Multi-Focus Image Fusion Using Focal Area Extraction in a Large Quantity of Microscopic Images
<p>Schematic diagram of the proposed method.</p> "> Figure 2
<p>Results of local focus area detection. (<b>a</b>) Band-pass-filtered image, (<b>b</b>) Laplacian-filtered image, (<b>c</b>) thresholded image, and (<b>d</b>) dilated image.</p> "> Figure 3
<p>Image index map and processed results for different values of the window size <span class="html-italic">r</span>. Each column is separated by a <span class="html-italic">r</span>. (<b>b</b>) All-in-focus images that are fused based on image index maps in (<b>a</b>). The marked areas highlighted by the red box in (<b>b</b>) represent the zoomed-in images (<b>c</b>). By adjusting <span class="html-italic">r</span>, the area affected by the filter is also adjusted. If <span class="html-italic">r</span> is 5, as shown in the first column, it did not properly express the boundary features. In the third column, most areas in the image index map are indexed. Since information is extracted from a wide area, there is a disadvantage of obtaining information in an out-of-focus area. As shown in the second column, by choosing an appropriate <span class="html-italic">r</span>, a clear fusion result can be obtained without loss of features.</p> "> Figure 4
<p>Grayscale image pairs for experiments with random blurring. The top row contains the “Dark cell” image set. The second row contains the “Bright cell” image set. (<b>a</b>) Original images and (<b>b</b>–<b>d</b>) randomly blurred images. From (<b>b</b>) to (<b>d</b>), we can see that some cells are defocused, and these are marked with a red circle.</p> "> Figure 5
<p>Fused image results generated by different methods. The top row contains the “Dark cell” image set. The bottom row contains the “Bright cell” image set. (<b>a</b>) DWT, (<b>b</b>) quad-tree, (<b>c</b>) GFDF, and the (<b>d</b>) proposed method.</p> "> Figure 6
<p>Details of “Bright cell” fused image results generated by different methods. (<b>a</b>) DWT, (<b>b</b>) quad-tree, (<b>c</b>) GFDF, and the (<b>d</b>) proposed method.</p> "> Figure 7
<p>Conjunctival goblet cell, fused image results from different methods. (<b>a</b>) DWT, (<b>b</b>) quad-tree, (<b>c</b>) GFDF, and the (<b>d</b>) proposed method.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proposed Method
2.2. Subjects
2.3. Focus Area Enhancement Based on the Transform Domain
2.4. Focus Area Detection
2.5. Self-Adjusting Guided Filtered Image Fusion
Algorithm 1 Multi-focus image fusion algorithm. |
1: Input : Source images from fluorescence microscopies. |
2: Output , All-in-focus image. |
3://Obtain guided filtered focus map of source images |
4://Obtain output by selecting the pixels from the set of source images, which depends on the calculated weight of the guidance image for the respective pixels. |
5: for |
6: for |
7: |
8: //Arrange the calculated weights of the guidance image with respect to the source images. |
9: for /where is the number of source images to be fused |
10: |
11: //Obtain output by sequentially multiplying the source with the maximum weight. |
12: end for |
13: end for |
14: end for |
2.6. Objective Evaluation Metrics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, S.T.; Kang, X.D.; Fang, L.Y.; Hu, J.W.; Yin, H.T. Pixel-level image fusion: A survey of the state of the art. Inf. Fusion 2017, 33, 100–112. [Google Scholar]
- Ralph, R.A. Conjunctival goblet cell density in normal subjects and in dry eye syndromes. Investig. Ophthalmol. 1975, 14, 299–302. [Google Scholar]
- Colorado, L.H.; Alzahrani, Y.; Pritchard, N.; Efron, N. Assessment of conjunctival goblet cell density using laser scanning confocal microscopy versus impression cytology. Contact Lens Anterior Eye 2016, 39, 221–226. [Google Scholar] [PubMed] [Green Version]
