Clustering Based on Singular Value Decomposition and K-means Clustering Algorithm. In Proceedings of the 2020 Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 28–31 May 2020; pp. 831–835. [Google Scholar] [CrossRef]
- Fritz, M.; Behringer, M.; Tschechlov, D.; Schwarz, H. Efficient exploratory clustering analyses in large-scale exploration processes. VLDB J. 2021, 31, 711–732. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L. A comprehensive survey ofclustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 2022, 110, 104743. [Google Scholar] [CrossRef]
- Wickramasinghe, A.; Muthukumarana, S.; Loewen, D.; Schaubroeck, M. Temperature clusters in commercial buildings using k - means and time series clustering. Energy Inform. 2022, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Borlea, I.d.; Precup, R.e.; Borlea, A.b. Improvement of K-means Cluster Quality by Post Processing Resulted Clusters. Int. Conf. Inf. Technol. Quant. Manag. 2022, 199, 63–70. [Google Scholar] [CrossRef]
- Separation, I.C.; Li, K.; Member, S.; Cao, X.; Ge, X.; Member, S.; Wang, F.; Member, S.; Lu, X.; Member, S.; et al. Meta-Heuristic Optimization-Based Two-Stage Considering Intra-Cluster Compactness and Inter-Cluster Separation. IEEE Trans. Ind. Appl. 2020, 56, 3375–3384. [Google Scholar] [CrossRef]
- Zong, P.; Jiang, J.; Qin, J. Study of High-Dimensional Data Analysis based on Clustering Algorithm. In Proceedings of the 2020 15th International Conference on Computer Science Education (ICCSE), Delft, The Netherlands, 18–22 August 2020; pp. 638–641. [Google Scholar] [CrossRef]
- Rodrigues, J.; Martins, A.; Mendes, M.; Farinha, T.; Mateus, R.; Cardoso, A.J. Automatic Risk Assessment for an Industrial Asset Using. Energies 2022, 15, 9387. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, W.; Zhang, Z.; Wang, F. Continuous Hidden Markov Model Based Spectrum Sensing with Estimated SNR for Cognitive UAV Networks. Sensors 2022, 22, 2620. [Google Scholar] [CrossRef]
- Rabiner, L.R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc. IEEE 1989, 77, 257–286. [Google Scholar] [CrossRef] [Green Version]
- Rabiner, L.R.; Juang, B.H. An Introduction to Hidden Markov Models. IEEE ASSP Mag. 1986, 3, 4–16. [Google Scholar] [CrossRef]
- Martins, A.; Fonseca, I.; Torres, F.J.; Reis, J.; Cardoso, A.J.M. Prediction Maintenance based on Vibration Analysis and Deep Learning—A case study of a drying press supported on Hidden Markov Model. SSRN 2022. [Google Scholar] [CrossRef]
- Boechat, A.A.; Moreno, U.F.; Haramura, D. On-line calibration monitoring system based on data-driven model for oil well sensors. IFAC Proc. Vol. 2012, 45, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Saucedo-Dorantes, J.J.; Jaen-cuellar, A.Y.; Delgado-prieto, M.; Romero-troncoso, R.D.J.; Osornio-rios, R.A. Condition monitoring strategy based on an optimized selection of high-dimensional set of hybrid features to diagnose and detect multiple and combined faults in an induction motor. Measurement 2021, 178, 109404. [Google Scholar] [CrossRef]
- Dhamande, L.S.; Chaudhari, M.B. Compound gear-bearing fault feature extraction using statistical features based on time-frequency method. Measurement 2018, 125, 63–77. [Google Scholar] [CrossRef]
Col 1 Sensor 1/Sensor 2 | Col 2 Sensor 1/Sensor 3 | (…) | Col 24 Sensor 4/Sensor 3 | |
---|---|---|---|---|
1st Chunk | 60.63244195683154 59.64240130685382 (…) 59.262459386540584 | 79.78937757904451 79.86135304565789 (…) 79.87646380056816 | (…) | 3.0538616746523806 3.062736422782496 (…) 3.4567110848650304 |
2nd Chunk | 59.82199978785137 60.19302454746067 (…) 60.122575793590606 | 78.56797868615018 78.74172104561583 (…) 80.59289809317407 | (…) | 3.0538616746523806 3.062736422782496 (…) 3.4567110848650304 |
(…) | (…) | (…) | (…) | (…) |
834th Chunk | 100.12391557061736 99.36665172104591 (…) 100.67188973084929 | 119.97019459713032 119.88307859672575 (…) 120.40164877024282 | (…) | 3.210611636252731 3.3163521246018797 (…) 3.2317746352961993 |
Col 1 Corr. Pearson Col1-Col2 | (…) | Col 828 Corr. Spearman Col13-Col1 | (…) | Col 1656 Corr. Kendall Col24-Col23 | |
---|---|---|---|---|---|
1st Chunk | 0.53820 | (…) | 0.90987 | (…) | 0.08561 |
2nd Chunk | 0.49547 | (…) | 0.88902 | (…) | 0.14987 |
(…) | (…) | (…) | (…) | (…) | (…) |
834th Chunk | 0.43642 | (…) | 0.84575 | (…) | 0.05570 |
Parameter | Mathematical Equation | Parameter | Mathematical Equation |
---|---|---|---|
Mean | A Factor | ||
Standard Deviation | B Factor | ||
Variance | SRM | ||
RMS | SRM Shape Factor | ||
Absolute Maximum | Latitude Factor | ||
Coefficient of Skewness | Fifth Moment | ||
Kurtosis | Sixth Moment | ||
Crest Factor | Median | ||
Margin Factor | Mode | ||
RMS Shape Factor | Minimum | ||
Impulse Factor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, A.; Fonseca, I.; Farinha, J.T.; Reis, J.; Cardoso, A.J.M. Online Monitoring of Sensor Calibration Status to Support Condition-Based Maintenance. Sensors 2023, 23, 2402. https://doi.org/10.3390/s23052402
Martins A, Fonseca I, Farinha JT, Reis J, Cardoso AJM. Online Monitoring of Sensor Calibration Status to Support Condition-Based Maintenance. Sensors. 2023; 23(5):2402. https://doi.org/10.3390/s23052402
Chicago/Turabian StyleMartins, Alexandre, Inácio Fonseca, José Torres Farinha, João Reis, and António J. Marques Cardoso. 2023. "Online Monitoring of Sensor Calibration Status to Support Condition-Based Maintenance" Sensors 23, no. 5: 2402. https://doi.org/10.3390/s23052402