Machine Learning Approach to Support the Detection of Parkinson’s Disease in IMU-Based Gait Analysis
<p>Analysis of our gait prediction flowchart. Description of the Parkinsonian gait prediction flow chart analyzed, including data acquisition, dimensionality reduction, data analysis technique, and gait prediction with classification performance parameter in prediction. First of all, data acquisition by IMU sensor positioned at the trunk level (L5) with the acceleration signals of the trunk in three spatial directions. After normalizing the data, we reduced the number of features from the initial 22 to 7, using the three methods described in feature selection. After this, we implemented five ML algorithms and evaluated their performance in prediction subjects with Parkinson’s from healthy subjects: IMU, inertial measurement unit; ML, machine learning; pwPD, people with Parkinson’s disease; HS, healthy subjects.</p> "> Figure 2
<p>Machine learning block diagram model. After we reduced the dimensionality of the entire initial dataset, we split the final set into two subgroups: training set (80% of data) and test set (20% of data). On training data, we performed k-fold cross-validation (k = 10), as shown in the diagram. To make a prediction on training data, after grid search hyperparameter tuning, we evaluated the real output (test data), and we analyzed the results by classification performance for each classifier.</p> "> Figure 3
<p>Multilayer perceptron (MLP). Our MLP with seven neurons in input layer, consequently features chosen by dimensionality reduction methods, six neurons in hidden layer, chosen by grid search method, classify our dataset in output layer to predict pathological or healthy subjects’ gait: CV, coefficient of variation of step length; HR ap, harmonic ratio anteroposterior; RQAdet_ap, % determinism in the recurrence quantification analysis anteroposterior; pwPD, people with Parkinson’s disease; HS, healthy subjects.</p> "> Figure 4
<p>Partial correlation heatmap. Partial Pearson correlation analysis was performed to evaluate relationships among the initial set of features. A heatmap of the dataset’s characteristics showed different Pearson coefficients for every single variable. The deeper the red or blue color, the stronger the negative or positive correlation, respectively. In the decision process, we reduced the dimensionality of dataset according to the choice of which parameter we could keep that showed a partial correlation value ≥ 0.50 to prevent multicollinearity issues: *, <span class="html-italic">p</span> < 0.05; **, <span class="html-italic">p</span> < 0.01; ***, <span class="html-italic">p</span> < 0.001.</p> "> Figure 5
<p>Sequential backward selection (SBS). To improve computational efficiency and reduce generalization error, the sequential backward selection algorithm aims to reduce the dimensionality of the initial feature subspace from N to K features with minimal model performance loss. To obtain the list of K features, sequentially remove features from a given features list of N features. By including seven characteristics of the dataset, excluding cadence, we maximized the performance of the algorithm, which, in our case, turned out to be KNN.</p> "> Figure 6
<p>Random forest features importance. We analyzed features’ importance following implementation of a random forest of 1000 trees. As we showed in the histogram plot, cadence was evaluated by the random forest algorithm as the less important characteristic of our dataset, confirming the SBS result: HR_ap, harmonic ratio anteroposterior; RQAdet, % determinism in the recurrence quantification analysis anteroposterior; CV, coefficient of variation of the step length.</p> "> Figure 7
<p>Comparison between the classification performance measures in the 7-features model. The mean and standard deviation values of the 10 runs for each performance measure for each ML algorithm are shown in the figure. The F values of the ANOVA procedure are reported, as well as the <span class="html-italic">p</span>-values of Bonferroni’s post hoc analysis.</p> "> Figure 8
<p>Confusion matrices. Representation of the confusion matrices evaluated for each algorithm after feature selection and during the run that displayed the highest accuracy value for each of them, The correct predictions are shown in green, while the wrong ones are shown in red.: PwPD, people with Parkinson’s disease; Hs, healthy subject; SVM, support vector machine; RF, random forest; DT, decision tree; KNN, K-nearest neighbor; ANN, artificial neural network.</p> "> Figure 9
<p>ROC curves. Plots of the runs that achieved the best AUCs in features selected approach for each ML algorithm. AUC SVM (0.877), AUC RF (0.827), AUC DT (0.820), AUC ANN (0.810), AUC KNN (0.778): ROC, receiver operating characteristic; AUC, area under curve; SVM, support vector machine; RF, random forest; DT, decision tree; KNN, K-nearest neighbor; ANN, artificial neural network. ROC curves for the maximum accuracies obtained by each classifier.</p> "> Figure 10
<p>Decision tree graphical visualization. Graphical representation of our decision tree with maximum depth of five and used impurity criterion of entropy. In the decision-making process of the decision tree, we can observe the importance of the parameter RQAdet_ap to discriminate between Parkinson’s and healthy subjects in root node. As can be observed from the internal nodes, HR_ap, and RQAdet_ap are very important in the forecasting process: HR_ap, harmonic ratio anteroposterior; RQAdet_ap, % determinism in the recurrence quantification analysis anteroposterior; pwPD, people with Parkinson’s disease; HS, healthy subjects.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Instrumentation
2.3. Task Description
2.4. Inertial Sensor Data Processing
2.5. Features Selection
- Set the initial value for the algorithm as the chosen number of features (k) = d, where d is the dimensionality of the complete feature space Xd.
- Find the characteristic that maximizes the criterion .
- Remove the characteristic from the set: .
- The procedure ends if k equals the desired number of characteristics. Otherwise, return to step 2. The pseudocode for SBS is described in the Supplementary Materials.