- Cinotti, E.; Singer, A.; Labeille, B.; Grivet, D.; Rubegni, P.; Douchet, C.; Cambazard, F.; Thuret, G.; Gain, P.; Perrot, J.L. Handheld in vivo reflectance confocal microscopy for the diagnosis of eyelid margin and conjunctival tumors. JAMA Ophthalmol. 2017, 135, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.; Yoon, C.H.; Kim, M.J.; Kim, K.H. Moxifloxacin based axially swept wide-field fluorescence microscopy for high-speed imaging of conjunctival goblet cells. Biomed. Opt. Express 2020, 11, 4890–4900. [Google Scholar] [CrossRef]
- Bhat, S.; Koundal, D. Multi-focus image fusion techniques: A survey. Artif. Intell. Rev. 2021, 54, 5735–5787. [Google Scholar] [CrossRef]
- Kaur, H.; Koundal, D.; Kadyan, V. Image fusion techniques: A survey. Arch. Comput. Methods Eng. 2021, 1–23. [Google Scholar] [CrossRef]
- Li, H.; Manjunath, B.S.; Mitra, S.K. Multisensor Image Fusion Using the Wavelet Transform. Graph. Models Image Process. 1995, 57, 235–245. [Google Scholar] [CrossRef]
- Rockinger, O. Image sequence fusion using a shift-invariant wavelet transform. In Proceedings of the International Conference on Image Processing, Santa Barbara, CA, USA, 26–29 October 1997; IEEE: Manhattan, NY, USA, 1997; pp. 288–291. [Google Scholar]
- Mitianoudis, N.; Stathaki, T. Pixel-based and region-based image fusion schemes using ICA bases. Inf. Fusion 2007, 8, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.S. A contrast based image fusion technique in the DCT domain. Digit. Signal Process. 2004, 14, 218–226. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Blum, R.S.; Han, J.G.; Tao, D.C. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: A review. Inf. Fusion 2018, 40, 57–75. [Google Scholar] [CrossRef]
- Li, S.; Kwok, J.T.; Wang, Y. Combination of images with diverse focuses using the spatial frequency. Inf. Fusion 2001, 2, 169–176. [Google Scholar] [CrossRef]
- Bai, X.Z.; Zhang, Y.; Zhou, F.G.; Xue, B.D. Quadtree-based multi-focus image fusion using a weighted focus-measure. Inf. Fusion 2015, 22, 105–118. [Google Scholar] [CrossRef]
- Li, M.; Cai, W.; Tan, Z. A region-based multi-sensor image fusion scheme using pulse-coupled neural network. Pattern Recognit. Lett. 2006, 27, 1948–1956. [Google Scholar] [CrossRef]
- Huang, Y.; Li, W.S.; Gao, M.L.; Liu, Z. Algebraic Multi-Grid Based Multi-Focus Image Fusion Using Watershed Algorithm. IEEE Access 2018, 6, 47082–47091. [Google Scholar] [CrossRef]
- Bhat, S.; Koundal, D. Multi-focus Image Fusion using Neutrosophic based Wavelet Transform. Appl. Soft Comput. 2021, 106, 107307. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.M.; Wu, J.H.; Li, L.Y.; Huang, S.Y. Multi-Focus Image Fusion Based on a Non-Fixed-Base Dictionary and Multi-Measure Optimization. IEEE Access 2019, 7, 46376–46388. [Google Scholar] [CrossRef]
- Xu, K.P.; Qin, Z.; Wang, G.L.; Zhang, H.D.; Huang, K.; Ye, S.X. Multi-focus Image Fusion using Fully Convolutional Two-stream Network for Visual Sensors. KSII Trans. Internet Inf. Syst. 2018, 12, 2253–2272. [Google Scholar]
- Bracewell, R.N.; Bracewell, R.N. The Fourier Transform and Its Applications; McGraw-Hill: New York, NY, USA, 1986; Volume 31999. [Google Scholar]
- Li, S.; Kang, X.; Hu, J.; Yang, B. Image matting for fusion of multi-focus images in dynamic scenes. Inf. Fusion 2013, 14, 147–162. [Google Scholar] [CrossRef]
- Nayar, S.K.; Nakagawa, Y. Shape from focus. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 824–831. [Google Scholar] [CrossRef] [Green Version]
- Burt, P.J.; Adelson, E.H. The Laplacian Pyramid as a Compact Image Code. IEEE Trans. Commun. 1983, 31, 532–540. [Google Scholar]
- Sezgin, M.; Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–168. [Google Scholar]
