A New Weak-Coupling Method with Eccentric Dual Bucking Coils Applied to the PRBS Helicopter TEM System
<p>Schematic diagram of the multi-receiver PRBS HTEM system.</p> "> Figure 2
<p>Overall layout of the transmitter–receiver coils.</p> "> Figure 3
<p>Circuit schematic of PRBS pulse transmitter.</p> "> Figure 4
<p>The simulated LF and HF PRBS waveform and its localized current edges. (<b>a</b>) PRBS waveform with a frequency of 1 kHz. (<b>b</b>) PRBS waveform with a frequency of 20 kHz. (<b>c</b>) the enlarged view of LF current edge. (<b>d</b>) the enlarged view of HF current edge.</p> "> Figure 5
<p>Design principle of eccentric dual bucking model. (<b>a</b>) the overall spatial distribution of each submodule in this model. (<b>b</b>) the magnetic flux at the receiving area of the transmitting coils. (<b>c</b>) the magnetic flux at the receiving area of the bucking coils.</p> "> Figure 6
<p>Field calculation results: (<b>a</b>) the influence of the inter bucking coil radius R<sub>B2</sub> and the outer bucking coil radius R<sub>B1</sub>. (<b>b</b>) the influence of the receiving coil position offset a and outer bucking coil size radius R<sub>B1</sub>.</p> "> Figure 7
<p>The received induced signals when the primary field signal is compensated or not compensated.</p> "> Figure 8
<p>The simulation results in different resonant frequencies w<sub>p</sub>: (<b>a</b>) the target response of PRBS method G<sub>p</sub>(t). (<b>b</b>) the target response of traditional method G<sub>t</sub>(t).</p> "> Figure 9
<p>The simulation results in different damping coefficients ζ: (<b>a</b>) the target response of PRBS method G<sub>p</sub>(t). (<b>b</b>) the target response of traditional method G<sub>t</sub>(t).</p> "> Figure 10
<p>The simulation results in different residual primary field K: (<b>a</b>) the target response of PRBS method G<sub>p</sub>(t). (<b>b</b>) the target response of traditional method G<sub>t</sub>(t).</p> "> Figure 11
<p>The comparison of response relative errors between PRBS method and traditional method in different primary field coefficient K: (<b>a</b>) K = 1 × 10<sup>−5</sup>. (<b>b</b>) K = 1 × 10<sup>−4</sup>. (<b>c</b>) K = 1 × 10<sup>−3</sup>.</p> "> Figure 12
<p>(<b>a</b>) Layered earth model. (<b>b</b>) 1-D Synthetic EM data which contains residual primary field and gaussian noise. (<b>c</b>) Comparison of the reference impulse response and identified model impulse response obtained by correlation identification method.</p> "> Figure 13
<p>The inverted model based on the survey data of the PRBS method. (<b>a</b>) Reference earth model and inversion model. (<b>b</b>) Response data and its inversion fitting data.</p> "> Figure 14
<p>The comparison of the preprocessing results between square wave method and PRBS method under different residual primary field conditions. (<b>a</b>) PRBS method (<b>b</b>) square wave method.</p> "> Figure 15
<p>(<b>a</b>) The LF circular launching frame. (<b>b</b>) The proposed bucking structure and LF sensor. (<b>c</b>) The DC power supply and PRBS pulse transmitter.</p> "> Figure 16
<p>The recorded data. (<b>a</b>) The recorded transmitted current signal, (<b>b</b>) The recorded induced TEM signal.</p> "> Figure 17