2.6. Machine Learning Model
2.6.1. Tree-Based Algorithms
2.6.2. K-Nearest Neighbors
2.6.3. Support Vector Machine
2.6.4. Artificial Neural Network
2.7. Evaluation of the Classification Performance
3. Results
3.1. Feature Selection
3.2. Supervised ML Algorithms Accuracy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buckley, C.; Alcock, L.; McArdle, R.; Ur Rehman, R.Z.; Del Din, S.; Mazzà, C.; Yarnall, A.J.; Rochester, L. The Role of Movement Analysis in Diagnosing and Monitoring Neurodegenerative Conditions: Insights from Gait and Postural Control. Brain Sci. 2019, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Espay, A.J.; Bonato, P.; Nahab, F.B.; Maetzler, W.; Dean, J.M.; Klucken, J.; Eskofier, B.M.; Merola, A.; Horak, F.; Lang, A.E.; et al. Technology in Parkinson’s Disease: Challenges and Opportunities. Mov. Disord. 2016, 31, 1272–1282. [Google Scholar] [CrossRef] [Green Version]
- Landolfi, A.; Ricciardi, C.; Donisi, L.; Cesarelli, G.; Troisi, J.; Vitale, C.; Barone, P.; Amboni, M. Machine Learning Approaches in Parkinson’s Disease. Curr. Med. Chem. 2021, 28, 6548–6568. [Google Scholar] [CrossRef]
- Siragy, T.; Nantel, J. Quantifying Dynamic Balance in Young, Elderly and Parkinson’s Individuals: A Systematic Review. Front. Aging Neurosci. 2018, 10, 387. [Google Scholar] [CrossRef] [Green Version]
- Castiglia, S.F.; Tatarelli, A.; Trabassi, D.; De Icco, R.; Grillo, V.; Ranavolo, A.; Varrecchia, T.; Magnifica, F.; Di Lenola, D.; Coppola, G.; et al. Ability of a Set of Trunk Inertial Indexes of Gait to Identify Gait Instability and Recurrent Fallers in Parkinson’s Disease. Sensors 2021, 21, 3449. [Google Scholar] [CrossRef]
- Castiglia, S.F.; Trabassi, D.; Tatarelli, A.; Ranavolo, A.; Varrecchia, T.; Fiori, L.; Di Lenola, D.; Cioffi, E.; Raju, M.; Coppola, G.; et al. Identification of Gait Unbalance and Fallers Among Subjects with Cerebellar Ataxia by a Set of Trunk Acceleration-Derived Indices of Gait. Cerebellum 2022. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Petri, G.; Ibáñez-Marcelo, E.; Osis, S.T.; Ferber, R. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions. J. Med. Biol. Eng. 2018, 38, 244–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Pahuja, S.; Veer, K. A Systematic Review of Machine Learning Based Gait Characteristics in Parkinson’s Disease. Mini Rev. Med. Chem. 2021, 21, 1197–1210. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.Z.U.; Del Din, S.; Guan, Y.; Yarnall, A.J.; Shi, J.Q.; Rochester, L. Selecting Clinically Relevant Gait Characteristics for Classification of Early Parkinson’s Disease: A Comprehensive Machine Learning Approach. Sci. Rep. 2019, 9, 17269. [Google Scholar] [CrossRef] [Green Version]
- Mirelman, A.; Ben Or Frank, M.; Melamed, M.; Granovsky, L.; Nieuwboer, A.; Rochester, L.; Del Din, S.; Avanzino, L.; Pelosin, E.; Bloem, B.R.; et al. Detecting Sensitive Mobility Features for Parkinson’s Disease Stages Via Machine Learning. Mov. Disord. 2021, 36, 2144–2155. [Google Scholar] [CrossRef]
- Pardoel, S.; Kofman, J.; Nantel, J.; Lemaire, E.D. Wearable-Sensor-Based Detection and Prediction of Freezing of Gait in Parkinson’s Disease: A Review. Sensors 2019, 19, 5141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M.E.; Iansek, R.; Matyas, T.A.; Summers, J.J. The Pathogenesis of Gait Hypokinesia in Parkinson’s Disease. Brain 1994, 117 Pt 5, 1169–1181. [Google Scholar] [CrossRef] [PubMed]
- Amboni, M.; Iuppariello, L.; Iavarone, A.; Fasano, A.; Palladino, R.; Rucco, R.; Picillo, M.; Lista, I.; Varriale, P.; Vitale, C.; et al. Step Length Predicts Executive Dysfunction in Parkinson’s Disease: A 3-Year Prospective Study. J. Neurol. 2018, 265, 2211–2220. [Google Scholar] [CrossRef] [PubMed]
- De Boer, A.G.E.M.; Wijker, W.; Speelman, J.D.; De Haes, J.C.J.M. Quality of Life in Patients with Parkinson’s Disease: Development of a Questionnaire. J. Neurol. Neurosurg. Psychiatry 1996, 61, 70–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Martín, P. An Introduction to the Concept of “Quality of Life in Parkinson’s Disease”. J. Neurol. 1998, 245 (Suppl. S1), S2–S6. [Google Scholar] [CrossRef]
- Brognara, L.; Palumbo, P.; Grimm, B.; Palmerini, L. Assessing Gait in Parkinson’s Disease Using Wearable Motion Sensors: A Systematic Review. Disease 2019, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Horak, F.B.; Mancini, M. Objective Biomarkers of Balance and Gait for Parkinson’s Disease Using Body-Worn Sensors. Mov. Disord. 2013, 28, 1544–1551. [Google Scholar] [CrossRef] [Green Version]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait Impairments in Parkinson’s Disease. Lancet. Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef]
