Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability
<p>True-color image composite for the synthetic dataset. (<b>a</b>) Original Hyperspectral image; (<b>b</b>) Low-spectral-resolution multispectral image; (<b>c</b>) Low-spatial-resolution hyperspectral image.</p> "> Figure 2
<p>True-color image composite for the real dataset. (<b>a</b>) Low-spatial-resolution hyperspectral image; (<b>b</b>) High-spatial-resolution pansharpened multispectral image.</p> "> Figure 3
<p>Extracted spectral library from the synthetic data by AEEB.</p> "> Figure 4
<p>Band-wise PSNR for the synthetic dataset.</p> "> Figure 5
<p>True-color image composite for the synthetic dataset. (<b>a</b>) Original hyperspectral image; (<b>b</b>) Obtained HSB-SV sharpened hyperspectral image; (<b>c</b>) Obtained HMF-IPNMF sharpened hyperspectral image; (<b>d</b>) Obtained HySure sharpened hyperspectral image; (<b>e</b>) Obtained CNMF sharpened hyperspectral image; (<b>f</b>) Obtained FuVar sharpened hyperspectral image.</p> "> Figure 6
<p>Spectral band in the <math display="inline"><semantics> <mrow> <mn>0.850</mn> <mo> </mo> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> region (<b>a</b>) Original hyperspectral image; (<b>b</b>) Obtained HSB-SV sharpened hyperspectral image; (<b>c</b>) Obtained HMF-IPNMF sharpened hyperspectral image; (<b>d</b>) Obtained HySure sharpened hyperspectral image; (<b>e</b>) Obtained CNMF sharpened hyperspectral image; (<b>f</b>) Obtained FuVar sharpened hyperspectral image.</p> "> Figure 7
<p>Spectral library extracted from the real data by AEEB.</p> "> Figure 8
<p>True-color image composite for fusion products derived for the real dataset. (<b>a</b>) Obtained HSB-SV sharpened hyperspectral image; (<b>b</b>) Obtained HMF-IPNMF sharpened hyperspectral image; (<b>c</b>) Obtained HySure sharpened hyperspectral image; (<b>d</b>) Obtained CNMF sharpened hyperspectral image; (<b>e</b>) Obtained FuVar sharpened hyperspectral image.</p> "> Figure 9
<p>Spectral band in the <math display="inline"><semantics> <mrow> <mn>0.854</mn> <mo> </mo> <mrow> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math> region. (<b>a</b>) Obtained HSB-SV sharpened hyperspectral image; (<b>b</b>) Obtained HMF-IPNMF sharpened hyperspectral image; (<b>c</b>) Obtained HySure sharpened hyperspectral image; (<b>d</b>) Obtained CNMF sharpened hyperspectral image; (<b>e</b>) Obtained FuVar sharpened hyperspectral image.</p> ">
Abstract
:1. Introduction
- Significantly reducing the processing time with respect to the hypersharpening methods addressing spectral variability.
- Solving the hypersharpening problem by deriving a spectral library and applying a sparsity-based method to improve the spatial and spectral fidelities of the hypersharpening products.
- Dealing with multiple types of spectral variabilities like illumination variations and intrinsic variability or caused by other phenomena since the physics of the considered scene is respected in the proposed approach by using the spectral signatures extracted directly from the considered HSI.
2. Related Works
- Illumination changes, mainly caused by topography variations in the observed scene affecting the angles of the incident radiation.
- Atmospheric conditions which alter the radiance measured by the hyperspectral sensors.
- Intrinsic spectral variability caused by physicochemical differences especially in observed scenes constituted by vegetation.