<p>The data preprocessing results of PRBS system and V8 system. (<b>a</b>) The preprocessed observed data, (<b>b</b>) The inverted resistivity model of sounding shown in (<b>a</b>).</p> ">
Abstract
:1. Introduction
2. PRBS Helicopter TEM System
2.1. Transmitter–Receiver Configuration
2.2. Transmitter Circuit
2.3. Waveform Analysis
3. Designment and Optimization of Eccentric Dual Bucking Modeling
3.1. Calculation of Electromagnetic Field
3.2. Determination of Bucking Parameters
4. Simulation Results
4.1. Simulation of Bucking Model
4.2. Quantitatively Analysis of the Difference betweeen PRBS Method and Traditional Method
4.2.1. Different Resonant Frequency wp and Damping Coefficient ζ
4.2.2. Different Primary Field Coefficient K
4.3. Data Sysnthesis and Preprocessing of PRBS HTEM System
5. Experiment Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Time Domain Correlation Identification Algorithm
References
- Allard, M.; Milkereit, B. On the origin of the HTEM species. Proc. Explor. 2007, 7, 355–374. [Google Scholar]
- Mulè, S.; Carter, S.; Wolfgram, P. Advances in Helicopter Airborne Electromagnetics. ASEG Ext. Abstr. 2019, 2012, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Legault, J.M. Airborne electromagnetic systems–state of the art and future directions. CSEG Rec. 2015, 40, 38–49. [Google Scholar]
- Liang, B.; Qiu, C.; Han, F.; Zhu, C.; Liu, N.; Liu, H.; Liu, F.; Fang, G.; Liu, Q.H. A New Inversion Method Based on Distorted Born Iterative Method for Grounded Electrical Source Airborne Transient Electromagnetics. IEEE Trans. Geosci. Remote Sens. 2018, 56, 877–887. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Huang, L.; Liu, X.; Fang, G. Double Clamping Current Inverter with Adjustable Turn-off Time for Bucking Coil Helicopter Transient Electromagnetic Surveying. IEEE Trans. Ind. Electron. 2021, 68, 5405–5414. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, H.; Wang, Y.; Fu, N.; Tai, H.M.; Qin, S. Elimination of mutual inductance effect for small-loop transient electromagnetic devices. Geophysics 2019, 84, E143–E154. [Google Scholar] [CrossRef]
- Auken, E.; Boesen, T.; Christiansen, A.V. A Review of Airborne Electromagnetic Methods with Focus on Geotechnical and Hydrological Applications From 2007 to 2017. Adv. Geophys. 2017, 2017, 47–93. [Google Scholar]
- Sorensen, K.I.; Auken, E. SkyTEM–a New High-resolution Helicopter Transient Electromagnetic System. Explor. Geophys. 2018, 35, 194–202. [Google Scholar] [CrossRef]
- Hodges, G.; Chen, T.; Van Buren, R. HELITEM detects the Lalor VMS deposit. Explor. Geophys. 2018, 47, 285–289. [Google Scholar] [CrossRef]
- Witherly, K.; Irvine, R. The VTEM heli-time domain EM system-Four Case Studies. ASEG Ext. Abstr. 2019, 2006, 1–4. [Google Scholar] [CrossRef]
- Combrinck, M.; Wright, R. XciteTM: Great Results Require more than Good Data; ASEG-PESA: Adelaide, Australia, 2016. [Google Scholar]
- Wu, X.; Fang, G.; Xue, G.; Liu, L.; Liu, L.; Li, J. The Development and Applications of the Helicopter-borne Transient Electromagnetic System CAS-HTEM. J. Environ. Eng. Geophys. 2019, 24, 653–663. [Google Scholar] [CrossRef]
- Rudd, J.; Walker, S. The AeroTEM system in Africa. ASEG Ext. Abstr. 2009, 2009, 1–4. [Google Scholar] [CrossRef]