- Joyseeree, R.; Abou Sabha, R.; Mueller, H. Applying Machine Learning to Gait Analysis Data for Disease Identification. Stud. Health Technol. Inform. 2015, 210, 850–854. [Google Scholar] [CrossRef]
- Kubota, K.J.; Chen, J.A.; Little, M.A. Machine Learning for Large-Scale Wearable Sensor Data in Parkinson’s Disease: Concepts, Promises, Pitfalls, and Futures. Mov. Disord. 2016, 31, 1314–1326. [Google Scholar] [CrossRef]
- Chen, S.; Lach, J.; Lo, B.; Yang, G.Z. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J. Biomed. Health Inform. 2016, 20, 1521–1537. [Google Scholar] [CrossRef] [PubMed]
- Saboor, A.; Kask, T.; Kuusik, A.; Alam, M.M.; Le Moullec, Y.; Niazi, I.K.; Zoha, A.; Ahmad, R. Latest Research Trends in Gait Analysis Using Wearable Sensors and Machine Learning: A Systematic Review. IEEE Access 2020, 8, 167830–167864. [Google Scholar] [CrossRef]
- Caramia, C.; Torricelli, D.; Schmid, M.; Munoz-Gonzalez, A.; Gonzalez-Vargas, J.; Grandas, F.; Pons, J.L. IMU-Based Classification of Parkinson’s Disease From Gait: A Sensitivity Analysis on Sensor Location and Feature Selection. IEEE J. Biomed. Health Inform. 2018, 22, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Barrachina-Fernández, M.; Maitín, A.M.; Sánchez-ávila, C.; Romero, J.P. Wearable Technology to Detect Motor Fluctuations in Parkinson’s Disease Patients: Current State and Challenges. Sensors 2021, 21, 4188. [Google Scholar] [CrossRef] [PubMed]
- Aich, S.; Youn, J.; Chakraborty, S.; Pradhan, P.M.; Park, J.H.; Park, S.; Park, J. A Supervised Machine Learning Approach to Detect the On/Off State in Parkinson’s Disease Using Wearable Based Gait Signals. Diagnostics 2020, 10, 421. [Google Scholar] [CrossRef]
- Ullrich, M.; Kuderle, A.; Reggi, L.; Cereatti, A.; Eskofier, B.M.; Kluge, F. Machine Learning-Based Distinction of Left and Right Foot Contacts in Lower Back Inertial Sensor Gait Data. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), in Virtual, 1–5 November 2021; pp. 5958–5961. [Google Scholar] [CrossRef]
- Rovini, E.; Moschetti, A.; Fiorini, L.; Esposito, D.; Maremmani, C.; Cavallo, F. Wearable Sensors for Prodromal Motor Assessment of Parkinson’s Disease Using Supervised Learning. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 4318–4321. [Google Scholar] [CrossRef]
- Abujrida, H.; Agu, E.; Pahlavan, K. Machine Learning-Based Motor Assessment of Parkinson’s Disease Using Postural Sway, Gait and Lifestyle Features on Crowdsourced Smartphone Data. Biomed. Phys. Eng. Express 2020, 6, 035005. [Google Scholar] [CrossRef]
- Borzì, L.; Mazzetta, I.; Zampogna, A.; Suppa, A.; Olmo, G.; Irrera, F. Prediction of Freezing of Gait in Parkinson’s Disease Using Wearables and Machine Learning. Sensors. 2021, 21, 614. [Google Scholar] [CrossRef]
- Ahlrichs, C.; Samà, A.; Lawo, M.; Cabestany, J.; Rodríguez-Martín, D.; Pérez-López, C.; Sweeney, D.; Quinlan, L.R.; Laighin, G.; Counihan, T.; et al. Detecting Freezing of Gait with a Tri-Axial Accelerometer in Parkinson’s Disease Patients. Med. Biol. Eng. Comput. 2016, 54, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Burdack, J.; Horst, F.; Giesselbach, S.; Hassan, I.; Daffner, S.; Schöllhorn, W.I. Systematic Comparison of the Influence of Different Data Preprocessing Methods on the Performance of Gait Classifications Using Machine Learning. Front. Bioeng. Biotechnol. 2020, 8, 260. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, J.; Santos, C.P.; Moreno, J.C. Automatic Recognition of Gait Patterns in Human Motor Disorders Using Machine Learning: A Review. Med. Eng. Phys. 2018, 53, 1–12. [Google Scholar] [CrossRef]
- Harper, P.R. A Review and Comparison of Classification Algorithms for Medical Decision Making. Health Policy 2005, 71, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Varrecchia, T.; Castiglia, S.F.; Ranavolo, A.; Conte, C.; Tatarelli, A.; Coppola, G.; Di Lorenzo, C.; Draicchio, F.; Pierelli, F.; Serrao, M. An Artificial Neural Network Approach to Detect Presence and Severity of Parkinson’s Disease via Gait Parameters. PLoS ONE 2021, 16, e244396. [Google Scholar] [CrossRef] [PubMed]
- Priya, S.J.; Rani, A.J.; Subathra, M.S.P.; Mohammed, M.A.; Damaševičius, R.; Ubendran, N. Local Pattern Transformation Based Feature Extraction for Recognition of Parkinson’s Disease Based on Gait Signals. Diagnostics 2021, 11, 1395. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Song, H.J.; Sharma, V.D.; Lyons, K.E.; Pahwa, R.; Akinwuntan, A.E.; Devos, H. Classification of Parkinson’s Disease and Essential Tremor Based on Balance and Gait Characteristics from Wearable Motion Sensors via Machine Learning Techniques: A Data-Driven Approach. J. Neuroeng. Rehabil. 2020, 17, 125. [Google Scholar] [CrossRef] [PubMed]
