High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry–Perot Sensors Based on Dual Superluminescent Diodes
<p>Schematic diagram of a typical fiber-optic F–P sensor.</p> "> Figure 2
<p>Schematic diagram of the dual SLD F–P cavity length demodulation system.</p> "> Figure 3
<p>Flowchart of the processing algorithm for the dual SLDs F–P cavity length demodulation.</p> "> Figure 4
<p>Simulated reflection spectrum of a 40 μm fiber-optic F–P sensor under the illumination of two SLDs with different central wavelengths including random noise.</p> "> Figure 5
<p>Cross-correlation curves of the 40 μm fiber-optic F–P sensor corresponding to two spectral ranges. (<b>a</b>) The template cavity length range is 35–45 μm. (<b>b</b>) The neighboring range of the best matching point is enlarged. CC: cross-correlation.</p> "> Figure 6
<p>Calculated cavity lengths (<b>left</b>) and deviation errors (<b>right</b>) for fiber-optic F–P sensors in the range of 20–200 μm.</p> "> Figure 7
<p>Simulated demodulation deviations of fiber-optic F–P sensors with different cavity lengths under different illuminating conditions of a single 1330 or 1550 nm SLD or two SLDs simultaneously. (<b>a</b>) The single 1330 or 1550 nm SLD has a spectral width of 40 and 46 nm, respectively. (<b>b</b>) The single 1330 or 1550 nm SLD has a spectral width of 80 nm. In both cases, for the dual-SLD demodulation, the 1330 nm SLD is with a 40 nm spectral width, and the 1550 nm SLD is with a 46 nm spectral width.</p> "> Figure 8
<p>Experimental setup of the fiber-optic F–P sensor demodulation system.</p> "> Figure 9
<p>Output spectra of the two SLDs with central wavelengths of (<b>a</b>) 1330 nm and (<b>b</b>) 1550 nm under different driving currents.</p> "> Figure 10
<p>Reflection spectrum of a 100.214 μm fiber-optic F–P sensor.</p> "> Figure 11
<p>Normalized reflection spectra in the spectra ranges covered by (<b>a</b>) 1330 nm SLD and (<b>b</b>) 1550 nm SLD.</p> "> Figure 12
<p>Cross-correlation curves taken from the reflection spectra of two different spectral ranges.</p> "> Figure 13
<p>Relationship between the calculated cavity length and the real cavity length for fiber-optic F–P sensors through the proposed dual SLD cross-correlation demodulation method.</p> "> Figure 14
<p>Demodulation deviations of fiber-optic F–P sensors with cavity lengths in the range of 20–200 μm under different illuminating conditions of a single 1330 or 1550 nm SLD or two SLDs simultaneously.</p> "> Figure 15
<p>Sampling results from the continuous demodulation of a fiber-optic F–P sensor by the dual SLD cross-correlation demodulation method taken over 100 times.</p> ">
Abstract
:1. Introduction
2. Dual SLD Cross-Correlation Demodulation Principle
2.1. Mathematical Model of Dual SLD Cross-Correlation Demodulation
2.2. Processing Algorithm for Dual SLD Cross-Correlation Demodulation
3. Simulation
4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rao, Y.J. Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors. Opt. Fiber Technol. 2006, 12, 227–237. [Google Scholar] [CrossRef]
- Castrellon-Uribe, J. Optical Fiber Sensors: An Overview; IntechOpen: London, UK, 2012. [Google Scholar]
- Taylor, H.F. Acoustooptic modulators for single–mode fibers. IEEE J. Lightwave Tech. 1987, 5, 990–992. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Wang, A.B. Miniature fiber-optic pressure sensor. IEEE Photon. Technol. Lett. 2005, 17, 447–449. [Google Scholar]
- Ghildiyal, S.; Balasubramaniam, R.; John, J. Diamond turned micro machined metal diaphragm based Fabry Perot pressure sensor. Opt. Laser Technol. 2020, 128, 106243. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Ren, C.; Sui, Z.; Li, J. A high sensitivity temperature sensing probe based on microfiber Fabry-Perot interference. Sensors 2019, 19, 1819. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.E.; Taylor, H.F. Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source. IEEE J. Lightwave Techol. 1991, 9, 129–134. [Google Scholar] [CrossRef]
- Wang, M.C.; Hsieh, Z.Y.; Huang, H.S.; Wang, J.E. Dual fiber-optic Fabry-Perot interferometer strain sensor with low-cost light-emitting diode light source. Opt. Eng. 2008, 47, 64401-1–64401-6. [Google Scholar]
- Christmas, S.P.; Jackson, D.A.; Henderson, P.J.; Zhang, L.; Bennion, I.; Dalton, T.; Butler, P.; Kenny, R. High-resolution vibration measurements using wavelength-demultiplexed fiber Fabry-Perot sensors. Meas. Sci. Technol. 2001, 12, 901–905. [Google Scholar]
- Wu, S.; Liang, W.; Chen, X.; Zhou, B. Flexible optical fiber Fabry–Perot interferometer based acoustic and mechanical vibration sensor. J. Lightwave Technol. 2018, 36, 2216–2221. [Google Scholar] [CrossRef]