- Chen, C.; Liu, F.; Lin, J.; Zhu, K.; Wang, Y. An Optimized Air-Core Coil Sensor with a Magnetic Flux Compensation Structure Suitable to the Helicopter TEM System. Sensors 2016, 16, 508. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Lin, J.; Wang, Y.; Wang, S.; Xu, Q.; Cao, X.; Li, Z.; Chen, B. Reducing Motion-Induced Noise with Mechanically Resonant Coil Sensor in a Rigid Helicopter Transient Electromagnetic System. IEEE Trans. Ind. Electron. 2020, 67, 2391–2401. [Google Scholar] [CrossRef]
- Li, M.; Wei, W.; Luo, W.; Xu, Q. Time-Domain Spectral Induced Polarization Based on Pseudo-random Sequence. Pure Appl. Geophys. 2012, 170, 2257–2262. [Google Scholar] [CrossRef]
- Ziolkowski, A.; Hobbs, B.A.; Wright, D. Multitransient electromagnetic demonstration survey in France. Geophysics 2007, 72, F197–F209. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Hao, K.; Li, M. Improved Correlation Identification of Subsurface Using All Phase FFT Algorithm. KSII Trans. Internet Inf. Syst. 2020, 14, 495–513. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; Hamilton Printing Company: Castleton, NY, USA, 1998; pp. 180–182. [Google Scholar]
- Xiao, P.; Wu, X.; Shi, Z.; Guo, R.; Pang, Y.; Fang, G. Principal time constant map, a more accurate mapping tool for helicopter TEM data. J. Appl. Geophys. 2018, 159, 260–267. [Google Scholar] [CrossRef]
- Chen, S.; Guo, S.; Wang, H.; He, M.; Liu, X.; Qiu, Y.; Zhang, S.; Yuan, Z.; Zhang, H.; Fang, D.; et al. An Improved High-Sensitivity Airborne Transient Electromagnetic Sensor for Deep Penetration. Sensors 2017, 17, 169. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Wang, H.; Fu, Z.; Fu, W. Analysis of Primary Field Shielding Stability for the Weak Coupling Coil Designs. Sensors 2020, 20, 519. [Google Scholar] [CrossRef] [Green Version]
- Key, K. Is the fast Hankel transform faster than quadrature? Geophysics 2012, 77, F21–F30. [Google Scholar] [CrossRef] [Green Version]
Items | Low Frequency | High Frequency |
---|---|---|
Transmitter area | 1400 m2 | 700 m2 |
Peak current | 40 A | 10 A |
Peak moment | 56 kA·m2 | 7 kA·m2 |
Code frequency | 1–20 kHz | 20–50 kHz |
Order | 6–8 | 8–10 |
Sample interval | 5 μs | 1 μs |
Points | a (m) | RB1 (m) | ΔH (m) |
---|---|---|---|
a | 10.50 | 0.943 | 0.93 |
b | 11.10 | 0.955 | 0.71 |
c | 11.77 | 0.975 | 0.49 |
Model Parameters | Value |
---|---|
Tx waveform | Step pulse |
Ramp time | 40 μs |
Tx current | 40 A |
Tx coils radius | 15 m |
Rx coils radius | 0.6 m |
Bucking coils radius | 0.850 m/0.943 m |
Terrain clearance | 30 m |
Earth resistivity | 100 Ω·m |
Sample interval | 1 μs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, Z.; Liu, L.; Jiang, L.; Yan, S.; Ji, Y.; Liu, X.; Fang, G. A New Weak-Coupling Method with Eccentric Dual Bucking Coils Applied to the PRBS Helicopter TEM System. Sensors 2022, 22, 2675. https://doi.org/10.3390/s22072675
Ke Z, Liu L, Jiang L, Yan S, Ji Y, Liu X, Fang G. A New Weak-Coupling Method with Eccentric Dual Bucking Coils Applied to the PRBS Helicopter TEM System. Sensors. 2022; 22(7):2675. https://doi.org/10.3390/s22072675
Chicago/Turabian StyleKe, Zhen, Lihua Liu, Longbin Jiang, Shichu Yan, Yicai Ji, Xiaojun Liu, and Guangyou Fang. 2022. "A New Weak-Coupling Method with Eccentric Dual Bucking Coils Applied to the PRBS Helicopter TEM System" Sensors 22, no. 7: 2675. https://doi.org/10.3390/s22072675