- Czech, M.; Demanuele, C.; Erb, M.K.; Ramos, V.; Zhang, H.; Ho, B.; Patel, S. The Impact of Reducing the Number of Wearable Devices on Measuring Gait in Parkinson Disease: Noninterventional Exploratory Study. JMIR Rehabil. Assist. Technol. 2020, 7, e17986. [Google Scholar] [CrossRef]
- Mobbs, R.J.; Perring, J.; Raj, S.M.; Maharaj, M.; Yoong, N.K.M.; Sy, L.W.; Fonseka, R.D.; Natarajan, P.; Choy, W.J. Gait Metrics Analysis Utilizing Single-Point Inertial Measurement Units: A Systematic Review. mHealth 2022, 8, 9. [Google Scholar] [CrossRef]
- Lim, A.C.Y.; Natarajan, P.; Fonseka, R.D.; Maharaj, M.; Mobbs, R.J. The Application of Artificial Intelligence and Custom Algorithms with Inertial Wearable Devices for Gait Analysis and Detection of Gait-Altering Pathologies in Adults: A Scoping Review of Literature. Digit. Health 2022, 8, 9. [Google Scholar] [CrossRef]
- Lim, H.; Kim, B.; Park, S. Prediction of Lower Limb Kinetics and Kinematics during Walking by a Single IMU on the Lower Back Using Machine Learning. Sensors 2019, 20, 130. [Google Scholar] [CrossRef] [Green Version]
- O’Day, J.; Lee, M.; Seagers, K.; Hoffman, S.; Jih-Schiff, A.; Kidziński, Ł.; Delp, S.; Bronte-Stewart, H. Assessing Inertial Measurement Unit Locations for Freezing of Gait Detection and Patient Preference. J. Neuroeng. Rehabil. 2022, 19, 20. [Google Scholar] [CrossRef]
- De Vos, M.; Prince, J.; Buchanan, T.; FitzGerald, J.J.; Antoniades, C.A. Discriminating Progressive Supranuclear Palsy from Parkinson’s Disease Using Wearable Technology and Machine Learning. Gait Posture 2020, 77, 257–263. [Google Scholar] [CrossRef]
- Mannini, A.; Trojaniello, D.; Cereatti, A.; Sabatini, A.M. A Machine Learning Framework for Gait Classification Using Inertial Sensors: Application to Elderly, Post-Stroke and Huntington’s Disease Patients. Sensors 2016, 16, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ur Rehman, R.Z.; Del Din, S.; Shi, J.Q.; Galna, B.; Lord, S.; Yarnall, A.J.; Guan, Y.; Rochester, L. Comparison of Walking Protocols and Gait Assessment Systems for Machine Learning-Based Classification of Parkinson’s Disease. Sensors 2019, 19, 5363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kernbach, J.M.; Staartjes, V.E. Foundations of Machine Learning-Based Clinical Prediction Modeling: Part II-Generalization and Overfitting. Acta Neurochir. Suppl. 2022, 134, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Andaur Navarro, C.L.; Damen, J.A.A.; Takada, T.; Nijman, S.W.J.; Dhiman, P.; Ma, J.; Collins, G.S.; Bajpai, R.; Riley, R.D.; Moons, K.G.M.; et al. Risk of Bias in Studies on Prediction Models Developed Using Supervised Machine Learning Techniques: Systematic Review. BMJ 2021, 375, n2281. [Google Scholar] [CrossRef]
- Foster, K.R.; Koprowski, R.; Skufca, J.D. Machine Learning, Medical Diagnosis, and Biomedical Engineering Research—Commentary. Biomed. Eng. Online 2014, 13, 94. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.P. Neural Networks for Classification: A Survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2000, 30, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstem, A.R. A Simulation Study of the Number of Events per Variable in Logistic Regression Analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Cuzzolin, F.; Sapienza, M.; Esser, P.; Saha, S.; Franssen, M.M.; Collett, J.; Dawes, H. Metric Learning for Parkinsonian Identification from IMU Gait Measurements. Gait Posture 2017, 54, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of Walking Speed on Gait Biomechanics in Healthy Participants: A Systematic Review and Meta-Analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Khera, P.; Kumar, N. Role of Machine Learning in Gait Analysis: A Review. J. Med. Eng. Technol. 2020, 44, 441–467. [Google Scholar] [CrossRef]
- Chen, C.W.; Tsai, Y.H.; Chang, F.R.; Lin, W.C. Ensemble Feature Selection in Medical Datasets: Combining Filter, Wrapper, and Embedded Feature Selection Results. Expert Syst. 2020, 37, e12553. [Google Scholar] [CrossRef]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of Clinical Diagnosis of Idiopathic Parkinson’s Disease: A Clinico-Pathological Study of 100 Cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, Progression and Mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Perneczky, R.; Wagenpfeil, S.; Komossa, K.; Grimmer, T.; Diehl, J.; Kurz, A. Mapping Scores onto Stages: Mini-Mental State Examination and Clinical Dementia Rating. Am. J. Geriatr. Psychiatry 2006, 14, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An Inventory for Measuring Depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi, Z.; Mrklas, K.J.; Roberts, D.J.; Jette, N.; Pringsheim, T.; Holroyd-Leduc, J. Detecting Depression in Parkinson Disease: A Systematic Review and Meta-Analysis. Neurology 2016, 87, 426–437. [Google Scholar] [CrossRef]