3. Proposed Approach
3.1. Observation Model
3.2. Description of HSB-SV
3.2.1. Extraction of Spectral Library by AEEB
Algorithm 1. Hyperspectral Super-resolution with Spectra Bundles dealing with Spectral Variability (HSB-SV). |
Input: hyperspectral image and multispectral image . Output: the unobservable sharpened high-spatial-resolution hyperspectral image .
|
3.2.2. Estimation of High-Spatial-Resolution Abundance Fractions
3.2.3. Fusion
4. Datasets
4.1. Synthetic Data
4.2. Real Data
5. Experiments
5.1. Performance Criteria
5.2. Results and Discussion
5.2.1. Results for Synthetic Dataset
5.2.2. Results for Real Dataset
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef] [Green Version]
- Middleton, E.M.; Ungar, S.G.; Mandl, D.J.; Ong, L.; Frye, S.W.; Campbell, P.E.; Landis, D.R.; Young, J.P.; Pollack, N.H. The earth observing one (EO-1) satellite mission: Over a decade in space. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 243–256. [Google Scholar] [CrossRef]
- Pancorbo, J.L.; Quemada, M.; Roberts, D.A. Drought impact on cropland use monitored with AVIRIS imagery in Central Valley, California. Sci. Total Environ. 2023, 859, 160198. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, R.; Guarini, R.; Longo, F.; Scopa, T.; Formaro, R.; Facchinetti, C.; Varacalli, G. Prisma: The Italian Hyperspectral Mission. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 175–178. [Google Scholar]
- Iwasaki, A.; Ohgi, N.; Tanii, J.; Kawashima, T.; Inada, H. Hyperspectral Imager Suite (HISUI)-Japanese hyper-multi spectral radiometer. In Proceedings of the IGARSS 2011—2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Stuffler, T.; Kaufmann, C.; Hofer, S.; Förster, K.; Schreier, G.; Mueller, A.; Eckardt, A.; Bach, H.; Penné, B.; Benz, U.; et al. The EnMAP hyperspectral imager—An advanced optical payload for future applications in Earth observation programmes. Acta Astronaut. 2007, 61, 115–120. [Google Scholar] [CrossRef]
- Blaaberg, S.; Løke, T.; Baarstad, I.; Fridman, A.; Koirala, P.A. Next generation VNIR-SWIR hyperspectral camera system: HySpex ODIN-1024. In Proceedings of the SPIE, Amsterdam, The Netherlands, 22–25 September 2014. [Google Scholar] [CrossRef]
- Thompson, D.R.; Boardman, J.W.; Eastwood, M.L.; Green, R.O.; Haag, J.M.; Mouroulis, P.; Gorp, B.V. Imaging spectrometer stray spectral response: In-flight characterization, correction, and validation. Remote Sens. Environ. 2018, 204, 850–886. [Google Scholar] [CrossRef]
- Schaepman, M.E.; Jehle, M.; Hueni, A.; D’Odorico, P.; Damm, A.; Weyermann, J.; Schneider, F.D.; Laurent, V.; Popp, C.; Seidel, F.C.; et al. Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX). Remote Sens. Environ. 2015, 158, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral Remote Sensing Data Analysis and Future Challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef] [Green Version]
- Guillaume, M.; Minghelli, A.; Deville, Y.; Chami, M.; Juste, L.; Lenot, X.; Lafrance, B.; Jay, S.; Briottet, X.; Serfaty, V. Mapping Benthic Habitats by Extending Non-Negative Matrix Factorization to Address the Water Column and Seabed Adjacency Effects. Remote Sens. 2020, 12, 2072. [Google Scholar] [CrossRef]
- Deville, Y.; Brezini, S.E.; Benhalouche, F.Z.; Karoui, M.S.; Karoui, M.; Lenot, X.; Lafrance, B.; Chami, M.; Jay, S.; Minghelli, A.; et al. Hyperspectral Oceanic Remote Sensing with Adjacency Effects: From Spectral-Variability-Based Modeling to Performance of Associated Blind Unmixing Methods. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar] [CrossRef]
- Benhalouche, F.Z.; Benharrats, F.; Bouhlala, M.A.; Karoui, M.S. Spectral Unmixing Based Approach for Measuring Gas Flaring from VIIRS NTL Remote Sensing Data: Case of the Flare FIT-M8-101A-1U, Algeria. Remote Sens. 2022, 14, 2305. [Google Scholar] [CrossRef]
