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Metric learning for Parkinsonian 
identification from IMU gait 
measurements 

Summary 

Diagnosis of people with mild Parkinson’s symptoms is difficult. Nevertheless, variations in gait 

pattern can be utilised to this purpose, when measured via Inertial Measurement Units (IMUs). 

Human gait, however, possesses a high degree of variability across individuals, and is subject to 

numerous nuisance factors. Therefore, off-the-shelf Machine Learning techniques may fail to classify 

it with the accuracy required in clinical trials. 
In this paper we propose a novel framework in which IMU gait measurement sequences sampled 

during a 10 metre walk are first encoded as hidden Markov models (HMMs) to extract their 

dynamics and provide a fixed-length representation. Given sufficient training samples, the distance 

between HMMs which optimises classification performance is learned and employed in a classical 

Nearest Neighbour classifier. Our tests demonstrate how this technique achieves accuracy of 85.51% 

over a 156 people with Parkinson’s with a representative range of severity and 424 typically 

developed adults, which is the top performance achieved so far over a cohort of such size, based on 

single measurement outcomes. The method displays the potential for further improvement and a 

wider application to distinguish other conditions. 

 

Key Words: 

Machine Learning Algorithms, Hidden Markov Models, Metric Learning, Inertial Measurement Unit, 

Gait, Parkinson’s 
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Introduction 
 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder[1]. Its clinical 

diagnosis, according to the UK Brain Bank criteria, is mainly based on the presence of motor 

symptoms (e.g. bradykinesia, rigidity, tremor)[2]. Disease progression can be monitored by analysing 

these motor symptoms. In established PD, the Brain Bank criteria show 90% sensitivity and 

specificity for the presence of midbrain Lewy bodies[2]. However, diagnosis in the community by 

non-experts yields a 25% error[2], supporting the need for better automated diagnostic and 

monitoring tools for primary care.  

Walking has been signalled as a sensitive indicator for the progression of PD[3], as individuals 

present an altered gait pattern with increased cadence and reduced stride lengths[4].  Inertial 

Measurement Units (IMUs) can be used to gather gait measurements inexpensively, quickly and 

easily in clinical environments[4]. However, basic temporal (steptime/cadence) and spatial (stride-

length and walking speed) parameters cannot be used as discriminative function, as they lack 

disease specificity[5,  6]. Alternate Centre of Mass (CoM) excursion in conjunction with sophisticated 

classification methodologies has been relatively successful as disease discriminative functions over 

short distances[6]. 

Motor symptoms are useful for distinguishing different forms of Parkinson’s and for determining 

severity progression[2] for example, postural instability and gait disability versus tremor dominant 

phenotypes and stages of motor decline in line with functional mobility.  

Machine learning (ML) techniques can utilise gait data uniquely, providing a non-intrusive means of 

monitoring the development and onset of neurodegenerative conditions. Artificial Neural Networks 

have been employed to distinguish gait pattern between typically developed adults (TDA) and 

subjects with pathological conditions with an accuracy of 95%[7], or those with lower limbs arthritis 

with 80% accuracy[8]. They have also been applied for detecting and classifying walking pattern 

changes due to ageing, achieving a maximum generalisation performance of 83.3%[9].  

Machine learning has been successfully used for the diagnosis of individual forms of dementia 

related Parkinson’s[10], but also early Alzheimer’s[11]. ML disease progression approaches have also 

been explored to rate the severity[12] in PD (based on the UPDRS scale), for example via postural 

sway analysis employing support vector machine (SVM) classification[13] or via longitudinal 

measurements combined with random forest[3] regression. These methods differ from the 

clinicians’ own UPDRS estimates by a range between ±5 and ±10 UPDRS points. More effective 

methods applying feature selection methods achieve a 2 UPDRS points difference from clinicians’ 

estimates[14].  

[31] and [32] have proposed to diagnose PD using ground reaction forces (as gait signals), captured 

using force-sensitive sensors placed underneath the subject's feet. Features are extracted either by 

computing statistics (e.g. min, max, mean and standard deviation) of the force signals [31], or by 

applying Fourier transform to these signals[32]. Features are then selected using genetic algorithms 

[31], or their histogram is computed[32]. Subsequently, either radial basis[31] or chi-square distance 

kernels[32] are used to train SVMs for classification. Hidden Markov models (HMMs) with Gaussian 
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Mixtures have also been used for classifying PD[33]. Factorial HMMs have been employed for 

distinguishing amyotrophic lateral sclerosis[34]  patients from healthy subjects.  

