
Photonic Sensors (2011) Vol. 1, No. 1: 72-83  

DOI: 10.1007/s13320-010-0017-9                                                         Photonic Sensors 
Review 

Pressure Sensor Based on the Fiber-Optic  
Extrinsic Fabry-Perot Interferometer  

Qingxu YU and Xinlei ZHOU 

School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116023, P.R. China 

*Corresponding author: Qingxu YU      E-mail: yuqx@dlut.edu.cn 

 

Abstract: Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer (EFPI) have 
been extensively applied in various industrial and biomedical fields. In this paper, some key 
improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique, 
diaphragm-based EFPI sensors, and white light interference technology have been reviewed. Recent 
progress on signal demodulation method and applications of EFPI-based pressure sensors has been 
introduced. Signal demodulation algorithms based on the cross correlation and mean square error 
(MSE) estimation have been proposed for retrieving the cavity length of EFPI. Absolute 
measurement with a resolution of 0.08 nm over large dynamic range has been carried out. For 
downhole monitoring, an EFPI and a fiber Bragg grating (FBG) cascade multiplexing fiber-optic 
sensor system has been developed, which can operate in temperature 300 ℃ with a good long-term 
stability and extremely low temperature cross-sensitivity. Diaphragm-based EFPI pressure sensors 
have been successfully used for low pressure and acoustic wave detection. Experimental results show 
that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave 
detection has been obtained.  
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1. Introduction 

High-performance measurement on static and 
dynamic pressure is extremely important in many 
industrial areas, such as petrochemical industry, 
fluid engineering, wind tunnel test, biomedicine, and 
industrial safety. For example, reliable pressure 
measurement of the underground oil reservoir can 
provide key data which can be used to determine the 
quantity of oil reserve and to optimize the 
production rates of reservoir recovery [1, 2]. 
However, many of these industrial processes involve 
harsh environment, such as high temperature, 
chemical corrosion, strong electromagnetic 

interference (EMI), and high-energy radiation 
exposure. These extreme physical conditions often 
lead to conventional pressure sensors very difficult 
to apply and incapable of meeting current and future 
measurement demands. This situation suggests that 
innovative sensors capable of operating in various 
harsh environments should be developed to support 
industrial efforts. 

Fiber-optic sensors have been demonstrated to 
be especially attractive for the measurement of a 
wide variety of physical and chemical parameters in 
harsh environment in past years [3-6]. In 
comparison with conventional sensors, fiber-optic 
sensors own many advantages, such as immunity to 
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EMI, small size, light weight, resistance to chemical 
corrosion, high accuracy, resolution, and capability 
of remote operation. These advantages have 
promoted worldwide research activities in the field 
of optical fiber sensor technologies for harsh 
environment. In recent years, fiber-optic based 
pressure sensors employing various mechanisms 
have been reported, including microbending [7], 
photoelastics [8-10], and fiber gratings sensor 
[11-13]. 

Since the extrinsic Fabry-Perot interferometer 
(EFPI) based fiber-optic sensor was presented by 
Kent A. Murphy in 1991 [14], EFPI has been 
developed into pressure sensor and drawn a great 
deal of research interests due to the advantages of 
smaller size, immunity to the polarization-induced 
fading, and extremely high sensitivity. In this paper, 
a review on EFPI-based pressure sensors has been 
given. Firstly, major progresses of EFPI-based 
sensors in past years are reviewed. Then, the basic 
sensing mechanism of EFPI-based pressure sensor is 
described and various signal demodulation methods 
are summarized. Finally, application progress of 
EFPI-based pressure sensor, including downhole 
monitoring, liquid-level monitoring, acoustic wave 
detection, and trace gas detection, are introduced.  

