Thermal Image Restoration Based on LWIR Sensor Statistics
<p>Test images of the five LWIR databases. The first row demonstrates different spectral images, thermal image, and visible light image, respectively. The second and third rows demonstrate the histogram and the histogram of the gradient distribution, respectively. Despite of their comparable field of view, the MSCN and the gradient distributions of LWIR and visible light images have been observed differently in most cases. (<b>a</b>) MORRIS [<a href="#B1-sensors-21-05443" class="html-bibr">1</a>]; (<b>b</b>) KRISTO [<a href="#B19-sensors-21-05443" class="html-bibr">19</a>]; (<b>c</b>) FLIR ADAS [<a href="#B5-sensors-21-05443" class="html-bibr">5</a>]; (<b>d</b>) SRIP; (<b>e</b>) OSU [<a href="#B20-sensors-21-05443" class="html-bibr">20</a>,<a href="#B21-sensors-21-05443" class="html-bibr">21</a>].</p> "> Figure 2
<p>LWIR images, histograms, and the measured similarity. Ten images are sampled from each dataset, and the observed and estimated gradient distributions are demonstrated. The similarities between the observed and estimated distributions are also visualized. In most cases, measurement scores show that the two distributions are closely related. (<b>a</b>) MORRIS [<a href="#B1-sensors-21-05443" class="html-bibr">1</a>]; (<b>b</b>) KRISTO [<a href="#B19-sensors-21-05443" class="html-bibr">19</a>]; (<b>c</b>) FLIR ADAS [<a href="#B5-sensors-21-05443" class="html-bibr">5</a>]; (<b>d</b>) SRIP; (<b>e</b>) OSU [<a href="#B20-sensors-21-05443" class="html-bibr">20</a>,<a href="#B21-sensors-21-05443" class="html-bibr">21</a>].</p> "> Figure 2 Cont.
<p>LWIR images, histograms, and the measured similarity. Ten images are sampled from each dataset, and the observed and estimated gradient distributions are demonstrated. The similarities between the observed and estimated distributions are also visualized. In most cases, measurement scores show that the two distributions are closely related. (<b>a</b>) MORRIS [<a href="#B1-sensors-21-05443" class="html-bibr">1</a>]; (<b>b</b>) KRISTO [<a href="#B19-sensors-21-05443" class="html-bibr">19</a>]; (<b>c</b>) FLIR ADAS [<a href="#B5-sensors-21-05443" class="html-bibr">5</a>]; (<b>d</b>) SRIP; (<b>e</b>) OSU [<a href="#B20-sensors-21-05443" class="html-bibr">20</a>,<a href="#B21-sensors-21-05443" class="html-bibr">21</a>].</p> "> Figure 3
<p>Distribution derived from the high-frequency of LWIR images. The statistics of the high-frequency is derived with three filters, MSCN, the first and the second derivatives. The three filtered signals demonstrate similar distributions. (<b>a</b>) MORRIS [<a href="#B1-sensors-21-05443" class="html-bibr">1</a>]; (<b>b</b>) KRISTO [<a href="#B19-sensors-21-05443" class="html-bibr">19</a>]; (<b>c</b>) FLIR ADAS [<a href="#B5-sensors-21-05443" class="html-bibr">5</a>]; (<b>d</b>) SRIP; (<b>e</b>) OSU [<a href="#B20-sensors-21-05443" class="html-bibr">20</a>,<a href="#B21-sensors-21-05443" class="html-bibr">21</a>].</p> "> Figure 4
<p>Analysis of the patch-based Gradient statistics. The patches (of size 21 × 21) are randomly sampled, and the observed and estimated distribution of high frequencies using ∇ and <math display="inline"><semantics> <msup> <mo>∇</mo> <mn>2</mn> </msup> </semantics></math> have been analyzed with the measures of <a href="#sensors-21-05443-t001" class="html-table">Table 1</a>. All the LWIR images in the datasets have demonstrated similar results; most of the patches satisfy our hypothesis. (<b>a</b>) MORRIS [<a href="#B1-sensors-21-05443" class="html-bibr">1</a>]; (<b>b</b>) KRISTO [<a href="#B19-sensors-21-05443" class="html-bibr">19</a>]; (<b>c</b>) FLIR ADAS [<a href="#B5-sensors-21-05443" class="html-bibr">5</a>]; (<b>d</b>) SRIP; (<b>e</b>) OSU [<a href="#B20-sensors-21-05443" class="html-bibr">20</a>,<a href="#B21-sensors-21-05443" class="html-bibr">21</a>].</p> "> Figure 5
<p>The validity of our hypothesis with varying patch sizes. The distribution of high-frequency components can be clearly estimated by the Laplace distribution as the size of the patch increases. Note that the measure scores over 1 were clipped for clear demonstration. (<b>a</b>) MORRIS [<a href="#B1-sensors-21-05443" class="html-bibr">1</a>]; (<b>b</b>) KRISTO [<a href="#B19-sensors-21-05443" class="html-bibr">19</a>]; (<b>c</b>) FLIR ADAS [<a href="#B5-sensors-21-05443" class="html-bibr">5</a>]; (<b>d</b>) SRIP; (<b>e</b>) OSU [<a href="#B20-sensors-21-05443" class="html-bibr">20</a>,<a href="#B21-sensors-21-05443" class="html-bibr">21</a>].</p> "> Figure 5 Cont.
