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ABSTRACT 

Purpose: To determine the association between conjunctival goblet cell density (GCD) 

assessed using in vivo laser scanning confocal microscopy and conjunctival impression 

cytology in a healthy population. 

Methods: Ninety (90) healthy participants undertook a validated 5-item dry eye 

questionnaire, non-invasive tear film break-up time measurement, ocular surface 

fluorescein staining and phenol red thread test. These tests where undertaken to 

diagnose and exclude participants with dry eye. The nasal bulbar conjunctiva was 

imaged using laser scanning confocal microscopy (LSCM). Conjunctival impression 

cytology (CIC) was performed in the same region a few minutes later. Conjunctival 

goblet cell density was calculated as cells/mm2. 

Results: There was a strong positive correlation of conjunctival GCD between LSCM 

and CIC (ρ=0.66). Conjunctival goblet cell density was 475 ± 41 cells/mm² and 466 ± 

51 cells/mm² measured by LSCM and CIC, respectively. 

Conclusions: The strong association between in vivo and in vitro cellular analysis for 

measuring conjunctival GCD suggests that the more invasive CIC can be replaced by 

the less invasive LSCM in research and clinical practice. 

 

 

Key words: Conjunctiva, Goblet cells, Laser scanning confocal microscopy, Impression 

cytology 
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1. Introduction 

Conjunctival goblet cells are known to release mucin granules onto the ocular surface 

and contribute to the production of the mucin of the tear film. The mucin phase is a thin, 

highly hydrated glycoprotein layer that covers the corneal and conjunctival epithelium 

over the glycocalyx, which is a mucopolysacharide component of low molecular weight 

[1]. The term mucin refers to glycoproteins manly produced by the goblet cells, the 

stratified cells from the corneal and conjunctival epithelium, as well as the lacrimal 

gland.  

Genetic studies have identified 17 types of mucin in the human epithelium and they 

have been classified according to their function and origin – gel forming or secretory 

and membrane-associated. On the ocular surface, mucins expressed by the goblet cells 

(MUC5AC) are known to be gel forming/or secretory.  Small structured mucins are also 

secreted by the lacrimal gland (MUC7) [2]. A decreased number of gel forming or 

secretory goblet cells is common in any type of dry eye, which is described as a 

multifactorial disorder that causes damage to the ocular surface [3]. 

The term ‘dry eye’ is difficult to define because, regardless of the numerous causes, 

including contact lens wear, the associated clinical manifestations vary greatly in 

intensity, even over time in the same patient. Dry eye symptomatology may not 

correspond with the signs observed by the practitioner. Subjective symptoms combined 

with assessment of objective evidence forms the basis of diagnosis. Various studies 

have shown disagreement between dry eye symptomatology and the results of 

corresponding clinical tests [4-6], with only 57% of symptomatic subjects presenting 

clinical signs of dry eye [4,6,7]. This finding has been attributed to the aetiology and 
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pathophysiology of dry eye [8].  As a result, a single objective test without subjective 

symptoms is not sufficient for a diagnosis of dry eye [3]. Therefore, to establish an 

association between these two diagnostic tools in healthy individuals, is important to 

firstly determine the absence of dry eye because this condition of the ocular surface has 

been shown to have an affect on goblet cell counts [4,9-13 ] 

To date two approaches have been used to assess goblet cells in the anterior eye: in vitro 

cell analysis obtained from conjunctival impression cytology (CIC) and in vivo laser 

scanning confocal microscopy (LSCM) [11,14-20]. CIC is a mildly invasive technique 

of cell removal from the conjunctiva that is used for examination under a light 

microscope. Conjunctival cells obtained using CIC can also be analysed using flow 

cytometry and polymerase chain reaction techniques, which allow the amount of mucin 

produced by goblet cells to be quantified [20-22].  

The most common method used to report goblet cell density (GCD) is the number of 

cells per unit area (mm²) [23-26]. Previous studies have suggest that the average GCD 

in healthy participants is about 427 ± 376 cells/mm² using the CIC technique on 

interpalpebral sites of the exposed bulbar conjunctiva [27]. 

Few reports have been published on LSCM assessment of GCD in healthy participants. 