2. Review of major improvements of 
EFPI-based pressure sensors in past 
years 

2.1 Controllable thermal bonding technique 

EFPI-based pressure sensors have been usually 
fabricated by inserting two endface-cleaved fibers 
into an alignment capillary tube with a proper inner 
diameter [15], as shown in Fig. 1. In the early work 
on EFPI-based pressure sensors, epoxies were 
applied to bond the fiber with the alignment 
capillary tube. However, sensors fabricated with this 
method have some disadvantages which limit their 
use in harsh environment. For example, epoxy-based 
sensors have a bad performance in terms of thermal 

stability and mechanical strength. The working 
temperature of epoxy-based sensors is also limited 
by that of the epoxy. In addition, because of inherent 
thermal expansion coefficient difference between 
epoxy and fiber, epoxy-based sensors are usually 
sensitive to temperature change, which would cause 
a severe temperature-pressure cross-sensitivity 
problem. To overcome these drawbacks, Anbo Wang 
et al. presented a novel sensor fabrication system 
based on the controlled thermal bonding method [4, 
16]. They successfully used a CO2 laser to thermally 
fuse the fiber and the capillary tube together 
permanently. EFPI-based sensors fabricated by this 
method have the advantages of good long-term 
stability and low temperature-pressure 
cross-sensitivity. This epoxy-free EFPI-based 
pressure sensors are competent for the industrial 
application with high temperature and high pressure 
environment [4-6]. 
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Fig. 1 Typical structure of EFPI-based pressure sensor. 

2.2 Diaphragm-based EFPI pressure sensors 

EFPI-based pressure sensors with the structure 
shown in Fig. 1 are suitable for static and high 
pressure measurement, but insensitive to low 
pressure variation. In order to detect dynamic and 
low pressure variations, diaphragm-based EFPI 
(DEFPI) fiber-optic sensor has been proposed [17, 
18]. As shown in Fig. 2, DEFPI-based pressure 
sensors are usually fabricated by manufacturing a 
microstructure at the fiber end. The manufacturing 
processes mostly base on micro-electro-mechanical 
system (MEMS) technologies, such as lithography, 
chemical wet etching [19], anodic bonding [20], and 
the organic membrane technology [21, 22]. 
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Fabry-Perot cavity is usually formed between the 
fiber endface and the inner surface of the diaphragm. 
The sensitivity and dynamic range of DEFPI-based 
sensor can be adjusted by changing the diameter, 
thickness, and/or material of the diaphragm to meet 
micro and dynamic pressure measurement 
requirements in industrial and biomedical 
applications.  

Due to possessing advantages of high sensitivity 
to micro-pressure, fast response, wide bandwidth, 
lightweight, long life time, and immunity to EMI, 
DEFPI-based pressure sensors have drawn great 
research interests and been widely applied in 
industrial and biomedical fields [23-25]. 
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Fig. 2 Typical structure of DEFPI-based pressure sensor. 

2.3 White light based EFPI-sensor 

As for EFPI-based sensors, the measurands are 
usually retrieved using a specific demodulation 
scheme through the detection of the reflection   
spectrum change of Fabry-Perot cavity caused by 
variations of the measurands. For early EFPI-based 
sensor systems, a coherent light source was used to 
achieve a large coherent length, which in turn 
produced a large dynamic range. For this type of 
system, the most commonly used signal 
demodulation method is fringe counting [26]. 
However, the fringe counting method suffers from 
problems such as fringe direction ambiguity and low 
resolution which is of the same order of magnitude 
as the source wavelength. To solve the ambiguity 
problem, the low-coherence light (or white light) is 
employed to retrieve the cavity length of EFPI-based 
sensor [27-29]. White-light EFPI sensors have many 
advantages such as immunity to light source power 
and central wavelength drift or attenuation changes 

of fiber, high resolution, and absolute measurements. 
Numerous applications of white-light EFPI sensor 
systems have been reported, covering a wide range 
from single point measurement to distributed sensor 
systems [30-32]. 

3. Theory 

3.1 Mechanism of EFPI-based pressure sensor 

The basic configuration of EFPI-based pressure 
sensor system is illustrated in Fig. 3. The system 
includes a light source (usually a white-light source), 
a spectrometer, an optical coupler, and a sensor head. 
The sensor head can be a capillary-based EFPI 
structure (Fig. 1) for static and high pressure 
measurement or a diaphragm-based EFPI structure 
(Fig. 2) for micro and dynamic pressure 
measurement. 

Scattering
Fiber End

 
Fig. 3 Basic configuration of EFPI-based pressure sensor 

system. 