- Benhalouche, F.Z.; Karoui, M.S.; Benharrats, F.; Bouhlala, M.A. Improving Classical Approach for Flare Parameters Estimation from VIIRS NtL Remote Sensing Data by Linear and Nonlinear Spectral Unmixing Methods. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022. [Google Scholar] [CrossRef]
- Karoui, M.S.; Benhalouche, F.Z.; Deville, Y.; Djerriri, K.; Briottet, X.; Houet, T.; Le Bris, A.; Weber, C. Partial Linear NMF-Based Unmixing Methods for Detection and Area Estimation of Photovoltaic Panels in Urban Hyperspectral Remote Sensing Data. Remote Sens. 2019, 11, 2164. [Google Scholar] [CrossRef] [Green Version]
- Benhalouche, F.Z.; Benabbou, O.; Karoui, M.S.; Kebir, L.W.; Bennia, A.; Deville, Y. Minerals Detection and Mapping in the Southwestern Algeria Gara-Djebilet Region with a Multistage Informed NMF-Based Unmixing Approach Using Prisma Remote Sensing Hyperspectral Data. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022. [Google Scholar]
- Zhuang, L.; Fu, X.; Ng, M.K.; Bioucas-Dias, J.M. Hyperspectral Image Denoising Based on Global and Nonlocal Low-Rank Factorizations. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10438–10454. [Google Scholar] [CrossRef]
- Akhtar, N.; Shafait, F.; Mian, A. Sparse spatio-spectral representation for hyperspectral image super-resolution. In Proceedings of the European conference on computer vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Fu, X.; Jia, S.; Xu, M.; Zhou, J.; Li, Q. Sparsity Constrained Fusion of Hyperspectral and Multispectral Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Selva, M.; Aiazzi, B.; Butera, F.; Chiarantini, L.; Baronti, S. Hyper-Sharpening: A First Approach on SIM-GA Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3008–3024. [Google Scholar] [CrossRef]
- Constans, Y.; Fabre, S.; Seymour, M.; Crombez, V.; Deville, Y.; Briottet, X. Hyperspectral Pansharpening in the Reflective Domain with a Second Panchromatic Channel in the SWIR II Spectral Domain. Remote Sens. 2022, 14, 113. [Google Scholar] [CrossRef]
- Hardie, R.C.; Eismann, M.T.; Wilson, G.L. MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor. IEEE Trans. Image Process. 2004, 13, 1174–1184. [Google Scholar] [CrossRef]
- Wei, Q.; Dobigeon, N.; Tourneret, J.Y. Bayesian fusion of hyperspectral and multispectral images. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Bioucas-Dias, J.M.; Dobigeon, N.; Tourneret, J.Y. Hyperspectral and Multispectral Image Fusion Based on a Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3658–3668. [Google Scholar] [CrossRef] [Green Version]
- Selva, M.; Santurri, L.; Baronti, S. Improving Hypersharpening for WorldView-3 Data. IEEE Geosci. Remote Sens. Lett. 2019, 16, 987–991. [Google Scholar] [CrossRef]
- Kanatsoulis, C.I.; Fu, X.; Sidiropoulos, N.D.; Ma, W.K. Hyperspectral Super-Resolution: A Coupled Tensor Factorization Approach. IEEE Trans. Signal Process. 2018, 66, 6503–6517. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Dian, R.; Fang, L.; Bioucas-Dias, J.M. Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization. IEEE Trans. Image Process. 2018, 27, 4118–4130. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Prévost, C.; Usevich, K.; Brie, D.; Bermudez, J.C.M.; Richard, C. Coupled Tensor Decomposition for Hyperspectral and Multispectral Image Fusion With Inter-Image Variability. IEEE J. Sel. Top. Signal Process. 2021, 15, 702–717. [Google Scholar] [CrossRef]
- Prévost, C.; Usevich, K.; Comon, P.; Brie, D. Hyperspectral Super-Resolution with Coupled Tucker Approximation: Recoverability and SVD-Based Algorithms. IEEE Trans. Signal Process. 2020, 68, 931–946. [Google Scholar] [CrossRef] [Green Version]
- Prévost, C.; Borsoi, R.A.; Usevich, K.; Brie, D.; Bermudez, J.C.; Richard, C. Hyperspectral super-resolution accounting for spectral variability: Coupled tensor LL1-based recovery and blind unmixing of the unknown super-resolution image. SIAM J. Imaging Sci. 2022, 15, 110–138. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, W.; Wang, Q.; Li, X. SSR-NET: Spatial–spectral reconstruction network for hyperspectral and multispectral image fusion. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5953–5965. [Google Scholar] [CrossRef]