- Altman, R.; Alarcón, G.; Appelrouth, D.; Bloch, D.; Borenstein, D.; Brandt, K.; Brown, C.; Cooke, T.D.; Daniel, W.; Feldman, D.; et al. The American College of Rheumatology Criteria for the Classification and Reporting of Osteoarthritis of the Hip. Arthritis Rheum. 1991, 34, 505–514. [Google Scholar] [CrossRef]
- Fitzgerald, G.K.; Hinman, R.S.; Zeni, J.; Risberg, M.A.; Snyder-Mackler, L.; Bennell, K.L. OARSI Clinical Trials Recommendations: Design and Conduct of Clinical Trials of Rehabilitation Interventions for Osteoarthritis. Osteoarthr. Cartil. 2015, 23, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Damen, J.; Van Rijn, R.M.; Emans, P.J.; Hilberdink, W.K.H.A.; Wesseling, J.; Oei, E.H.G.; Bierma-Zeinstra, S.M.A. Prevalence and Development of Hip and Knee Osteoarthritis According to American College of Rheumatology Criteria in the CHECK Cohort. Arthritis Res. Ther. 2019, 21, 4. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.I.; Wang, X.; Speicher, P.J.; Hwang, E.S.; Cheng, P.; Harpole, D.H.; Berry, M.F.; Schrag, D.; Pang, H.H. Reporting and Guidelines in Propensity Score Analysis: A Systematic Review of Cancer and Cancer Surgical Studies. J. Natl. Cancer Inst. 2017, 109, djw323. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.S.; Mancini, M.; Fino, P.C.; Horak, F.; Smulders, K. Speeding Up Gait in Parkinson’s Disease. J. Parkinsons Dis. 2020, 10, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Serrao, M.; Chini, G.; Caramanico, G.; Bartolo, M.; Castiglia, S.F.; Ranavolo, A.; Conte, C.; Venditto, T.; Coppola, G.; Di Lorenzo, C.; et al. Prediction of Responsiveness of Gait Variables to Rehabilitation Training in Parkinson’s Disease. Front. Neurol. 2019, 10, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindemann, U. Spatiotemporal Gait Analysis of Older Persons in Clinical Practice and Research: Which Parameters Are Relevant? Z. Gerontol. Geriatr. 2020, 53, 171–178. [Google Scholar] [CrossRef]
- Huijben, B.; van Schooten, K.S.; van Dieën, J.H.; Pijnappels, M. The Effect of Walking Speed on Quality of Gait in Older Adults. Gait Posture 2018, 65, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Hagoort, I.; Vuillerme, N.; Hortobágyi, T.; Lamoth, C.J. Outcome-Dependent Effects of Walking Speed and Age on Quantitative and Qualitative Gait Measures. Gait Posture 2022, 93, 39–46. [Google Scholar] [CrossRef]
- Riva, F.; Grimpampi, E.; Mazzà, C.; Stagni, R. Are Gait Variability and Stability Measures Influenced by Directional Changes? Biomed. Eng. Online 2014, 13, 56. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature Selection in Machine Learning: A New Perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Lee, S.S.; Choi, S.T.; Choi, S. Il Classification of Gait Type Based on Deep Learning Using Various Sensors with Smart Insole. Sensors 2019, 19, 1757. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.; Shukla, S. Analysis of K-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; pp. 78–83. [Google Scholar] [CrossRef]
- Wong, T.T.; Yeh, P.Y. Reliable Accuracy Estimates from K-Fold Cross Validation. IEEE Trans. Knowl. Data Eng. 2020, 32, 1586–1594. [Google Scholar] [CrossRef]
- Rosales-Pérez, A.; Escalante, H.J.; Gonzalez, J.A.; Reyes-Garcia, C.A.; Coello Coello, C.A. Bias and Variance Multi-Objective Optimization for Support Vector Machines Model Selection. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7887, pp. 108–116. [Google Scholar] [CrossRef]
- Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS|Semantic Scholar. Available online: https://www.semanticscholar.org/paper/Grid-Search%2C-Random-Search%2C-Genetic-Algorithm%3A-A-Liashchynskyi-Liashchynskyi/12ea5722dc292c601ce971ee283b2dd17d5ca12c (accessed on 17 March 2022).
- Bertsimas, D.; Dunn, J. Optimal Classification Trees. Mach. Learn. 2017, 106, 1039–1082. [Google Scholar] [CrossRef]
- Doupe, P.; Faghmous, J.; Basu, S. Machine Learning for Health Services Researchers. Value Health 2019, 22, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Rokach, L.; Maimon, O. Decision Trees. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2005; pp. 165–192. [Google Scholar] [CrossRef]
- Ammar, M.; Khadra, B. E3Solver: Decision Tree Unification by Enumeration (Competition Contribution). arXiv 2017, arXiv:1710.07021. [Google Scholar]
- Tangirala, S. Evaluating the Impact of GINI Index and Information Gain on Classification Using Decision Tree Classifier Algorithm. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 612–619. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2007, 26, 217–222. [Google Scholar] [CrossRef]
- Classification and Regression by RandomForest|Semantic Scholar. Available online: https://www.semanticscholar.org/paper/Classification-and-Regression-by-randomForest-Liaw-Wiener/6e633b41d93051375ef9135102d54fa097dc8cf8 (accessed on 17 March 2022).