The light from light source is launched into a 
50% fiber coupler and propagates along the 
lead-in/out fiber to the sensor head which is a 
low-finesse Fabry-Perot interferometer formed by 
the end-faces of lead-in/out fiber and a reflecting 
fiber (or a diaphragm). A fraction of the incident 
light is firstly reflected (about 4%) at the endface of 
lead-in/out fiber and returns directly back to the 
fiber. The remainder of the light propagates across 
the air gap to the endface of the reflecting fiber (or 
the inner surface of the diaphragm), and then the 
reflected light is recoupled into lead-in/out fiber and 
interferes with the first reflected light. The output 
interference signal can be described by [33] 

)]cos(1)[(2 ϕγλ += sII         (1) 

where )(λsI  is the intensity distribution of the 
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light source, γ is the fringe visibility of EFPI, ϕ  is 
the round-trip phase shift, given by 

λ
πϕ d4

=                (2) 

where d is the cavity length. 
For the sensor geometry shown in Fig. 1, when a 

pressure p is applied to the sensor head, due to the 
longitudinal compression of the alignment tube, the 
cavity length of EFPI will be changed, which can be 
expressed as [34] 

p
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o )21(22

2

μ−
−

=Δ        (3) 

where E is Young’s modulus of the tube material, 
μ  is poisson ratio, L is the distance between two 
thermal fusion points, or  and ir  are outer and 
inner radii of the capillary tube, respectively. 
Equation (3) indicates that the cavity length change 
is linear with respect to the applied pressure.  

Equations (1) - (3) reveal that the pressure 
acting on EFPI sensor can be retrieved by analyzing 
variations of the interference spectrum through some 
specific signal processing algorithms, which will be 
described in the following section. 

3.2 Signal demodulation method 

The signal demodulation algorithms of 
EFPI-based sensors can be classified into two major 
categories as linear demodulation [35] (or 
quadrature demodulation) and spectral detection 
based demodulation. 

3.2.1 Linear demodulation  

In the linear demodulation, the operation of 
EFPI-based sensor is limited to a small linear region 
of the interference fringes near a quadrature point 
(Q-point) as shown in Fig. 4. In this linear region, 
the sensor’s sensitivity is maximized and can be 
treated as a constant. However, for the linear 
demodulation based on the intensity modulation, the 
measured results are easily influenced by the 
fluctuations of optical source power and the 
transmission loss of fiber. To overcome this 

shortcoming, Anbo Wang et al. developed a 
self-calibrated interferometric/intensity-based 
(SCIIB) fiber optic sensor system [36]. SCIIB 
system uses optical filtering to process optical signal 
output from Fabry-Perot cavity, so that two signals 
are produced: one contains information about the 
cavity displacement and the other contains 
information regarding undesired effects of the first 
signal, such as fluctuations of the optical source 
power, or changes of optical fiber loss. The second 
signal is used as a reference to eliminate these 
undesired effects and provides self-calibration 
functions in the sensor. Based on SCIIB system, 
Guiju Zhang et al. proposed an improved 
self-compensated demodulation algorithm [37]. By 
setting the initial cavity length to a special point at 
which the interferometric signals from broadband 
and narrowband channels show reversed phase, 
more effective compensation and higher resolution 
of the sensing system are achieved. 

Q Point

 
Fig. 4 Schematic diagram of the linear demodulation. 

The linear demodulation method has a number 
of advantages such as high sensitivity, fast signal 
response, no sensitivity reduction, simple signal 
processing, and inherently low cost. These features 
make the linear demodulation particularly be used in 
dynamic measurement of small perturbations, such 
as the detection of ultrasonic [38-40], vibration [41], 
partial discharge [42], and dynamic strain [34]. The 
drawbacks of operating with the linear demodulation 
method are limited dynamic range and the challenge 
for the static operating point control or 
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stabilization [39, 43]. 

3.2.2 Spectral detection based demodulation 
method 

As to spectral detection demodulation approach, 
a spectrometer with a charge-coupled device (CCD) 
array is usually used to record the reflecting 
spectrum of EFPI-based sensor and a personal 
computer is employed for signal processing. A 
reflecting spectrum of EFPI-based sensor is shown 
in Fig. 5. According to (1) and (2), when the cavity 
length d of EFPI changes, the spectrum will have a 
shift and the frequency of interference fringe will 
change in the wavelength domain, correspondingly. 
Therefore, the cavity length can be demodulated by 
tracking the shift of the spectrum or measuring the 
frequency variation of interference fringe. 
Accordingly, signal processing methods such as 
wavelength-tracking [44], two-peak wavelength 
interrogation [33], and Fourier transform [45] have 
been widely used to calculate the cavity length of 
EFPI-based sensor. Nevertheless, all these methods 
have some shortcomings. The wavelength-tracking 
method can not carry out absolute measurement. 
Two-peak wavelength interrogation method and 
Fourier transform method usually have a resolution 
no better than tens of nanometers. 