Two reports have shown the average GCD from four cardinal points of the bulbar 

conjunctiva (nasal, superior, temporal and inferior) to be 111 ± 58 cells /mm² [24] and 

432 ± 72 cells/mm² [28]. One report indicated an average of 260 cells/mm² determined 

from only one site (nasal bulbar conjunctiva) [29]. However, reductions of GCD have 

been found in participants with ocular surface disorders such chemical burns (136 ± 79 

cells/mm²) [14] and Sjögren dry eye syndrome (332 ± 137 cells/mm²) [11].  
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Impression cytology is considered as the ‘gold standard’ technique for assessing cell 

morphology of the ocular surface. The scale system developed by Nelson and co-

workers [30] reflects metaplastic changes to epithelial cells as well as changes in the 

number of goblet cells using CIC. This scale has been used to identify cells on the 

ocular surface using CIC and LSCM techniques in eyes treated with both preserved and 

preservative-free glaucoma therapies [4,21]. A positive correlation of GCD using LSCM 

and CIC has also been demonstrated in people with Sjögren syndrome (ρ = 0.908; P < 

0.05) [11] and chemical burns (ρ = 0.946; P = 0.000) [14].   

LSCM allows non-invasive in vivo evaluation of the human conjunctiva at a cellular 

level with magnification of approximately 600X and a field of view of 400 µm² [24]. 

The technique allows the capture of en face monochrome images of conjunctival cell 

layers. 

This study reports, for the first time, a correlation analysis between the gold standard 

CIC technique and the new, non-invasive technique of LSCM in a healthy population. 

The CIC technique has been widely used for the past three decades to report GCD; 

however, limitations of this technique, mainly relating to its invasive nature, have been 

raised previously by many authors. It is therefore important to understand the utility of 

the less-invasive LSCM compared to the current standard of GC assessment, namely 

CIC. Demonstration of a correlation between these two techniques will serve to validate 

LSCM as a viable alternative procedure to assessing GCD in human populations. 
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2. Methods 

2.1. Research design and participants 

This was a cross-sectional study of GCD measured using in vivo LSCM and in vitro 

CIC. A total of 90 participants (44 women, 46 men; age 30.8 ± 8.5 years) were enrolled 

in the study after meeting inclusion/exclusion criteria. Individuals were not eligible if 

they had a history of contact lens wear for at least 6 months, current pregnancy, ocular 

trauma or surgery, ocular surface dysfunction, current classification as symptomatic for 

dry eye (DE) based on answers to the DEQ-5 dry eye questionnaire [33],  current or 

long-term use of topical ocular medication, or ocular or systemic disease that may affect 

the conjunctiva. The study was approved by the Queensland University of Technology 

human research ethics committee and was conducted in accordance to the tenets of the 

Declaration of Helsinki. 

All participants completed the DEQ-5 questionnaire [33] and underwent an ocular 

surface and dry eye examination following guidelines from the International Dry Eye 

Workshop 2007 [3].  

Non-invasive breakup time (NIBUT) was recorded using a digital timing device as the 

average of three measurements in both eyes using keratometer mires (KM-1 Takagi 

Seiko Co Ltd, Nagano-ken, Japan).  

The degree of ocular surface staining with fluorescein was graded from 0–4 according 

to the validated Efron grading scale system [34].  

A phenol red thread (PRT) test (Tianjin Jingming New Technological Development 

Co., Ltd, China) was placed in the lower conjunctival sac on the temporal side of each 
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eye for 20 seconds without anesthetic with both eyes open [35] and the length of thread 

that became moist with tears and consequently turned yellow was measured against the 

scale on the test package. The length of wetting of the thread from the two eyes were 

averaged to give a single value for each participant.   

All examinations were performed in the morning by the same examiner. Since the 

goblet cell distribution is apparently random using LSCM throughout the bulbar 

conjunctiva tissue [24], we assume that this is a representative and reliable approach 

that roughly correspond to the CIC technique. Hence we adopted the following 

sampling approach. 

 

2.2. In vivo laser scanning confocal microscopy 

Conjunctival LSCM was performed using the Heidelberg Retinal Tomograph (HRT3) 

equipped with a Rostock Corneal Module (Heidelberg Engineering GmbH, Heidelberg, 

Germany). One eye (the eye preferred by the participant) was examined. The eye was 

anaesthetized with 0.4% oxybuprocaine hydrochloride (Chauvin Pharmaceuticals Ltd, 

UK). To optimise the quality of CIC specimens collected following LSCM, no drop of 

ocular gel was used between the ocular surface and the front of the TomoCap (diameter 

12 mm). The participant was instructed to direct their gaze in the opposite direction of 

the region of measurement (nasal bulbar conjunctiva). The centre of the surface of the 

TomoCap was positioned on the conjunctiva about 2 to 4 mm from the limbus.  