- Xu, S.; Amira, O.; Liu, J.; Zhang, C.X.; Zhang, J.; Li, G. HAM-MFN: Hyperspectral and multispectral image multiscale fusion network with RAP loss. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4618–4628. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Tian, X.; Jiang, J.; Ma, J. Image fusion meets deep learning: A survey and perspective. Inf. Fusion 2021, 76, 323–336. [Google Scholar] [CrossRef]
- Xie, Q.; Zhou, M.; Zhao, Q.; Xu, Z.; Meng, D. MHF-Net: An interpretable deep network for multispectral and hyperspectral image fusion. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1457–1473. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Guo, S.; Chen, J.; Deng, X.; Sun, L.; Zheng, X.; Xu, W. Improved SRGAN for Remote Sensing Image Super-Resolution Across Locations and Sensors. Remote Sens. 2020, 12, 1263. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Fan, L.; Wang, Z.; Ma, C.; Cui, X. Tackling mode collapse in multi-generator GANs with orthogonal vectors. Pattern Recognit. 2021, 110, 107646. [Google Scholar] [CrossRef]
- Shi, Y.; Han, L.; Han, L.; Chang, S.; Hu, T.; Dancey, D.A. latent encoder coupled generative adversarial network (le-gan) for efficient hyperspectral image super-resolution. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–19. [Google Scholar]
- Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 2011, 50, 528–537. [Google Scholar] [CrossRef]
- Karoui, M.S.; Deville, Y.; Kreri, S. Joint nonnegative matrix factorization for hyperspectral and multispectral remote sensing data fusion. In Proceedings of the 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, FL, USA, 26–28 June 2013. [Google Scholar]
- Karoui, M.S.; Deville, Y.; Benhalouche, F.Z.; Boukerch, I. Hypersharpening by joint-criterion nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 2016, 55, 1660–1670. [Google Scholar] [CrossRef]
- Simoes, M.; Bioucas-Dias, J.; Almeida, L.B.; Chanussot, J. A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Trans. Geosci. Remote Sens. 2014, 53, 3373–3388. [Google Scholar] [CrossRef] [Green Version]
- Comon, P.; Jutten, C. Handbook of Blind Source Separation: Independent Component Analysis and Applications; Academic Press: Oxford, UK, 2010. [Google Scholar]
- Deville, Y. Blind Source Separation and Blind Mixture Identification Methods. In Wiley Encyclopedia of Electrical and Electronics Engineering; Webster, J., Ed.; Wiley: Hoboken, NJ, USA, 2016; pp. 1–33. [Google Scholar]
- Cichocki, A.; Zdunek, R.; Phan, A.H.; Amari, S.I. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation; John Wiley and Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in spectral mixture analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Zare, A.; Ho, K.C. Endmember variability in hyperspectral analysis: Addressing spectral variability during spectral unmixing. IEEE Signal Process. Mag. 2013, 31, 95–104. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Imbiriba, T.; Bermudez, J.C.M.; Richard, C.; Chanussot, J.; Drumetz, L.; Tourneret, J.-Y.; Zare, A.; Jutten, C. Spectral variability in hyperspectral data unmixing: A comprehensive review. IEEE Geosci. Remote Sens. Mag. 2021, 9, 223–270. [Google Scholar] [CrossRef]
- Brezini, S.E.; Karoui, M.S.; Benhalouche, F.Z.; Deville, Y.; Ouamri, A. A pixel-by-pixel NMF-based method for hyperspectral unmixing using a new linear mixing model to address additively-tuned spectral variability. In Proceedings of the Image and Signal Processing for Remote Sensing SPIE, Strasbourg, France, 9–12 September 2019. [Google Scholar]
- Brezini, S.E.; Karoui, M.S.; Benhalouche, F.Z.; Deville, Y.; Ouamri, A. An NMF-Based Method For Hyperspectral Unmixing Using A Structured Additively-Tuned Linear Mixing Model To Address Spectral Variability. In Proceedings of the 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 9–11 March 2020. [Google Scholar]