 
Fig. 5 Interference spectrum from an EFPI sensor. 

In order to improve measurement resolution and 
carry out absolute measurement over a large 
dynamic range, Zhenguo Jing et al. [46] presented a 
demodulating method for EFPI sensor based on the 

cross correlation algorithm, which is capable of 
providing high resolution up to 0.25 nm and 
implementing absolute measurement. Side Song [47] 
proposed a demodulation algorithm based on mean 
square error (MSE) estimation for EFPI sensor. 
MES-based signal processing method introduces  
MES to estimate the parameter to be measured, 
which can be expressed as 

2ˆ ˆ( ) ( )mse var biasθ θ= +         (4) 
where θ̂  is an estimated value of the true value θ , 

ˆ( )var θ and )ˆ(θbias  are the variance and the 
deviation of θ̂ , respectively. 

Equation (4) shows that MSE includes errors 
caused by the variance and the deviation of θ̂ . 
Only when both ˆ( )var θ and )ˆ(θbias  are minimum, 
MSE is minimum. So MSE is an effective parameter 
to estimate θ̂ . Assuming that there is a series of 
estimated value { θ̂ }, the θ̂  with the minimum 
MSE is the best one to represent the true value. 
MSE-based signal processing method has also the 
advantages of high resolution up to 0.18 nm and 
absolute measurement of the cavity length over a 
large dynamic range.  

4. Applications of EFPI-based pressure 
sensor 

4.1 Downhole monitoring  

Data published by the U. S. Department of 
Energy indicate that approximately two-thirds of the 
oil discovered in the U. S. remains in the ground 
after primary, secondary, and tertiary recovery 
operations have been completed.  This is largely 
due to the limited availability of information 
concerning reservoirs, well operation, and 
well-to-well interrelations. Continuous reliable 
downhole pressure measurements in wells will 
provide key data that can permit better, faster 
reservoir characterization and improving forecasting 
of reservoir capability, thereby permit operators to 
optimize the recovery of reserves. Presently, many 
commercial products based on the fiber-optic 
sensors for single point pressure measurement in 
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wells have been developed. For example, fiber-optic 
pressure sensors developed by CiDRA corporation 
can achieve a resolution of 2.06 kPa over the 
measurement range of 0-103 MPa. It can operate in 
temperature range of 25 ℃-175 ℃. The borehole 
pressure/temperature (BHPt) series pressure sensor 
developed by Sabeus corporation can operate in  
200 ℃ continuously with a resolution of 0.69 kPa. 
In additional, oilfield service companies such as 
Weatherford, Sabeus, and SENSORNET also have 
their products for pressure measurement in oil well. 
And these products have been successfully applied 
to downhole monitoring. However, as the increasing 
application of offshore drilling and horizontal wells, 
pressure sensors that capable of working in higher 
temperature with good performance such as high 
resolution, high repeatability, high stability, and low 
temperature-pressure cross-sensitivity are urgently 
desired.  
 

Sensor Head

Metal 
Sealing 

F-P 
Pressure 
Sensor 

Silica Ferrule Thermally 
Bonded with Fiber 

 
Fig. 6 Configuration of EFPI-FBG multiplexing sensor 

system. 

 
Fig. 7 Reflection spectrum of EFPI-FBG multiplexed sensor. 

In recent years, our research group has done a lot 

of original work on EFPI-based pressure sensor for 
downhole monitoring. To realize multi-parameters 
measurement, an EFPI and a fiber Bragg grating 
(FBG) cascade multiplexing fiber-optic sensor 
system have been developed [48]. The configuration 
of EFPI-FBG sensor system and the reflection 
spectrum of EFPI-FBG sensor head are shown in 
Figs. 6 and 7, respectively.  