Images were captured from the superficial layers of the conjunctiva; specifically, the 

focal plane of the instrument was gradually moved into the conjunctival epithelium 

between 10 to 44 µm until goblet cells could be visualised [36]. Goblet cells at the nasal 
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bulbar conjunctiva were scanned while moving the applanating lens approximately 2 to 

4 mm from the limbal area at 9 different locations (approximating a 3 x 3 grid) and at 

approximately 3 different depths. 

 

2.2.1. Validation of Image Analysis Approach for LSCM 

A preliminary validation study was performed with 10 healthy volunteers. The aim was 

to determine the number of random goblet cells images obtained by LSCM to achieve 

an acceptable level of data variance in the measurements of GCD at each examination 

in the main study. 

A sequence of approximately 30 image frames was captured. The variance of every 

possible combination of 3 to 30 images of goblet cells was plotted against the number 

of images taken, to determine the point at which variability was optimised and became 

relatively constant (i.e. the point at which additional repeated measures would not have 

resulted in an appreciable reduction in variability) . This analysis revealed that a 

minimum of 11 images were necessary to determine the average of GCD at each 

examination. This resulted in a variance of the standard deviation of approximately ±40 

cells/mm2. Quantification of cells was conducted using the manual cell count mode of 

the Heidelberg Eye Explorer software (Heidelberg Engineering GmbH, Heidelberg, 

Germany). 
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2.3. Conjunctival impression cytology  

A few minutes after performing LSCM, the same eye was anaesthetized again and the 

centre of a Biopore membrane (Millicell cell culture inserts; Millipore Corp, Cork, 

Ireland, United Kingdom) was gently applied to the nasal bulbar conjunctival surface at 

approximately 2 to 4 mm from the limbus. The sample was allowed to air dry and then 

immersed in 95% methanol for fixation using a well culture plate sample holder. The 

sample was then refrigerated at -4 ºC for no more than 24 hours. To verify the location 

of the impression and the integrity of the exposed bulbar conjunctiva, a slit lamp 

examination with fluorescein was conducted under cobalt blue illumination with a 

yellow Boston filter. 

The staining procedure was performed using Giemsa stain according to the following 

guidelines from the manufacturer (Sigma-Aldrich): Millicell inserts with more than 

60% of cellular material across the field of the filter were assessed. The same well 

culture plate sample holder was used to retain the specimens during staining. The 

specimen was allowed to air dry at room temperature, the Giemsa stain was diluted 1:20 

with deionized water and the specimen was immersed in the diluted Giemsa solution for 

30 minutes. The sample was rinsed with tap water prior to examination.  

A Leica DM2500 microscope (Leica Microsystems) was used to visualize the specimen 

collected; this system had a magnification of x200 and field of view of 640 x 480 µm². 

Approximately 10 images were captured from each sample by scanning in X and Y 

directions. Morphological identification of goblet cells using Giemsa stain was 

undertaken according to the image selection criteria described below. 
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2.3.1. Validation of Image Analysis Approach for CIC 

The same statistical approach performed previously for assessing LSCM was used to 

validate CIC. The mean GCD for each specimen was determined by averaging cell 

counts obtained from five best quality images of non-disrupted cell material selected 

from the 10 captures images. This number of images yielded a variance of a standard 

deviation of approximately ±160 cells/mm2.  ImageJ software was used to facilitate 

counting of goblet cells and the number of cells per square mm was determined with the 

aid of a scale bar.  

 

2.4. Image selection criteria for LSCM and CIC 

Suitable images for cell count that contained abundant goblet cells [23] where randomly 

selected and were non-overlapping by more than 20%. High quality images were 

selected from LSCM scans that included goblet cells identified according to their size, 

shape and reflectivity, i.e. 25-30 µm in diameter [16,37], hyper-reflective [38], bigger 

than surrounding cells [39], round to oval [40] in shape and sometimes with a visible 

nucleus [11] (Figure 1A).  

Acceptable images from CIC were those with no-disrupted cell material that contained 

goblet cells approximately 25-30µm in diameter.  The cells had a pale membrane with 

defined borders and a visible nucleus localised centrally, although sometimes 

eccentrically in bigger cells (approximately 30 µm) [41]. Goblet cells were easily 

differentiated from surrounding cells because of their balloon-like appearance and cell 

size [27] (Figure 1B).  
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2.5. Statistical analysis 

The association between CIC and LSCM was assessed using Spearman correlation and 

bootstrapped confidence intervals (95%). To analyse the agreement between 

measurements on the same participant, a regression approach for non-uniform 

differences was carried out using the Bland-Altman technique with linear regression and 

95% limits of agreements [42]. Global values of GCD were used for this analysis (the 

average of 5 and 11 images for CIC and LSCM, respectively). SPSS for Windows 

version 16 (SPSS Sciences, Chicago, IL) was used for this statistical analysis.  