- Brezini, S.E.; Deville, Y.; Karoui, M.S.; Benhalouche, F.Z.; Ouamri, A. A Penalization-Based NMF Approach for Hyperspectral Unmixing Addressing Spectral Variability with an Additively-Tuned Mixing Model. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Karoui, M.S.; Benhalouche, F.Z.; Deville, Y. A Gradient-Based Method for the Modified Augmented Linear Mixing Model Addressing Spectral Variability for Hyperspectral Unmixing. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022. [Google Scholar]
- Karoui, M.S.; Benhalouche, F.Z.; Deville, Y. Hyperspectral Unmixing with a Modified Augmented Linear Mixing Model Addressing Spectral Variability. In Proceedings of the 2022 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Istanbul, Turkey, 7–9 March 2022. [Google Scholar]
- Hong, D.; Yokoya, N.; Chanussot, J.; Zhu, X.X. An augmented linear mixing model to address spectral variability for hyperspectral unmixing. IEEE Trans. Image Process. 2018, 28, 1923–1938. [Google Scholar] [CrossRef] [Green Version]
- Dobigeon, N.; Tourneret, J.Y.; Richard, C.; Bermudez, J.C.M.; McLaughlin, S.; Hero, A.O. Nonlinear unmixing of hyperspectral images: Models and algorithms. IEEE Signal Process. Mag. 2013, 31, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Meganem, I.; Deville, Y.; Hosseini, S.; Deliot, P.; Briottet, X. Linear-quadratic blind source separation using NMF to unmix urban hyperspectral images. IEEE Trans. Signal Process. 2014, 62, 1822–1833. [Google Scholar] [CrossRef]
- Meganem, I.; Déliot, P.; Briottet, X.; Deville, Y.; Hosseini, S. Linear–quadratic mixing model for reflectances in urban environments. IEEE Trans. Geosci. Remote Sens. 2013, 52, 544–558. [Google Scholar] [CrossRef]
- Benhalouche, F.Z.; Deville, Y.; Karoui, M.S.; Ouamri, A. Hyperspectral Unmixing Based on Constrained Bilinear or Linear-Quadratic Matrix Factorization. Remote Sens. 2021, 13, 2132. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Imbiriba, T.; Bermudez, J.C.M. Super-resolution for hyperspectral and multispectral image fusion accounting for seasonal spectral variability. IEEE Trans. Image Process. 2019, 29, 116–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brezini, S.E.; Karoui, M.S.; Benhalouche, F.Z.; Deville, Y.; Ouamri, A. Hypersharpening by an NMF-Unmixing-Based Method Addressing Spectral Variability. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Camacho, A.; Vargas, E.; Arguello, H. Hyperspectral and multispectral image fusion addressing spectral variability by an augmented linear mixing model. Int. J. Remote Sens. 2022, 43, 1577–1608. [Google Scholar] [CrossRef]
- Somers, B.; Zortea, M.; Plaza, A.; Asner, G.P. Automated extraction of image-based endmember bundles for improved spectral unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 396–408. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Zhang, L.; Du, B. An image-based endmember bundle extraction algorithm using both spatial and spectral information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2607–2617. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Figueiredo, M.A. Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland, 14–16 June 2010. [Google Scholar]
- Imbiriba, T.; Borsoi, R.A.; Bermudez, J.C.M. Generalized linear mixing model accounting for endmember variability. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018. [Google Scholar]
- Revel, C.; Deville, Y.; Achard, V.; Briottet, X.; Weber, C. Inertia-constrained pixel-by-pixel nonnegative matrix factorisation: A hyperspectral unmixing method dealing with intra-class variability. Remote Sens. 2018, 10, 1706. [Google Scholar] [CrossRef] [Green Version]