- Wang, M.C.; Chao, S.Y.; Lin, C.Y.; Chang, C.H.T.; Lan, W.H. Low-frequency vibration sensor with dual-fiber Fabry–Perot interferometer using a low-Coherence LED. Crystals 2022, 12, 1079. [Google Scholar] [CrossRef]
- Riza, N.A.; Sheikh, M. Silicon carbide-based extreme environment hybrid design temperature sensor using optical pyrometry and laser interferometry. IEEE Sens. J. 2010, 10, 219–224. [Google Scholar] [CrossRef]
- Yi, J.; Lally, E.; Wang, A.; Xu, Y. Demonstration of an all-sapphire Fabry–Pérot cavity for pressure sensing. IEEE Photon. Technol. Lett. 2011, 23, 9–11. [Google Scholar] [CrossRef]
- Li, J.; Jia, P.; Fang, G.; Wang, J.; Qian, J.; Ren, Q. Batch-producible all-silica fiber-optic Fabry–Perot pressure sensor for high-temperature applications up to 800 °C. Sens. Actuators A Phys. 2022, 334, 113363. [Google Scholar] [CrossRef]
- Bhatia, V.; Murphy, K.A.; Claus, R.O.; Tran, T.A.; Tuan, J.A. Recent developments in optical-fiber-based extrinsic Fabry-Perot interferometric strain sensing technology. Smart Mater. Struct. 1995, 4, 246–251. [Google Scholar] [CrossRef]
- Yu, Q.; Zhou, X. Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sens. 2011, 1, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y. Fourier transform white-Light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors. IEEE Photon. Technol. Lett. 2008, 20, 75–77. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, J.; Ding, W.; Gao, R. Fourier transform white-light interferometry based on nonlinear wavelength sampling. Opt. Eng. 2013, 52, 104102. [Google Scholar] [CrossRef]
- Pisani, M.; Zucco, M. Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer. Opt. Express 2009, 17, 8319–8331. [Google Scholar] [CrossRef]
- Bhatia, V.; Jones, M.E.; Grace, J.L.; Murphy, K.A.; Richard, R.O.; Greene, J.A.; Tran, T.A. Applications of “absolute” fiber optic sensors to smart materials and structures. Proc. SPIE Int. Soc. Opt. Eng. 1994, 2360, 171–174. [Google Scholar]
- Leng, J.S.; Asundi, A. Real-time cure monitoring of smart composite materials using extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors. Smart Mater. Struct. 2002, 11, 249–255. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, C. High-finesse micro-lens fiber-optic extrinsic Fabry–Perot interferometric sensors. Smart Mater. Struct. 2008, 17, 055013. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Li, Y.; Jing, X.; Yuan, S.; Zhang, X.; Wang, W.; Liu, R.; Guo, Q. Squared peak-to-peak algorithm for the spectral interrogation of short-cavity fiber-optic Fabry–Perot sensors. Appl. Opt. 2020, 59, 1198–1205. [Google Scholar] [CrossRef]
- Tian, J.; Jiao, Y.; Ji, S.; Dong, X.; Yao, Y. Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation. Opt. Commun. 2018, 412, 121–126. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, Q. Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement. IEEE Sens. J. 2011, 11, 1602–1606. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Ding, W.; Gao, R. A cross-correlation based fiber optic white-light interferometry with wavelet transform denoising. Proc. SPIE Int. Soc. Opt. Eng. 2013, 8924, 1–4. [Google Scholar]
- Xie, J.; Wang, F.; Yao, P.; Hu, J.; Hu, Y. High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors. Opt. Fiber Technol. 2015, 22, 1–6. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Zhang, X.; Wei, W.; Guo, Z. High-Order Harmonic-Frequency Cross-Correlation Algorithm for Absolute Cavity Length Interrogation of White-Light Fiber-Optic Fabry-Perot Sensors. J. Lightwave Technol. 2019, 38, 953–960. [Google Scholar] [CrossRef]
- Zuo, G.; Hu, H.; Li, S.; Yang, Z.; Chen, J.; Huang, Y.; Qu, Y.; Xia, L. Iterative normalized cross-correlation method for absolute optical path difference demodulation of dual interferometers. Opt. Express 2021, 29, 16595–16610. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Yu, J.; Zhang, X.; Chen, H.; Zhang, J.; Wang, W. High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry–Perot Sensors Based on Dual Superluminescent Diodes. Sensors 2022, 22, 5898. https://doi.org/10.3390/s22155898
Zhang W, Yu J, Zhang X, Chen H, Zhang J, Wang W. High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry–Perot Sensors Based on Dual Superluminescent Diodes. Sensors. 2022; 22(15):5898. https://doi.org/10.3390/s22155898
Chicago/Turabian StyleZhang, Weiguang, Jia Yu, Xiongxing Zhang, Haibin Chen, Junying Zhang, and Wei Wang. 2022. "High-Precision Cavity Length Demodulation Method for Fiber-Optic Fabry–Perot Sensors Based on Dual Superluminescent Diodes" Sensors 22, no. 15: 5898. https://doi.org/10.3390/s22155898