<p>The validity of our hypothesis with varying patch sizes. The distribution of high-frequency components can be clearly estimated by the Laplace distribution as the size of the patch increases. Note that the measure scores over 1 were clipped for clear demonstration. (<b>a</b>) MORRIS [<a href="#B1-sensors-21-05443" class="html-bibr">1</a>]; (<b>b</b>) KRISTO [<a href="#B19-sensors-21-05443" class="html-bibr">19</a>]; (<b>c</b>) FLIR ADAS [<a href="#B5-sensors-21-05443" class="html-bibr">5</a>]; (<b>d</b>) SRIP; (<b>e</b>) OSU [<a href="#B20-sensors-21-05443" class="html-bibr">20</a>,<a href="#B21-sensors-21-05443" class="html-bibr">21</a>].</p> "> Figure 6
<p>Experiment for deciding the optimal patch size. The interquartile range (IQR) and standard deviation were utilized to derive the appropriate condition for the properties of the LWIR image. A total of 4000 patches were randomly sampled from the datasets for each patch size. In this study, size of 21 × 21 has been empirically decided as the optimal patch size. IQRs of five measures with respect to increasing patch size are demonstrated. IQRs of each patch size were calculated based on the randomly sampled 4000 patches. Standard deviation with respect to increasing patch size is also demonstrated.</p> "> Figure 7
<p>Example of a one-dimensional subproblem represented in Equation (<a href="#FD18-sensors-21-05443" class="html-disp-formula">18</a>). A single variable subproblem (blue line) derived from the TV-regularized cost function of Equation (<a href="#FD11-sensors-21-05443" class="html-disp-formula">11</a>) can be decomposed into two parts: the part derived from the data fidelity term (black line), and from the regularization term (red line). The solution of the subproblem lies between the critical points of data fidelity and the regularization functions. Nine points marked by <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>l</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <mfenced separators="" open="{" close="}"> <mi>l</mi> <mo>|</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>9</mn> </mfenced> </mrow> </semantics></math> are investigated to find the minimum value of <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>τ</mi> </msub> <mrow> <mo>(</mo> <mi>ε</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. All functions are plotted on the same scale (<math display="inline"><semantics> <mrow> <mover accent="true"> <mi>λ</mi> <mo>˜</mo> </mover> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>) for visualization.</p> "> Figure 8
<p>Images used for simulations (refer <a href="#sensors-21-05443-t004" class="html-table">Table 4</a> and <a href="#sensors-21-05443-t005" class="html-table">Table 5</a>), and visualized noise. (<b>a</b>–<b>c</b>) original pristine images; (<b>d</b>) magnified region of image 1 (pristine image); (<b>e</b>) RNU of (<math display="inline"><semantics> <msub> <mi>B</mi> <mi>u</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>B</mi> <mi>v</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>u</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>σ</mi> <mi>v</mi> </msub> </semantics></math>) = (20, 20, 25, 25).</p> "> Figure 9