All these works used relatively smaller cohort of subjects[15], ranging between 29 to 166 subjects. In 

opposition, we consider here an increased clinical sample, covering a wide range of severities and 

phenotypes of PD (including lesser affected people) in addition to a large age-matched cohort of 

TDA. As soon as a much bigger share of the population is analysed, issues with the generalisation 

power of ML methods arise[16], signalling the need for novel paradigms. In response, whereas 

others have used standard off-the-shelf classifiers[17,18,31,32], we propose a tailored classification 

method which applies to time-series of gait measurements represented as dynamical models. Unlike 

[33,34], we use HMMs only to encode measurement series. Motivated by recent ML advances, we 

then construct an optimal classifier for the problem at hand from the available training data via 

metric learning techniques, achieving promising results in classifying human action image 

sequences[19] belonging to tens of different classes. This study explores whether this novel optimal 

metric learning-based classifier can: firstly, automatically distinguish those with and without PD 

(including people with mild symptoms), during a clinically standardised 10-metre walk test, within a 

large cohort; and secondly, determine disease severity.   
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Methodology 

Classification approach 

The problem of automatically determining whether a person has PD and its severity from IMU data 

can be formalised within Machine Learning as follows. Given a ‘training set’ D = {(G1,Y1), …, (Gn,Yn)} of 

n gait motions Gk, each associated with a ‘class label’ Yk (e.g. normal versus PD), we want to learn an 

appropriate machinery (a ‘classifier’) which, given as input a new, unlabelled gait motion, produces 

the class label of the new sequence, therefore deciding whether the subject performing the motion 

is affected by Parkinson or not. Solving a classification problem involves: 

i) Finding a suitable representation for the input data; 

ii) Designing the most appropriate classifier for the problem. 

Here, each instance of gait motion is represented by a time series of IMU. For each time instant, a 

vector of 9 components is formed by collecting the X,Y,Z values produced by the device’s 

accelerometer, magnetometer and gyroscope. The IMU’s X, Y and Z axes were aligned to the 

longitudinal, transverse and frontal axis, respectively, whereby positive values were measured as up, 

right, and forwards movements.   

IMU sequences may be of different lengths: we then need to find a constant-size representation for 

them (‘time warping’[20]). Furthermore, studies in gesture and gait classification indicate that 

modelling time series dynamics can greatly help with their classification[20]. Researchers have 

employed linear, nonlinear[21] and even chaotic[22] dynamical systems to encode time series. 

Hidden Markov models[23] (HMMs), in particular, address the time warping issue while efficiently 

encoding motion dynamics[20, 24].  

HMM representation of IMU sequences 

An HMM is a finite-state stochastic model whose N states form a Markov chain. Transitions between 

states are governed by a N×N transition matrix A=[aij], where aij specifies the probability of passing 

from state i to state j, for each pair of states (Fig. 2(b) left). 

Although HMM states are ‘hidden’ (they cannot be observed directly), the measurement vector y 

(here a 9-dimensional IMU vector) they generate can instead be observed. For each state i, a 

Gaussian distribution with mean Ci describes the likelihood of a state i generating an observation y. 

In Fig. 1 each state i is associated with a specific region of the IMU signal.  

Given a sequence of IMU vectors associated with a walking gait, its best HMM description can be 

identified via the Expectation-Maximisation (EM) algorithm[23, 25]. Each IMU sequence, regardless 

its length, can then be represented by a HMM H={A,C} with the same number of states (a parameter 

of EM), where A is the transition matrix and C=[C1,…,CN] is the matrix whose columns are the means 

of the N Gaussian output densities. N=3-state automata have been demonstrated to represent 

simple actions effectively[19]. 

Classifying HMMs  
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Disease diagnosis reduces then to the binary classification of walking gaits of unknown test subjects 

represented as hidden Markov models, learnt from the associated series of IMU measurements. 

HMMs are typically classified by: 1. learning a new model H=(A,C) for each test sequence; 2. 

computing its distance (appropriately measured) from each training model in D’ = {(H1,Y1), …,(Hn,Yn)}, 

and: 3. assigning to H the label of the closest training model.  