- Heinz, D.; Chang, C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Karoui, M.S.; Benhalouche, F.Z.; Brezini, S.E.; Deville, Y.; Benkouider, Y.K. Hypersharpening by a Multiplicative Joint-Criterion NMF Method Addressing Spectral Variability. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Drumetz, L.; Veganzones, M.A.; Henrot, S.; Phlypo, R.; Chanussot, J.; Jutten, C. Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability. IEEE Trans. Image Process. 2016, 25, 3890–3905. [Google Scholar] [CrossRef] [Green Version]
- Otazu, X.; González-Audícana, M.; Fors, O.; Núñez, J. Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2376–2385. [Google Scholar] [CrossRef] [Green Version]
- Drumetz, L.; Meyer, T.R.; Chanussot, J.; Bertozzi, A.L.; Jutten, C. Hyperspectral image unmixing with endmember bundles and group sparsity inducing mixed norms. IEEE Trans. Image Process. 2019, 28, 3435–3450. [Google Scholar] [CrossRef]
- Uezato, T.; Fauvel, M.; Dobigeon, N. Hyperspectral unmixing with spectral variability using adaptive bundles and double sparsity. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3980–3992. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, J.M.; Dias, J.M. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 898–910. [Google Scholar] [CrossRef] [Green Version]
- Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; van Kasteren, T.; Liao, W.; Bellens, R.; Pizurica, A.; Gautama, S.; et al. Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2405–2418. [Google Scholar] [CrossRef]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Correa, Y.T.S.; Bovolo, F.; Bruzzone, L. Change detection in very high resolution multisensor images. In Proceedings of the Image and Signal Processing for Remote Sensing XX SPIE, Amsterdam, The Netherlands, 22–25 September 2014. [Google Scholar]
- EO-1 (Earth Observing-1). Available online: https://earth.esa.int/web/eoportal/satellite-missions/e/eo-1 (accessed on 12 January 2023).
- Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and multispectral data fusion: A comparative review of the recent literature. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [Google Scholar] [CrossRef]
- Alparone, L.; Aiazzi, B.; Baronti, S.; Garzelli, A.; Nencini, F.; Selva, M. Multispectral and panchromatic data fusion assessment without reference. Photogramm. Eng. Remote Sens. 2008, 74, 193–200. [Google Scholar] [CrossRef] [Green Version]
Quick Bird | |
EO-1 Advanced Land Imager | |
Regularization Parameters | |
---|---|
HMF-IPNMF | |
HySure | and |
FuVar | , , and |
Experiment Settings for HSB-SV | |
---|---|
Number of classes of pure materials | 7 |
Number of subsets | 5 |
Size of Subsets | 10% |
Sparsity prompting parameter (SUnSAL) |
HSB-SV | HMF-IPNMF | FuVar | HySure | CNMF | |
---|---|---|---|---|---|
SAM (°) | 2.65 | 3.53 | 3.75 | 3.63 | 4.34 |
NMSEλ (%) | 7.49 | 7.92 | 14.42 | 8.79 | 11.89 |
NMSEs (%) | 6.76 | 8.52 | 15.96 | 9.62 | 13.73 |
PSNR (dB) | 43.01 | 40.61 | 34.12 | 38.73 | 35.50 |
UIQI | 0.9728 | 0.9627 | 0.9098 | 0.9652 | 0.9402 |
ERGAS | 4.96 | 5.77 | 10.26 | 6.18 | 8.93 |
HSB-SV | HMF-IPNMF | FuVar | HySure | CNMF |
---|---|---|---|---|
0.74 | 465.98 | 363.64 | 12.89 | 3.20 |
Experiment Settings for HSB-SV | |
---|---|
Number of pure materials | 7 |
Number of subsets | 5 |
Size of Subsets | 10% |
Sparsity prompting parameter (SUnSAL) |
HSB-SV | HMF-IPNMF | FuVar | HySure | CNMF | |
---|---|---|---|---|---|
0.0322 | 0.0335 | 0.0485 | 0.0442 | 0.1243 | |
0.0064 | 0.0119 | 0.0238 | 0.0098 | 0.0863 | |
0.9615 | 0.9549 | 0.9288 | 0.9464 | 0.8000 |
HSB-SV | HMF-IPNMF | FuVar | HySure | CNMF | |
---|---|---|---|---|---|
Time (s) | 0.20 | 461.91 | 238.99 | 12.02 | 1.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brezini, S.E.; Deville, Y. Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability. Sensors 2023, 23, 2341. https://doi.org/10.3390/s23042341
Brezini SE, Deville Y. Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability. Sensors. 2023; 23(4):2341. https://doi.org/10.3390/s23042341
Chicago/Turabian StyleBrezini, Salah Eddine, and Yannick Deville. 2023. "Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability" Sensors 23, no. 4: 2341. https://doi.org/10.3390/s23042341