- Haralick, R.M.; Sternberg, S.R.; Zhuang, X.H. Image-Analysis Using Mathematical Morphology. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 9, 532–550. [Google Scholar] [CrossRef] [PubMed]
- De, I.; Chanda, B. Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure. Inf. Fusion 2013, 14, 136–146. [Google Scholar]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1397–1409. [Google Scholar]
- Li, H.; Qiu, H.; Yu, Z.; Li, B. Multifocus image fusion via fixed window technique of multiscale images and non-local means filtering. Signal Process. 2017, 138, 71–85. [Google Scholar] [CrossRef]
- Liu, Z.; Blasch, E.; Xue, Z.Y.; Zhao, J.Y.; Laganiere, R.; Wu, W. Objective Assessment of Multiresolution Image Fusion Algorithms for Context Enhancement in Night Vision: A Comparative Study. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 94–109. [Google Scholar] [CrossRef]
- Hossny, M.; Nahavandi, S.; Creighton, D. Comments on ‘Information measure for performance of image fusion’. Electron. Lett. 2008, 44, 1066–1067. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Shen, Y.; Zhang, J.Q. A nonlinear correlation measure for multivariable data set. Phys. D Nonlinear Phenom. 2005, 200, 287–295. [Google Scholar] [CrossRef]
- Xydeas, C.A.; Petrovic, V. Objective image fusion performance measure. Electron. Lett. 2000, 36, 308–309. [Google Scholar]
- Zhao, J.Y.; Laganiere, R.; Liu, Z. Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement. Int. J. Innov. Comput. Inf. Control 2007, 3, 1433–1447. [Google Scholar]
- Chen, Y.; Blum, R.S. A new automated quality assessment algorithm for image fusion. Image Vis. Comput. 2009, 27, 1421–1432. [Google Scholar] [CrossRef]
- Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2012, 20, 209–212. [Google Scholar]
- Qiu, X.H.; Li, M.; Zhang, L.Q.; Yuan, X.J. Guided filter-based multi-focus image fusion through focus region detection. Signal Process.-Image Commun. 2019, 72, 35–46. [Google Scholar] [CrossRef]
QMI | QNCIE | QG | QP | QCB | PSNR | SSIM | |
---|---|---|---|---|---|---|---|
DWT | 1.8534 | 0.8322 | 0.9513 | 0.9363 | 0.9558 | 47.3966 | 0.9851 |
Quad-tree | 1.7286 | 0.8298 | 0.9346 | 0.9064 | 0.9318 | 45.5006 | 0.9811 |
GFDF | 1.4601 | 0.8242 | 0.8040 | 0.8489 | 0.8436 | 47.7980 | 0.9868 |
Ours | 1.8796 | 0.8327 | 0.9519 | 0.9354 | 0.9726 | 47.4428 | 0.9854 |
QMI | QNCIE | QG | QP | QCB | PSNR | SSIM | |
---|---|---|---|---|---|---|---|
DWT | 1.8902 | 0.9074 | 0.9630 | 0.9547 | 0.9629 | 43.7463 | 0.9860 |
Quad-tree | 1.8083 | 0.9007 | 0.9593 | 0.9372 | 0.9467 | 42.8896 | 0.9856 |
GFDF | 1.5250 | 0.8818 | 0.8919 | 0.8816 | 0.5276 | 43.3569 | 0.9874 |
Ours | 1.9182 | 0.9098 | 0.9652 | 0.9578 | 0.9815 | 44.3206 | 0.9870 |
DWT | Quad-Tree | GFDF | Ours | |
---|---|---|---|---|
BRISQUE | 42.590 | 43.459 | 35.619 | 35.890 |
NIQE | 12.969 | 12.515 | 3.442 | 2.955 |
DWT | Quad-Tree | GFDF | Ours | |
---|---|---|---|---|
BRISQUE | 42.239 | 43.443 | 36.941 | 31.006 |
NIQE | 11.768 | 12.063 | 3.883 | 2.855 |
DWT | Quad-Tree | GFDF | Ours | |
---|---|---|---|---|
BRISQUE | 42.668 | 43.499 | 19.908 | 31.676 |
NIQE | 15.775 | 19.467 | 4.221 | 3.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Jang, S.; Lee, J.; Kim, T.; Kim, S.; Seo, J.; Kim, K.H.; Yang, S. Multi-Focus Image Fusion Using Focal Area Extraction in a Large Quantity of Microscopic Images. Sensors 2021, 21, 7371. https://doi.org/10.3390/s21217371
Lee J, Jang S, Lee J, Kim T, Kim S, Seo J, Kim KH, Yang S. Multi-Focus Image Fusion Using Focal Area Extraction in a Large Quantity of Microscopic Images. Sensors. 2021; 21(21):7371. https://doi.org/10.3390/s21217371
Chicago/Turabian StyleLee, Jiyoung, Seunghyun Jang, Jungbin Lee, Taehan Kim, Seonghan Kim, Jongbum Seo, Ki Hean Kim, and Sejung Yang. 2021. "Multi-Focus Image Fusion Using Focal Area Extraction in a Large Quantity of Microscopic Images" Sensors 21, no. 21: 7371. https://doi.org/10.3390/s21217371