Various distance functions for dynamical systems[26] and HMMs[25] have been proposed. None can 

suit every classification problem, as the same models can be endowed with different labels. A widely 

supported approach[27], consists of learning the most appropriate distance function for each 

specific classification problem, e.g. by maximising the classification performance achieved on the 

available training data. 

Learning an optimal HMM metric 

Two of the authors have proposed in a very recent paper[19] a principled framework for learning 

such an optimal distance function for a training set of models. This framework can be applied here 

once IMU gait sequences are encoded as HMMs, yielding the disease recognition pipeline of Fig. 

2(a).  

Firstly, each IMU gait sequence is encoded by a HMM via Expectation-Maximisation (stage 1). The 

optimal distance function for a given training set of models can then be learned in a ‘pullback metric’ 

framework[28] (stage 2), in which the space of HMMs is stretched via a differentiable deformation 

and the classification performance on the training data of the resulting ‘pullback’ distance in the 

deformed space is assessed (Fig. 2(b)). The maximal-performance pullback distance (stage 3) is 

finally passed to an off-the-shelf classifier (for instance a Nearest Neighbour (1-NN) classifier, stage 

4). 

In this work test HMMs encoding IMU sequences to classify are therefore assigned the label of the 

closest training HMM, with respect to the selected optimal metric.  

More technical details on the pullback metric framework can be found in a recent paper[19].  

Severity estimation 

The 36 item short-form (SF-36) was designed to obtain self-perceived information on 8 health 

domains, namely: limitations in physical or social activities, limitations due to physical health or to 

emotional problems, bodily pain, general mental health, vitality and general health perception[29]. 

Training gait sequences in our dataset are assigned a physical functioning severity score in the range 

0 to 100 (higher scores representing more favourable health states) from SF-36.  

We can then estimate the severity level of each new test IMU sequence (Fig. 3) by locating for each 

test HMM (denoted by “?”) its K=5 nearest training HMMs (according to the optimal pullback 

distance learned), and averaging those severity levels associated with PwP (circled). 

Protocol and inclusion criteria 

Participants were included if between the ages of 39 and 80, whose condition had been stable (in 

terms no relapse or exacerbation, causing a significant change in their condition), who could walk at 

least 10 metres independently with or without their walking aid(s) and whom were in their ON-state 
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when visiting the research centre. Participants were excluded if they were pregnant, allergic to 

adhesive materials or had a condition that precludes safe participation in assessment (as indicated 

by referring clinician) or were unable to give consent.  

Each participant’s date of birth, time since diagnosis, and leg length was recorded. Gait 

measurements were collected via an IMU attached to the lower spine (Lumbar4 region) by double-

sided adhesive tape. Participants in both studies were instructed to walk over a 10-metre walkway 

free of obstacles at their self-selected walking speed. IMU data was transferred via Bluetooth 

protocol to a laptop where the data was stored and processed accordingly post assessment. Walking 

speed was derived from IMU data by using well established algorithms[13]. In detail descriptions of 

the instrumented walking protocol can be found in Esser et.al., 2011 [4]. The studies involved in data 

collection were approved by the University Ethics committee and participants consented according 

to the Declaration of Helsinki. 

Data analysis 

An experiment was set up to determine how much better our optimal metric learning classifier is at 

predicting disease labels for both TDA and PwP as compared to a machine randomly assigning a label 

to each test subject (random guessing). The disease’s degree of severity was also estimated as in Fig. 

3. 

For each IMU sequence an HMM with n=3 states was learned via EM. Since the latter suffers from 

local minima, the algorithm was applied 10 times to each sequence, retaining the model parameters 

yielding the highest likelihood. That yielded a dataset of hidden Markov models, each associated 

with the whole IMU gait sequence captured for a given individual. 

Classification of PwP versus TDA 

We quantified the performance of our classification algorithm as follows. An optimal pullback 

distance function is learned by maximising its classification performance on a "training set" of HMMs 

by cross validation. Then, the Nearest-Neighbour classifier associated with the learned optimal 

distance is evaluated on a "testing set". In order to produce a robust evaluation result, we randomly 

generated 25 distinct splits between training and testing sets, and reported the mean performance 

over the 25 evaluation runs.  Each train/test split of the HMM dataset was obtained by randomly 

sampling two-thirds of the dataset for training and holding the remaining third for testing.  