<p>Results from the experiment of RNU. Regions marked with rectangles are magnified. The cost functions incorporating our hypothesis demonstrate more clear output images. (<b>a</b>) Original image; (<b>b</b>) degraded image; (<b>c</b>) result with Equation (<a href="#FD24-sensors-21-05443" class="html-disp-formula">24</a>); (<b>d</b>) result with Equation (<a href="#FD25-sensors-21-05443" class="html-disp-formula">25</a>); (<b>e</b>) result with Equation (<a href="#FD26-sensors-21-05443" class="html-disp-formula">26</a>); (<b>f</b>) result with Equation (<a href="#FD27-sensors-21-05443" class="html-disp-formula">27</a>).</p> "> Figure 10
<p>Final results of the conventional and proposed method. (<b>a</b>,<b>h</b>) Original degraded image of MORRIS (<b>top</b>) and KRISTO dataset (<b>bottom</b>); (<b>b</b>,<b>i</b>) BM3D; (<b>c</b>,<b>j</b>) Ochs et al.; (<b>d</b>,<b>k</b>) TWSC; (<b>e</b>,<b>l</b>) split Bregman with ATV; (<b>f</b>,<b>m</b>) split Bregman with ITV; (<b>g</b>,<b>n</b>) proposed method.</p> "> Figure 11
<p>Application to LWIR image deconvolution. (<b>a</b>) Points of measured LSFs. The measured LSFs were obtained by varying the distance from the optical axis. Seven LSFs were measured at the points marked with ⊗ by the optical device; (<b>b</b>) visualized LSFs and their PSF. The PSF is reconstructed by the Radon transform [<a href="#B41-sensors-21-05443" class="html-bibr">41</a>] based on the LSFs. Averaging of LSFs and A2D conversion considering the pixel size of the LWIR sensor have been utilized to reconstruct the PSF.</p> "> Figure 12
<p>Results of image deconvolution. Regions marked with rectangles are magnified. In the case of image deconvolution, isotropic TV has generated clear output images. (<b>a</b>) Degraded original image; (<b>b</b>) restored based on the regularization term of Equation (<a href="#FD24-sensors-21-05443" class="html-disp-formula">24</a>); (<b>c</b>) restored based on the regularization term of Equation (<a href="#FD25-sensors-21-05443" class="html-disp-formula">25</a>).</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Background
2.2. Basic Concepts
3. Proposed Method
3.1. Natural Statistics of Thermal Images
3.2. Patch-Based Statistics
3.3. Pixel-Wise Optimization
Algorithm 1 Minimization of Equation (11) |
|
Output: Estimated intrinsic LWIR image |
Initialization: |
LOOP Process |
|
4. Results and Discussion
4.1. Measurements
4.2. Regularization Strategy for Thermal Images
4.3. Final Results and Discussion: Denoising
4.4. Application: Deconvolution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, N.J.W.; Avidan, S.; Matusik, W.; Pfister, H. Statistics of Infrared Images. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–7. [Google Scholar]
- Liu, L.; Xu, L.; Fang, H. Simultaneous Intensity Bias Estimation and Stripe Noise Removal in Infrared Images Using the Global and Local Sparsity Constraints. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1777–1789. [Google Scholar] [CrossRef]
- Zeng, Q.; Qin, H.; Yan, X.; Zhou, H. Fourier Spectrum Guidance for Stripe Noise Removal in Thermal Infrared Imagery. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1072–1076. [Google Scholar] [CrossRef]
- Resmini, R.; Faria da Silva, L.; Medeiros, P.R.; Araujo, A.S.; Muchaluat-Saade, D.C.; Conci, A. A hybrid methodology for breast screening and cancer diagnosis using thermography. Comput. Biol. Med. 2021, 135, 104553. [Google Scholar] [CrossRef]
- Flir Thermal Dataset for Algorithm Training. FLIR ADAS. Available online: https://www.flir.in/oem/adas/adas-dataset-form/ (accessed on 14 July 2021).