- Svetnik, V.; Liaw, A.; Tong, C.; Christopher Culberson, J.; Sheridan, R.P.; Feuston, B.P. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef]
- Taneja, S.; Gupta, C.; Goyal, K.; Gureja, D. An Enhanced K-Nearest Neighbor Algorithm Using Information Gain and Clustering. In Proceedings of the 2014 Fourth International Conference on Advanced Computing & Communication Technologies, Rohtak, India, 8–9 February 2014; pp. 325–329. [Google Scholar] [CrossRef]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1255–1260. [Google Scholar] [CrossRef]
- What Affects K Value Selection In K-Nearest Neighbor|Semantic Scholar. Available online: https://www.semanticscholar.org/paper/What-Affects-K-Value-Selection-In-K-Nearest-Paryudi/34c2817df22843d5dc1e4047086617d2d28dd7b6 (accessed on 17 March 2022).
- Spyromitros, E.; Tsoumakas, G.; Vlahavas, I. An Empirical Study of Lazy Multilabel Classification Algorithms. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5138, pp. 401–406. [Google Scholar] [CrossRef]
- Zhang, M.-L.; Zhou, Z.-H. A K-Nearest Neighbor Based Algorithm for Multi-Label Classification. In Proceedings of the 2005 IEEE International Conference on Granular Computing, Beijing, China, 25–27 July 2005; Volume 2, pp. 718–721. [Google Scholar] [CrossRef]
- Shetty, S.; Rao, Y.S. SVM Based Machine Learning Approach to Identify Parkinson’s Disease Using Gait Analysis. In Proceedings of the 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–27 August 2016. [Google Scholar] [CrossRef]
- View of Research Paper on Basic of Artificial Neural Network. Available online: https://ijritcc.org/index.php/ijritcc/article/view/2920/2920 (accessed on 17 March 2022).
- Theodoridis, S. Machine Learning: A Bayesian and Optimization Perspective; Academic Press: Cambridge, MA, USA, 2015; p. 1031. [Google Scholar]
- Zhang, Y.; Ma, Y. Application of Supervised Machine Learning Algorithms in the Classification of Sagittal Gait Patterns of Cerebral Palsy Children with Spastic Diplegia. Comput. Biol. Med. 2019, 106, 33–39. [Google Scholar] [CrossRef]
- Pires, I.M.; Hussain, F.; Marques, G.; Garcia, N.M. Comparison of Machine Learning Techniques for the Identification of Human Activities from Inertial Sensors Available in a Mobile Device after the Application of Data Imputation Techniques. Comput. Biol. Med. 2021, 135, 104638. [Google Scholar] [CrossRef]
- Gurchiek, R.D.; Choquette, R.H.; Beynnon, B.D.; Slauterbeck, J.R.; Tourville, T.W.; Toth, M.J.; McGinnis, R.S. Remote Gait Analysis Using Wearable Sensors Detects Asymmetric Gait Patterns in Patients Recovering from ACL Reconstruction. In Proceedings of the 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Chicago, IL, USA, 19–22 May 2019. [Google Scholar] [CrossRef]
- Arora, S.; Little, M.A.; Venkataraman, V.; Donohue, S.; Biglan, K.; Dorsey, E.R. High-Accuracy Discrimination of Parkinson’s Disease Participants from Healthy Controls Using Smartphones. Mov. Disord. 2013, 28, e11. [Google Scholar] [CrossRef]
- Rastegari, E.; Azizian, S.; Ali, H. Machine Learning and Similarity Network Approaches to Support Automatic Classification of Parkinson’s Diseases Using Accelerometer-based Gait Analysis. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Maui, HI, USA, 8–11 January 2019. [Google Scholar]
- Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining Explanations: An Overview of Interpretability of Machine Learning. In Proceedings of the 2018 IEEE 5th International Conference on data science and advanced analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 80–89. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Li, G.; Gao, C.; Tan, Y.; Liu, J.; Zhao, J.; Ling, Y.; Yu, X.; Ren, K.; Chen, S. Prediction of Freezing of Gait in Parkinson’s Disease Using a Random Forest Model Based on an Orthogonal Experimental Design: A Pilot Study. Front. Hum. Neurosci. 2021, 15, 79. [Google Scholar] [CrossRef] [PubMed]