As base distance between two HMMs, H1={A1,C1} and H2={A2,C2}, we used the Frobenius norm |A1-

A2|F+|C1-C2|F, where |M|F=        . No gait cycle from the same individual appeared in both 

training and testing sets at any time. 

In both training and testing each unlabelled HMM was assigned the class of the nearest model in the 

training set (according to the learned optimal distance). 

Severity estimation 

Disease severity for PwP was estimated for each test HMM by finding the 5 closest neighbouring 

HMMs in the training data and averaging the severity levels for those among them with PwP (Fig. 3). 

In the Results section, good performance is associated with a low Root-Mean-Square-Deviation 
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(RMSD) of the estimate; an RMSD score of zero signifies that ground truth and predicted severity 

scores are equal. 

Results 

Experimental setup 

Subject demographics 

Gait data from TDA (n=424, mean age 51.9±10.0yrs, range 39-80years) and age matched PwP(n=156, 

67.2±8.0yrs, range 39-80) was analysed. Height distribution was found to be 1.70±0.09m for PwP 

and 1.71±0.10m for TDA. Weight distribution was 76.7±15.2kg for PwP and 76.3±15.5kg for TDA. 

Those with PD scored a median of 70(range 20-97) on the complete SF-36 with a median 

Hoehn&Yahr rating of 1(range 0-4). PwP were assessed by the MDS-UPDRS scale on which on 

average they scored 17 (range 0-57) on the motor section part 3. Furthermore, PwP were found to 

score an average of 75 (range 0-100) on the physical functioning section of the SF-36. 

IMU-derived walking speed was found to be 1.12±0.18ms-1 (range 0.59-1.70ms-1) for PwP, and 

1.39±0.18ms-1 (range 0.86-1.96ms-1) for TDA. Fig. 4 shows the associated normal distributions of 

speed for the two groups. Their significant overlap shows that simple discrimination based on speed 

is inadequate to classify mild PD, supporting the need for the more sophisticated metric learning 

approach proposed. 

Results of disease classification and severity prediction 

We applied the metric-learning methodology described to the above data. 

Classification results 

Classification results are here expressed as a ‘confusion matrix’, which compares predicted (by the 

classifier) and actual classes of the test samples (Table 1). Results presented are the average over 

the 25 repeated runs of the classification procedure. 

 A false positive (fp) occurs when a person is predicted with PD but does not actually have PD. A false 

negative (fn) occurs when a person is classified as TDA when they actually have PD. The notations 

(tp) and (tn) denote the numbers of true positive and true negative cases, respectively.  

The following measures are typically used to assess classification performance: ‘Recall’ = tp/(tp+fn); 

‘Precision’ = tp/(tp+fp); ‘Accuracy’ = (tp+tn)/(tp+tn+fp+fn); and F1 score (harmonic mean of precision 

and sensitivity): 

F1 = 2*tp/(2*tp +fp+fn). 

The Accuracy of the proposed classification approach in determining PwP from TDA, averaged over 

the 25 repeated runs, was (85.51±4.73%), compared to (49.62±3.43%) obtained when assigning 

TDA/PwP labels at random (when indeed a 50% accuracy is expected). We achieved a mean F1 score 

(a more reliable performance measure, given the imbalance in the number of TDA and PwP samples) 

of (81.54±5.92%), compared to the (46.43±3.49%) of random guessing.  
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Results on severity estimation 

The average estimation error (or ‘RMSD’) of the SF-36 predicted motor severity score was found in 

our approach to be 27.81±3.07 points on the 0-100 range (i.e., an estimate of 50 could refer to a real 

score between 22 and 78). In comparison, random assignment produced an RMSD of 39.53±3.84 

scale points.  
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Discussion 

This study indicates that our classifier was able to both correctly identify Parkinsonian gait within a 

large subset of typically developed adults (TDA), and discriminate low from high motor severity 

scores.  

PD discrimination 

Our method compares favourably with existing competitors on PD discrimination.  

Shukla et al.[13] for instance, studied the SVM classification of postural balance test data by 

evaluating 24 PwP, without a control group. Their results with respect to medication condition 

(before and after medication test results) show an accuracy of 64.5%, i.e. 21% lower than ours.  