In addition to capable of measuring temperature 
and pressure simultaneously, the temperature-pressure 
cross-sensitivity problem can be effectively solved 
by using a temperature compensation calculation 
based on two parameters nonlinear fitting method. 
Figure 8 shows the pressure measurement results of 
EFPI-FBG based sensor at different temperatures 
without temperature compensation calculation. 
Figure 9 shows the pressure measurement results at 
different temperatures with temperature 
compensation calculation. One can see that the 
influence of temperature has been greatly reduced. 

 
Fig. 8 Pressure measurement results at different 

temperatures without temperature compensation calculation. 

 
Fig. 9 Pressure measurement results at different 

temperatures with temperature compensation calculation. 
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Long-term stability of EFPI-based sensor 
operating in high temperature has also been 
investigated. Experiment research results show that 
the stability of EFPI sensor is mainly affected by the 
residual stress induced by CO2 laser thermal 
bonding process. The release of residual stress leads 
to the drift of EFPI sensor. To solve this problem, an 
annealing treatment is done before EFPI-based 
sensor is applied for pressure measurement. Figure 10 
shows the influence of residual stress release on EFPI 
cavity length at 700 ℃. We can see that the residual 
stress has been released up to 90% after 15 day’s 
annealing. After annealing treatment, EFPI-based 
sensor exhibits a good long-term stability. Figure 11 
shows the measurement result of the long-term 
stability of two EFPI-based sensors in 300 ℃ within 
six months. From Fig. 11 one can see that the long 
term drift is less than 0.1% in full scale of 35 Pa. 
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Fig. 10 Influence of residual stress release on EFPI cavity 

length at 700 ℃. 
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Fig. 11 Measurement result of the long-term stability of two 

EFPI-based sensors in 300 ℃. 

In order to improve the measurement resolution 
of EFPI cavity length and expand the measurement 
range, Qi Wang et al. [49] developed a broadband 
optical fiber sensor interrogator system, in which a 
widely tunable erbium-doped fiber ring laser with a 
tunning range over 145 nm was used. Demodulating 
with this system, EFPI-FBG multiplexed sensor 
exhibits better performance of resolution 
measurement and stability. Experimental results 
show that the limit resolution of EFPI cavity length 
of 0.08 nm is reached, corresponding to a pressure 
resolution of 0.32 kPa, as shown in Fig. 12. And the 
resolution of FBG wavelength is 0.63 pm, 
corresponding to the temperature resolution of  
0.065 ℃, as shown in Fig. 13. 

 
Fig. 12 Resolution measurement of EFPI cavity length. 

 
Fig. 13 Resolution measurement of FBG wavelength. 

4.2 Liquid-level monitoring 

Due to the advantage of high sensitivity, 
DEFPI-based sensors have drawn great interests for 
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low pressure measurements, such as the liquid-level 
monitoring [50, 51]. However, the temperature 
dependence of DEFPI-based optical fiber sensor 
induced by trapped air expansion and thermal 
expansion coefficient mismatch of the material in 
the sensor construction will cause a larger pressure 
error. 

To solve this problem, Qiaoyun Wang [52] et al. 
proposed an all silica DEFPI-based optical fiber 
differential pressure sensor with a pressure balance 
structure, schematically shown in Fig. 14. A 
capillary with cone-shaped cup and two holes is 
employed as the alignment and support component 
of DEFPI-based sensor. Due to vent structure and 
low thermal expansion coefficient of silica material, 
this sensor has low temperature response and high 
sensitivity. A sensitivity of 25.89 nm/kPa in the 
range of 0 - 3 kPa with a linear correlation 
coefficient of 0.99958 has been obtained, as shown 
in Fig. 15. And a resolution of 0.12 nm, 
corresponding to a pressure resolution of 4.7 Pa, has 
been achieved. 

 

Single Mode Fiber 

 
Fig. 14 Structure of diaphragm-based optical fiber pressure 

sensor.  
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Fig. 15 Pressure response of DEFPI–based sensor at room 

temperature. 