- Tripoliti, E.E.; Tzallas, A.T.; Tsipouras, M.G.; Rigas, G.; Bougia, P.; Leontiou, M.; Konitsiotis, S.; Chondrogiorgi, M.; Tsouli, S.; Fotiadis, D.I. Automatic Detection of Freezing of Gait Events in Patients with Parkinson’s Disease. Comput. Methods Programs Biomed. 2013, 110, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.J. Hyperparameter Optimization of Deep Neural Network Using Univariate Dynamic Encoding Algorithm for Searches. Knowl.-Based Syst. 2019, 178, 74–83. [Google Scholar] [CrossRef]
- Balaji, E.; Bindha, D.; Elumalai, V.K.; Umesh, K. Data-Driven Gait Analysis for Diagnosis and Severity Rating of Parkinson’s Disease. Med. Eng. Phys. 2021, 91, 54–64. [Google Scholar] [CrossRef]
- Demrozi, F.; Bacchin, R.; Tamburin, S.; Cristani, M.; Pravadelli, G. Toward a Wearable System for Predicting Freezing of Gait in People Affected by Parkinson’s Disease. IEEE J. Biomed. Health Inform. 2020, 24, 2444–2451. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tu, C.; Li, Q.; Sharf, A.; Cao, Y.; Chen, B.; Yu, S.; Berlin, S.-V. Classification of gait anomalies from kinect. Vis. Comput. 2018, 34, 229–241. [Google Scholar] [CrossRef]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine Learning Algorithm Validation with a Limited Sample Size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef]
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Peter Campbell, J. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [Google Scholar] [CrossRef]
- Christofoletti, G.; McNeely, M.E.; Campbell, M.C.; Duncan, R.P.; Earhart, G.M. Investigation of Factors Impacting Mobility and Gait in Parkinson Disease. Hum. Mov. Sci. 2016, 49, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Tosserams, A.; Mazaheri, M.; Vart, P.; Bloem, B.R.; Nonnekes, J. Sex and Freezing of Gait in Parkinson’s Disease: A Systematic Review and Meta-Analysis. J. Neurol. 2021, 268, 125–132. [Google Scholar] [CrossRef]
- Tosserams, A.; Wit, L.; Sturkenboom, I.H.W.M.; Nijkrake, M.J.; Bloem, B.R.; Nonnekes, J. Perception and Use of Compensation Strategies for Gait Impairment by Persons With Parkinson Disease. Neurology 2021, 97, e1404–e1412. [Google Scholar] [CrossRef] [PubMed]
- Paker, N.; Bugdayci, D.; Goksenoglu, G.; Demircioğlu, D.T.; Kesiktas, N.; Ince, N. Gait Speed and Related Factors in Parkinson’s Disease. J. Phys. Ther. Sci. 2015, 27, 3675–3679. [Google Scholar] [CrossRef] [Green Version]
- Rochester, L.; Nieuwboer, A.; Baker, K.; Hetherington, V.; Willems, A.M.; Kwakkel, G.; Van Wegen, E.; Lim, I.; Jones, D. Walking Speed during Single and Dual Tasks in Parkinson’s Disease: Which Characteristics Are Important? Mov. Disord. 2008, 23, 2312–2318. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.H.; Lien, C.W.; Wu, W.C.; Lee, L.S.; Shaw, J.S. Gait-Based Machine Learning for Classifying Patients with Different Types of Mild Cognitive Impairment. J. Med. Syst. 2020, 44, 107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Guo, Y.; Zanotto, D. Accurate Ambulatory Gait Analysis in Walking and Running Using Machine Learning Models. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jin, S.; Li, M.; Yang, Q.; Xu, K.; Ju, Y.; Zhang, J.; Xuan, J.; Liu, J.; Su, Y.; et al. Application of Deep Learning in Ecological Resource Research: Theories, Methods, and Challenges. Sci. China Earth Sci. 2020, 63, 1457–1474. [Google Scholar] [CrossRef]
pwPD | Hsmatched | p | Cohen’s d | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Gait speed (m/s) | 0.76 | 0.21 | 0.81 | 0.22 | 0.171 | 0.233 |
Stance phase (%) | 60.84 | 2.13 | 62.19 | 3.17 | 0.004 | 0.498 |
Swing phase (%) | 39.12 | 2.14 | 37.93 | 3.21 | 0.011 | 0.438 |
Double support (%) | 10.86 | 2.13 | 12.09 | 3.17 | 0.008 | 0.453 |
Single support (%) | 39.09 | 2.13 | 37.84 | 3.19 | 0.008 | 0.457 |
Cadence (steps/min) | 104.06 | 18.10 | 88.31 | 13.23 | <0.001 | 0.994 |
Stride time (s) | 1.22 | 0.18 | 1.37 | 0.18 | <0.001 | 0.839 |
Stride length (m) | 0.91 | 0.19 | 1.05 | 0.17 | <0.001 | 0.783 |
% stride length (% height) | 57.35 | 22.08 | 62.79 | 11.67 | 0.148 | 0.288 |