 

3. Results 

The Spearman’s rho correlation revealed a statistically significant relationship between 

GCD assessed with CIC and LSCM (ρ= 0.66, 95% CI: 0.52, 0.77).   The GCD assessed 

using LSCM was found to be significantly higher than that assessed using CIC (475 ± 

41 cells/mm²	and 466 ± 51 cells/mm², respectively; paired t = 2.26, p = 0.026). The 

mean difference between the two measurements was 9 cells/mm².  

A Bland-Altman plot of the GCD values obtained using the two methods is shown in 

Figure 2.	This	plot	shows	the relation between differences in GCD vs. mean GCD. On 

the graph, the middle line represents the linear regression. The upper and lower lines 

represent the 95% Limits of Agreement. Regression analysis revealed an R² of 0.49 

(p<0.001). The downward slope of the regression line indicates that, for higher mean 
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CGD values, a higher value was assigned to GCD as assessed with LSCM and a 

reduced spread of data is associated with lower GCD values obtained with CIC.  

The results of our assessment of ocular surface integrity and dry eye assessment of the 

participants in this experiment are summarised in Table 1. The 90 participants were 

asymptomatic for dry eye based on results of the DEQ-5 (scores of < 7 points) and all 

the participants passed the ocular surface staining with scores of ≤ 2 points using the 

validate Efron grading scale. Only 6 participants failed the PRT test with scores of < 

10mm/20s and 23 participants failed NIBUT with scores of  > 10s of tear break.     

 

4. Discussion 

Here we report, for the first time, a strong association between CIC and LSCM for the 

assessment of GCD in healthy participants.  This finding is consistent with previous 

reports that examined the correlation of GCD measurements using these techniques. 

These studies from the literature have positively correlated GCD measurements 

assessed with CIC and LSCM in patients with pathology, such as chemical burns on 

conjunctiva (ρ=0.929) [14] and Sjögren syndrome (ρ=0.908) [11]. The reason why Le 

and co-workers [14] and Hong and co-workers [11] reported higher correlations 

between CIC and LSCM in diseased eyes than we reported based on healthy eyes is 

unclear.   

Similarly to these previous results, readings from CIC were slightly lower than those 

made from LSCM (p = 0.026), as shown in Figure 3. This phenomenon could be 

attributed to (a) the improbability of all cells in the sample region to attach to the filter 

at the time of peeling from bulbar conjunctiva when performing CIC, and (b) the 
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inability of CIC to sample cells at deeper layers of the conjunctival epithelium, unlike 

LSCM which can scan cells at different depths of the epithelium.  

The distribution of the GCD values in the Bland-Altman plot indicate that the higher the 

GCD average, the greater the difference between GCD values obtained with LSCM and 

CIC. The reason for this difference profile is unclear. 

Systematic errors related to sampling techniques are the source of variations between 

invasive and non-invasive techniques. For example, staining methods can vary using the 

CIC technique according to the filter used to collect the cells. Conventional cellulose 

acetate filters allow the observation of cells under a light microscope using coloured 

stains. For immunofluorescence staining, however, the filter must have specific 

properties such as mixed cellulose esters and larger pore size. A few reports in the 

literature have mentioned that different filter types can improve sample consistency and 

cell attachment [41,43]. However, in some studies using conventional cellulose acetate 

filters, greater applied pressure was applied to the conjunctiva for longer periods of time 

during sample collection in order to obtain the same outcomes as those obtained with 

mixed cellulose esters.  

There appears to have been no validated approach to the number of images acquired in 

previous studies when attempting to correlate GCD assessed using LSCM and CIC. One 

study used an average of 3 images from each of the cardinal points of the bulbar 

conjunctiva (nasal, superior, temporal and inferior) using LSCM. The same study used 

an average of 3 consecutive images from only two sites of the interpalpebral 

conjunctiva (nasal and temporal) when performing CIC [14]. Another study using 

LSCM captured images from the superior bulbar conjunctiva in the Z-axis and averaged 
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4 images for the total GCD. These measurements were correlated with an average of 3 

consecutive images obtained from only two sites of the interpalpebral conjunctiva (nasal 

and temporal) using CIC [11]. In our study, a statistically validated approach was used 

to determine an acceptable level of accuracy in the measurements of GCD at each 

examination.  