4.3 Acoustic wave detection 

In recent years, DEFPI-based fiber optic sensors 
have become a hot topic in the acoustic signal 
detection due to its high sensitivity, wide frequency 
response, and immunity to electromagnetic 
interference. Various kinds of DEFPI-based fiber 
optic sensors, such as silica diaphragm spliced with 
silica capillary [53, 54], glass or silicon diaphragm 
bonded to silicon base [55], and dipped polymer 
membrane on hollow fiber tip [22] have been 
developed and applied in the detection of 
hydroacoustic waves and partial discharge in power 
transformer [56]. However, most of these sensors 
can not suit for aeroacoustic detection due to the 
mismatch of acoustic impedance with the sensor’s 
diaphragm.  

 
PPESK Diaphragm 

 
Fig. 16 Configuration of DEFPI-based fiber optic acoustic 

sensor.  

R=0.99979

 
Fig. 17 Linearity between output of DEFPI-based acoustic 

sensor and sound pressure at 1 kHz. 

To meet the needs of aeroacoustic detection, a 
novel polymer poly (phthalazinone ether sulfone 
ketone, PPESK) diaphragm has been employed as 
the sensing element of DEFPI-based fiber acoustic 
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sensor [57], as shown in Fig. 16. Owing to the good 
mechanical and optical features of PPESK 
diaphragm and application of the interferometric/ 
intensity demodulation mechanism, a system 
sensitivity of 31 mV/Pa in the frequency range of 
100Hz to 12.7 kHz and a signal to noise ratio (SNR) 
of 29 dB at 1 kHz have been obtained. The linear 
response of sensor is from 0.35 Pa to 2.82 Pa, 
corresponding to 85 dB - 103 dB sound pressure 
level (SPL) (re.20 μPa), as shown in Fig. 17.  

4.4 Photoacoustic spectrometer for trace gas 
detection 

Trace gas detection plays an important role in 
many areas, such as environmental atmospheric 
monitoring, combustion study, plant and insect 
respiration study, and medical diagnosis [58-61]. 
Based on near-infrared photoacoustic spectroscopy 
(PAS), trace gas analysis is carried out by detecting 
photoacoustic (PA) signal [62-64]. However, 
conventional electric acoustic sensors (microphone), 
which are usually used to detect PA signal, are not 
competent for operation in some extremely harsh 
environment. For PA signal detecting in harsh 
environment, an all-optical PAS system based on 
DEFPI fiber optic acoustic sensor (as shown in   
Fig. 16) for trace gas detection at atmospheric 
pressure and room temperature is proposed, 
schematically shown in Fig. 18.  

 
Fig. 18 Configuration of the all-optical PAS system. 

Taking the advantages of the wavelength 

modulation and second harmonic detection method, 
the all-optical PAS system is demonstrated by 
detecting the acetylene at room temperature and 
atmospheric pressure. Experimental results show a 
good linear relationship between PA signal and the 
acetylene concentration in the range of 0.05 ppm to 
1ppm with a linear correlation coefficient of 0.99981, 
as shown in Fig. 19. And a minimum detectable 
limit of 1.56 ppb has been achieved. 

R=0.99981

 
Fig. 19 Linear response of PA signals to acetylene 

concentration at room temperature and atmosphere pressure. 

5. Conclusions 

The present paper is devoted to a comprehensive 
introduction to fiber EFPI-based pressure sensors. In 
the past two decades, EFPI-based pressure sensors 
have undergone a significant growth and substantial 
research has been carried out on it. Signal 
demodulation algorithm based on cross correlation 
and MSE estimation have been proposed for 
retrieving the cavity length of EFPI, and a resolution 
up to 0.08 nm and absolute measurement over a 
large dynamic range have been implemented. For 
downhole monitoring, an EFPI and a FBG cascade 
multiplexing fiber-optic sensor system has been 
developed, which can operate in the temperature up 
to 300 ℃  with good long-term stability and 
extremely low temperature-pressure cross-sensitivity. 
Diaphragm-based EFPI sensors have been 
successfully used for low pressure and acoustic 
wave detection. Experimental results show that a 
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sensitivity of 31 mV/Pa in the frequency range from 
100Hz to 12.7 kHz for aeroacoustic wave detection 
has been obtained. Applying fiber optical acoustic 
sensor to photoacoustic spectrometer, an all-optical 
PAS system is realized recently.  

We wish this paper would provide the 
researchers some useful information regarding 
EFPI-based pressure sensors and encourage them to 
take this area for further research and development. 
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