Pelvic tilt (°) | 3.46 | 1.45 | 2.74 | 0.71 | <0.001 | 0.624 |
Pelvic obliquity (°) | 4.04 | 1.88 | 4.01 | 1.53 | 0.923 | 0.017 |
Pelvic rotation (°) | 5.26 | 2.98 | 6.53 | 3.57 | 0.025 | 0.383 |
HRap | 1.64 | 0.30 | 2.07 | 0.54 | <0.001 | 0.973 |
HRml | 1.60 | 0.27 | 1.96 | 0.42 | <0.001 | 0.996 |
HRv | 1.64 | 0.30 | 2.09 | 0.54 | <0.001 | 1.008 |
RQArec_ap | 21.09 | 17.85 | 4.93 | 3.80 | <0.001 | 1.257 |
RQArec_ml | 15.53 | 14.03 | 4.35 | 5.01 | <0.001 | 1.064 |
RQArec_v | 37.17 | 193.60 | 3.13 | 3.22 | 0.144 | 0.250 |
RQAdet_ap | 70.29 | 31.20 | 38.40 | 27.46 | <0.001 | 1.086 |
RQAdet_ml | 67.45 | 33.37 | 36.61 | 26.26 | <0.001 | 1.028 |
RQAdet_v | 69.02 | 29.39 | 23.54 | 18.89 | <0.001 | 1.843 |
CV | 39.04 | 19.65 | 26.90 | 10.91 | <0.001 | 0.765 |
SVM | RF | DT | KNN | MLP-ANN | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
22 Features | 7 Features | 22 Features | 7 Features | 22 Features | 7 Features | 22 Features | 7 Features | 22 Features | 7 Features | ||
Accuracy Training | Mean10runs (SD) | 0.91 (0.01) | 0.88 (0.01) | 0.89 (0.01) | 0.87 (0.01) | 0.89 (0.02) | 0.85 (0.01) | 0.86 (0.03) | 0.82 (0.02) | 0.87 (0.02) | 0.84 (0.03) |
p (d) | 0.00 (2.48) | 0.00 (1.59) | 0.00 (2.13) | 0.00 (1.59) | 0.03 (1.03) | ||||||
Accuracy Test | Mean10runs (SD) | 0.81 (0.01) | 0.86 (0.02) | 0.79 (0.01) | 0.82 (0.01) | 0.76 (0.02) | 0.79 (0.01) | 0.68 (0.02) | 0.74 (0.02) | 0.74 (0.02) | 0.77 (0.03) |
p (d) | 0.00 (3.17) | 0.00 (2.68) | 0.00 (1.79) | 0.00 (2.99) | 0.01 (1.32) | ||||||
Precision | Mean10runs (SD) | 0.80 (0.01) | 0.85 (0.02) | 0.79 | 0.83 | 0.76 (0.03) | 0.81 (0.02) | 0.68 (0.02) | 0.75 (0.02) | 0.74 (0.03) | 0.78 (0.03) |
p (d) | 0.00 (3.12) | 0.00 (2.94) | 0.00 (1.75) | 0.00 (3.03) | 0.00 (1.19) | ||||||
Recall | Mean10runs (SD) | 0.80 (0.02) | 0.85 (0.03) | 0.78 (0.03) | 0.82 (0.01) | 0.75 (0.03) | 0.79 (0.02) | 0.69 (0.02) | 0.74 (0.03) | 0.74 (0.02) | 0.77 (0.03) |
p (d) | 0.00 (2.42) | 0.01 (1.45) | 0.00 (1.67) | 0.00 (2.08) | 0.00(1.59) | ||||||
F1score | Mean10runs (SD) | 0.80 (0.01) | 0.85 (0.02) | 0.78 (0.03) | 0.82 (0.01) | 0.75 (0.03) | 0.80 (0.02) | 0.68 (0.02) | 0.74 (0.02) | 0.74 (0.03) | 0.78 (0.02) |
p (d) | 0.00 (2.65) | 0.00 (2.01) | 0.00 (1.88) | 0.00 (2.58) | 0.02 (1.54) | ||||||
AUC | Mean10runs (SD) | 0.80 (0.01) | 0.85 (0.02) | 0.78 (0.03) | 0.82 (0.01) | 0.75 (0.03) | 0.79 (0.01) | 0.68 (0.02) | 0.74 (0.02) | 0.73 (0.03) | 0.77 (0.02) |
p (d) | 0.00 (2.75) | 0.00 (1.86) | 0.00 (1.85) | 0.00 (2.43) | 0.00 (1.56) | ||||||
Generalization Error (%) | Mean10runs (SD) | 9.35 (1.31) | 2.95 (1.46) | 9.93 (1.16) | 4.96 (0.92) | 12.44 (1.31) | 5.47 (0.91) | 17.70 (0.69) | 7.84 (2.02) | 12.80 (2.51) | 7.26 (0.92) |
p (d) | 0.00 (4.62) | 0.00 (4.71) | 0.00 (6.17) | 0.00 (6.53) | 0.00 (2.93) |
SVM | KNN | MLP-ANN | DT | RF | |
---|---|---|---|---|---|
22 features (unselected model) | 08:12:12 | 00:12:53 | 16:34:00 | 00:45:16 | 01:45:01 |
7 features (Selected model) | 05:25:29 | 00:08:09 | 10:37:20 | 00:15:58 | 01:10:29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trabassi, D.; Serrao, M.; Varrecchia, T.; Ranavolo, A.; Coppola, G.; De Icco, R.; Tassorelli, C.; Castiglia, S.F. Machine Learning Approach to Support the Detection of Parkinson’s Disease in IMU-Based Gait Analysis. Sensors 2022, 22, 3700. https://doi.org/10.3390/s22103700
Trabassi D, Serrao M, Varrecchia T, Ranavolo A, Coppola G, De Icco R, Tassorelli C, Castiglia SF. Machine Learning Approach to Support the Detection of Parkinson’s Disease in IMU-Based Gait Analysis. Sensors. 2022; 22(10):3700. https://doi.org/10.3390/s22103700
Chicago/Turabian StyleTrabassi, Dante, Mariano Serrao, Tiwana Varrecchia, Alberto Ranavolo, Gianluca Coppola, Roberto De Icco, Cristina Tassorelli, and Stefano Filippo Castiglia. 2022. "Machine Learning Approach to Support the Detection of Parkinson’s Disease in IMU-Based Gait Analysis" Sensors 22, no. 10: 3700. https://doi.org/10.3390/s22103700