In healthy individuals, GCD values from covered conjunctiva (upper and lower) have 

been reported to be significantly higher than those from the exposed regions (nasal and 

temporal) [27]. However, values from the exposed conjunctiva vary greatly from study 

to study. Using CIC, reports of mean GCD mean values from nasal bulbar conjunctiva 

range from 65 to 1108 cells/mm² [13, 44-47]. The reason why these studies show such 

large differences in GCD values may be due to differences in sampling techniques, such 

as differences in the number of images used to report an average GCD value, the level 

of magnification used to image cells, sampling area analysed, staining procedures and 

sample collection techniques.  

Using LSCM, only one value has been reported of GCD in healthy participants, which 

was from the nasal area (262 ± 116) [29].  In the present study, the average GCD using 

LSCM and CIC were 475 ± 41 cells/mm² and 466 ± 51 cells/mm², respectively. The 

difference in these values for healthy participants could be attributed to the validated 

sampling approach and the larger number of images selected used here to determine 

GCD. As well, we adopted an image selection criteria that required an abundant number 

of goblet cells to be present in images selected for analysis [23].  

Currently, assessment and quantification of GCD from images obtained by in vitro CIC 

is mostly based on counts from superficial cells that easily adhere to the filter acetate. 
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These procedures of sample collection can result in harvesting more or less cells 

depending on pressure applied to the filter and time of contact between the ocular 

surface and the filter acetate.  

The level of magnification and field of view used when performing microscopy during 

manual cell counting can impact GCD estimates determine GCD. A level of 

magnification of 200x was used in this study because this magnification has been 

demonstrated to introduce less variability in GC counts compared to 100x and 400x  

[23]. 

Given the demonstrated association between GCD measurements using CIC and 

LSCM, researchers and clinicians may prefer to use LSCM for assessing GCD. LSCM 

has the advantage of being reiterative and non-invasive and, with demonstrated 

repeatable quantitative intersession measurements of cell density using cell count 

software [44]. Conversely, CIC is invasive (involving tissue removal), with no evidence 

of repeated measure capability in the literature. Further, repeated measurements cannot 

be made at the same location or region of tissue unless a period of time is allowed for 

tissue regrowth.  

Images obtained using LSCM can be assessed immediately, whereas a time-consuming 

process of histochemical staining of CIC samples is required before cell counts can be 

made. The disadvantage of LSCM is the initial cost of the instrumentation, although 

CIC is also expensive when the costs of materials and reagents is factored in as well as 

the time necessary for a technician to prepare, stain and analyse the tissue samples. 

In summary, we have shown that GCD assessed using CIC and LSCM are positively 

correlated, meaning that either technique can be used to obtain valid results. Estimates 
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of GCD using LSCM can be predicted from CIC and the two methods agree.  LSCM is 

relatively a new approach for the assessment and quantification of goblet cells in a non-

invasive and reiterative manner, and is less time consuming than CIC. 
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Table 1 
Ocular surface integrity and dry eye assessment of participants. 
 

Statistic DEQ-5 NIBUT (s) OSS (0-4) PRT (mm/20s) 

Mean ± SD 3 ± 2 13 ± 6 0 ± 1 20 ± 8 

Min-Max 0 - 8 4 - 30 0 - 2 6 - 40 

 

DEQ-5, 5-Item Dry Eye Questionnaire; NIBUT, non-invasive tear break-up time; OSS, 
ocular surface staining; PRT, phenol red thread test 
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Figure Legends 

Figure 1. Conjunctival goblet cells imaged using LSCM and CIC techniques. (A) 

LSCM shows goblet cells (green arrows) to be approximately 25-30 µm in 

diameter, hyper-reflective, larger than surrounding epithelial cells and 

round to oval in shape. Epithelial cells are smaller and darker (white 

arrows). A nucleus is visible in some goblet cells and epithelial cells.  (B) 

goblet cells highlighted using Giemsa stain appear to be approximately 25-

30µm in diameter with a pale cytoplasm and defined borders. Epithelial 

cells are smaller and darker.  A nucleus is visible in some goblet cells and 

epithelial cells. 

Figure 2. Relation between differences in GCD vs. mean GCD. The middle line is 

the linear regression and the upper and lower lines are the 95% Limits of 

Agreement. There are 180 data points that represent two values per 

participant. Each data point represents the average value of 5 and 11 

images by CIC and LSCM, respectively.  

	