- Srivastava, A.; Liu, X. Statistical hypothesis pruning for identifying faces from infrared images. Image Vis. Comput. 2003, 21, 651–661. [Google Scholar] [CrossRef]
- Biswas, S.K.; Milanfar, P. Linear Support Tensor Machine With LSK Channels: Pedestrian Detection in Thermal Infrared Images. IEEE Trans. Image Process. 2017, 26, 4229–4242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Pulecio, C.G.; Benítez-Restrepo, H.D.; Bovik, A.C. Making long-wave infrared face recognition robust against image quality degradations. Quant. InfraRed Thermogr. J. 2019, 16, 218–242. [Google Scholar] [CrossRef]
- Das, J.; de Gaspari, D.; Cornet, P.; Deroo, P.; Vermeiren, J.; Merken, P. Implementation and performance of shutterless uncooled micro-bolometer cameras. In Infrared Technology and Applications XLI; Andresen, B.F., Fulop, G.F., Hanson, C.M., Norton, P.R., Eds.; International Society for Optics and Photonics (SPIE): Baltimore, MD, USA, 2015; Volume 9451, pp. 388–394. [Google Scholar] [CrossRef]
- Tempelhahn, A.; Budzier, H.; Krause, V.; Gerlach, G. Shutter-less calibration of uncooled infrared cameras. J. Sens. Sens. Syst. 2016, 5, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Pezoa, J.E.; Medina, O.J. Spectral Model for Fixed-Pattern-Noise in Infrared Focal-Plane Arrays. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; San Martin, C., Kim, S.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 55–63. [Google Scholar]
- Johnson, K.R. Camera and Method for Thermal Image Noise Reduction Using Post Processing Techniques. U.S. Patent 9,282,259, 8 March 2016. [Google Scholar]
- Shepard, S.M. Temporal Noise Reduction, Compression and Analysis of Thermographic Image Data Sequences. U.S. Patent 6,516,084, 4 February 2003. [Google Scholar]
- Zuo, C.; Chen, Q.; Gu, G.; Sui, X. Scene-based nonuniformity correction algorithm based on interframe registration. J. Opt. Soc. Am. A 2011, 28, 1164–1176. [Google Scholar] [CrossRef]
- Goodall, T.R.; Bovik, A.C.; Paulter, N.G. Tasking on Natural Statistics of Infrared Images. IEEE Trans. Image Process. 2016, 25, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Villamarín, D.E.; Benítez-Restrepo, H.D.; Bovik, A.C. Predicting the Quality of Fused Long Wave Infrared and Visible Light Images. IEEE Trans. Image Process. 2017, 26, 3479–3491. [Google Scholar] [CrossRef]
- Fergus, R.; Singh, B.; Hertzmann, A.; Roweis, S.T.; Freeman, W.T. Removing Camera Shake from a Single Photograph. In ACM SIGGRAPH 2006 Papers; Association for Computing Machinery: New York, NY, USA, 2006; pp. 787–794. [Google Scholar] [CrossRef]
- Krishnan, D.; Fergus, R. Fast Image Deconvolution using Hyper-Laplacian Priors. In Advances in Neural Information Processing Systems 22; Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A., Eds.; Curran Associates, Inc.: Vancouver, BC, Canada, 2009; pp. 1033–1041. [Google Scholar]
- Krišto, M.; Ivašić-Kos, M. Thermal Imaging Dataset for Person Detection. In Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 1126–1131. [Google Scholar]
- Davis, J.W.; Keck, M.A. A Two-Stage Template Approach to Person Detection in Thermal Imagery. In Proceedings of the 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION’05), Breckenridge, CO, USA, 5–7 January 2005; Volume 1, pp. 364–369. [Google Scholar]
- Davis, J.W.; Sharma, V. Background-subtraction using contour-based fusion of thermal and visible imagery. Comput. Vis. Image Underst. 2007, 106, 162–182. [Google Scholar] [CrossRef]