Others have adopted, for example, LS-SVM for classifying PD movements acquired via optoelectronic 

cameras[15]. These are not mobile sensors and are relatively more expensive than IMU devices. The 

authors’ experimental setup is relatively complicated, while we follow the standard UPDRS rating 

scale. Finally, they analysed a much smaller cohort compared to ours (14 PwP and 14 TDA). 

Cancela et al.[18] collected data from 3-axis accelerometers located on limbs and trunk of 20 PwP. 

Statistical features were extracted from the collected signals, and off-the-shelf classifiers employed 

to discriminate PD. The authors achieved classification accuracy in the range 70.83%-75% when 

analysing walking gaits, and 86.48% accuracy for hand movements. Our approach, instead, is not 

limited to specific action classes and exhibits an accuracy of 85.51+-4.73% on 156 PwP. Patel et al.[3] 

analysed 5 PwP, focussing on “heel tapping” and “alternate hand movements” tasks and manually 

selecting feature measurements based on the action class, which severely limits applicability. 

Very significantly, a very recent work by Zhan, et al[30]. conducting a similar large scale PD 

monitoring from smartphone data (121 PwP and 105 controls) has achieved a 71.0% accuracy. 

Severity estimation 

Relatively few studies currently employ MLA for the classification of disease severity. Barth et 

al.[17], for instance, use six different ML classifiers to automatically detect the severity of walking-

derived bradykinesia on the UPDRS scale. They use a SHIMMER sensor with integrated gyroscope 

and accelerometers, and combine multiple gait features. Compared to them, we achieve comparable 

recall and significantly better specificity (90.35% versus 86%[17]), while covering a significantly larger 

cohort (156 versus 27).  A model has also been proposed to estimate average PD progression using 

speech signals[14]. However, this work focuses on PD telemonitoring, arguably less challenging than 

PD diagnosis, does not incorporate healthy controls and is tested on just 42 PwP. 

Conclusions 

Importantly we have included people with a range of motor severity and found that our framework 

can cope with larger cohorts of subjects with differing presentations, offering greater ecological 

validity, while yielding state-of-the-art accuracy, demonstrating a significantly higher generalisation 

capability than existing methods. Simply our method offers the opportunity to more sensitively 

classify people with Parkinson’s and to offer a methodology for more sensitive monitoring change in 
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motor symptoms across classifications that could be simply implemented in clinical practice and 

allow clinicians to monitor the effect of medications and other therapies.  Furthermore, as opposed 

to other works[3, 14, 15], in our empirical validation we used performance measures widely 

considered more complete and reliable (precision, recall and F1 score). Further supporting this 

clinical application, we use simple gait measures that only take two minutes to implement, for 

instance in primary care pathways to support general practitioners, with an accuracy level that even 

at this early stage is very competitive.” Our methods may have application across a number of 

movement disorders offering a means for clinicians to classify their clients and monitor change 

across classification levels. The methodology is open to further improvements in all areas, including 

the use of models with a greater number of states, the adoption of more sophisticated generative 

models (rather than HMMs), the design of a richer search space of distances to optimize upon[19], 

all elements that may significantly improve performance further. Collecting additional PwP samples 

will also lower the imprecision of motor severity level estimates. 
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Table 1: Average confusion matrices for classifying PwP vs. TDA. 
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Figures:  
 

 

Fig. 1. Pictorial representation of an HMM encoding an IMU sequence. 

 

Fig. 2. (a) Overview of the metric learning algorithm proposed in [19] for time-series classification; 

(b) in pullback metric learning each training HMM (left) is a point in the space of models M (right). 

Given a ‘base’ distance on M, any differential stretching F of M generates a ‘pullback’ distance there. 

Any parameterised family of such stretchings induces a family of distances on M, among which we 

can select that achieving maximal classification performance on the training set.  
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Fig. 3. Disease severity estimation. 

 

 

Figure 4. Empirical normal distribution for walking speed of Parkinson’s and TDAs in our tests. 
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Highlights 

 

 A metric learning approach to identify Parkinsonian gait from IMU data is proposed. 

 The approach learns the best classification strategy for the given training data. 

 Consequently, it can cope with larger cohorts with better generalisation power. 

 We achieve 85.51% accuracy over 580 subjects, the best yet over such large cohort. 

*Research Highligts
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