- Han, J.; Song, K.S.; Kim, J.; Kang, M.G. Permuted Coordinate-Wise Optimizations Applied to Lp-Regularized Image Deconvolution. IEEE Trans. Image Process. 2018, 27, 3556–3570. [Google Scholar] [CrossRef]
- Mignotte, M. A non-local regularization strategy for image deconvolution. Pattern Recognit. Lett. 2008, 29, 2206–2212. [Google Scholar] [CrossRef]
- Cha, S.H. Comprehensive survey on distance/similarity measures between probability density functions. City 2007, 1, 1. [Google Scholar]
- Deza, M.M.; Deza, E. Dictionary of Distances; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Ochs, P.; Chen, Y.; Brox, T.; Pock, T. iPiano: Inertial Proximal Algorithm for Nonconvex Optimization. SIAM J. Imaging Sci. 2014, 7, 1388–1419. [Google Scholar] [CrossRef]
- Condat, L. Discrete Total Variation: New Definition and Minimization. SIAM J. Imaging Sci. 2017, 10, 1258–1290. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wipf, D.; Zhang, Y. Multi-Observation Blind Deconvolution with an Adaptive Sparse Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1628–1643. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Wang, S.; Qin, H. Image Deconvolution With Multi-Stage Convex Relaxation and Its Perceptual Evaluation. IEEE Trans. Image Process. 2011, 20, 3383–3392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsaggelos, A.K. Iterative Image Restoration Algorithms. Opt. Eng. 1989, 28, 735–748. [Google Scholar] [CrossRef]
- Wright, S.J. Coordinate descent algorithms. Math. Program. 2015, 151, 3–34. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayat, M.M.; Torres, S.N.; Armstrong, E.; Cain, S.C.; Yasuda, B. Statistical algorithm for nonuniformity correction in focal-plane arrays. Appl. Opt. 1999, 38, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.S.; Torres, S.N.; Pezoa, J.E. An Effective Reference-Free Performance Metric for Non-uniformity Correction Algorithms in Infrared Imaging System. In Proceedings of the LEOS 2007—IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, Lake Buena Vista, FL, USA, 21–25 October 2007; pp. 576–577. [Google Scholar] [CrossRef]
- Medina, O.J.; Pezoa, J.E.; Torres, S.N. A frequency domain model for the spatial fixed-pattern noise in infrared focal plane arrays. In Infrared Sensors, Devices, and Applications; and Single Photon Imaging II; Razeghi, M., LeVan, P.D., Sood, A.K., Wijewarnasuriya, P.S., Eds.; International Society for Optics and Photonics (SPIE): San Diego, CA, USA, 2011; Volume 8155, pp. 172–180. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space. In Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16 September–19 October 2007; Volume 1, pp. I-313–I-316. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, T.; Osher, S. The Split Bregman Method for L1-Regularized Problems. SIAM J. Imaging Sci. 2009, 2, 323–343. [Google Scholar] [CrossRef]
- Ochs, P.; Dosovitskiy, A.; Brox, T.; Pock, T. An Iterated L1 Algorithm for Non-smooth Non-convex Optimization in Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Xu, J.; Zhang, L.; Zhang, D. A Trilateral Weighted Sparse Coding Scheme for Real-World Image Denoising. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Helgaso, S. The Radon Transform, 2nd ed.; Springer: Boston, MA, USA, 1999. [Google Scholar] [CrossRef]
Definition | Range | Remarks | |
---|---|---|---|
Correlation coefficient | [−1,1] | ||
Histogram intersection | [0,1] | ||
Chi-squared test | [0,1] | ||
Bhattacharyya distance | [0,∞) | ||
Kullback–Leibler divergence | [0,∞) |
MOR | KRI | ADAS | SRIP | OSU | Average | |
---|---|---|---|---|---|---|
0.9867 | 0.9722 | 0.9814 | 0.9808 | 0.9551 | 0.9757 | |
∩ | 0.9055 | 0.8764 | 0.9074 | 0.8758 | 0.8768 | 0.8897 |
0.0249 | 0.0287 | 0.0149 | 0.0325 | 0.0285 | 0.0256 | |
0.0151 | 0.0164 | 0.0081 | 0.0195 | 0.0157 | 0.0148 | |
0.1498 | 0.1312 | 0.0462 | 0.1605 | 0.0780 | 0.1132 |
MSCN | 1st Derivative | 2nd Derivative | |
---|---|---|---|
0.9778 | 0.9754 | 0.9701 | |
∩ | 0.8587 | 0.8954 | 0.8444 |
0.0424 | 0.0258 | 0.0524 | |
0.0252 | 0.0150 | 0.0316 | |
0.1250 | 0.1235 | 0.1376 |
PSNR(dB) | SSIM | |||||
---|---|---|---|---|---|---|
IMG1 | IMG2 | IMG3 | IMG1 | IMG2 | IMG3 | |
degraded | 39.14 | 39.15 | 39.13 | 0.9315 | 0.9255 | 0.9267 |
Equation (24) | 39.86 | 40.15 | 40.13 | 0.9440 | 0.9441 | 0.9469 |
Equation (25) | 40.57 | 41.59 | 41.74 | 0.9565 | 0.9646 | 0.9706 |
Equation (26) | 39.67 | 40.03 | 40.11 | 0.9413 | 0.9424 | 0.9454 |
Equation (27) | 40.40 | 41.13 | 41.16 | 0.9548 | 0.9607 | 0.9655 |
PSNR | SSIM | Ro | ERo | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IMG1 | IMG2 | IMG3 | IMG1 | IMG2 | IMG3 | IMG1 | IMG2 | IMG3 | IMG1 | IMG2 | IMG3 | |
Degraded | 39.14 | 39.15 | 39.13 | 0.9315 | 0.9255 | 0.9267 | 0.1019 | 0.0610 | 0.0789 | 0.4866 | 0.2275 | 0.2348 |
BM3D | 39.14 | 39.15 | 39.13 | 0.9333 | 0.9290 | 0.9316 | 0.0928 | 0.0561 | 0.0738 | 0.4427 | 0.2075 | 0.2182 |
Ochs | 40.17 | 40.38 | 40.41 | 0.9491 | 0.9477 | 0.9503 | 0.0791 | 0.0465 | 0.0623 | 0.3833 | 0.1736 | 0.1856 |
TWSC | 39.56 | 39.4 | 39.60 | 0.9370 | 0.9293 | 0.9350 | 0.0787 | 0.0538 | 0.0701 | 0.3777 | 0.1996 | 0.2079 |
SB(ATV) | 40.63 | 41.24 | 41.77 | 0.9550 | 0.9641 | 0.9612 | 0.0626 | 0.0342 | 0.0470 | 0.2989 | 0.0920 | 0.1329 |
SB(ITV) | 40.85 | 41.23 | 41.27 | 0.9588 | 0.9607 | 0.9533 | 0.0384 | 0.0372 | 0.0524 | 0.3063 | 0.1384 | 0.1565 |
Equation (25) | 40.57 | 41.59 | 41.74 | 0.9565 | 0.9646 | 0.9706 | 0.0490 | 0.0301 | 0.0445 | 0.2416 | 0.1105 | 0.1325 |
Equation (27) | 40.40 | 41.13 | 41.16 | 0.9548 | 0.9607 | 0.9655 | 0.0553 | 0.0338 | 0.0485 | 0.2681 | 0.1241 | 0.1439 |
Ro | ERo | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MORR. | KRIS. | ADAS | SRIP | OUS | MORR. | KRIS. | ADAS | SRIP | OUS | |
Degraded | 0.0418 | 0.0861 | 0.1455 | 0.2539 | 0.0456 | 1.2411 | 0.3905 | 0.5043 | 0.4351 | 0.2670 |
BM3D | 0.0314 | 0.0640 | 0.1432 | 0.2522 | 0.0376 | 0.8530 | 0.2907 | 0.4961 | 0.4324 | 0.2148 |
Ochs | 0.0220 | 0.0568 | 0.1313 | 0.2475 | 0.0332 | 0.6608 | 0.2662 | 0.4561 | 0.4266 | 0.1923 |
TWSC | 0.0194 | 0.0505 | 0.0399 | 0.0308 | 0.2567 | 0.2886 | 0.2376 | 0.1454 | 0.1771 | 0.4243 |
SB(ATV) | 0.0100 | 0.0353 | 0.0546 | 0.2168 | 0.0260 | 0.1877 | 0.1709 | 0.1946 | 0.3851 | 0.1473 |
SB(ITV) | 0.0097 | 0.0314 | 0.0421 | 0.2097 | 0.0257 | 0.1722 | 1521 | 0.1502 | 0.3745 | 0.1403 |
Equation (25) | 0.0093 | 0.0338 | 0.0495 | 0.2182 | 0.0251 | 0.1830 | 0.1413 | 0.1314 | 0.3869 | 0.1314 |
Equation (27) | 0.0113 | 0.0422 | 0.0550 | 0.2327 | 0.0282 | 0.2266 | 0.1752 | 0.1895 | 0.3996 | 0.1526 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Lee, H.; Kang, M.G. Thermal Image Restoration Based on LWIR Sensor Statistics. Sensors 2021, 21, 5443. https://doi.org/10.3390/s21165443
Han J, Lee H, Kang MG. Thermal Image Restoration Based on LWIR Sensor Statistics. Sensors. 2021; 21(16):5443. https://doi.org/10.3390/s21165443
Chicago/Turabian StyleHan, Jaeduk, Haegeun Lee, and Moon Gi Kang. 2021. "Thermal Image Restoration Based on LWIR Sensor Statistics" Sensors 21, no. 16: 5443. https://doi.org/10.3390/s21165443
APA StyleHan, J., Lee, H., & Kang, M. G. (2021). Thermal Image Restoration Based on LWIR Sensor Statistics. Sensors, 21(16), 5443. https://doi.org/10.3390/s21165443