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Image Deconvolution with Multi-stage Convex
Relaxation and Its Perceptual Evaluation

Tingbo Hou, Sen Wang, and Hong Qin

Abstract—This paper proposes a new image deconvolution
method using multi-stage convex relaxation, and presents a
metric for perceptual evaluation of deconvolution results. Re-
cent work in image deconvolution addresses the deconvolution
problem via minimization with non-convex regularization. Since
all regularization terms in the objective function are non-
convex, this problem can be well modeled and solved by multi-
stage convex relaxation. This method, adopted from machine
learning, iteratively refines the convex relaxation formulation
using concave duality. The newly-proposed deconvolution method
has outstanding performance in noise removal and artifact
control. A new metric, transduced contrast-to-distortion ratio
(TCDR), is proposed based on a human vision system (HVS)
model that simulates human responses to visual contrasts. It is
sensitive to ringing and boundary artifacts, and very efficient
to compute. We conduct comprehensive perceptual evaluation of
image deconvolution using visual signal-to-noise ratio (VSNR)
and TCDR. Experimental results of both synthetic and real data
demonstrate that our method indeed improves the visual quality
of deconvolution results with low distortions and artifacts.

Index Terms—Image deconvolution, Non-convex regulariza-
tion, Perceptual evaluation, Multi-stage convex relaxation.

I. INTRODUCTION

RECOVERING a sharp image from a single, motion-
blurred photograph has been a long-standing, challenging

research problem. If the blur kernel, i.e., point spread function
(PSF), is shift-invariant, this problem reduces to that of image
deconvolution. It is one of the commonly-encountered issues
receiving considerable attention in a broad range of fields, such
as image processing, astronomy, computational photography,
medical imaging, and optimization. In recent work [1]–[7],
notable progress has been made using the natural image prior,
referring to the heavy-tailed distribution of image derivative
magnitudes. The natural image prior can be represented by
a hyper-Laplacian function, which is essentially a non-convex
regularization in optimization. It forces large derivatives of the
deblurred image to be sparse, resulting in nice performance
on ringing control. Nonetheless, there are still challenges
remaining in many aspects [8]. In this paper, we tackle the
image deconvolution problem at several fronts: including a
multi-resolution prior, non-convex regularization, and percep-
tual evaluation, with novel technical contributions for each
aspect.

Manuscript received Month 20xx; revised Month 20xx
Copyright (c) 2010 IEEE
T. Hou and H. Qin are with the Department of Computer Science, Stony

Brook University (SUNY Stony Brook), Stony Brook, NY, 11794-4400, USA,
e-mail: {thou, qin}@cs.stonybrook.edu

S. Wang is with Kodak Research Laboratories, Eastman Kodak Company,
Rochester, NY, 14650, USA, e-mail: sen.wang@kodak.com

Image deconvolution has been intensively studied for
decades. Despite the accomplishments, it is still hard to
achieve both sharpness and cleanness in deblurred images, es-
pecially for some extreme cases such as strong edges and large
noise. Strong edges are often accompanied by strong ringing
artifacts that severely reduce the visual fidelity of the deblurred
image. Noise is inevitable in deblurring, which comes from
many sources including photon collection, quantization error,
and blur kernel error. Artifacts may rapidly increase when the
algorithm attempts to drive the blurred image sharper, resulting
in some meaningless solution that may not be a natural image.
For non-convex regularization that is frequently adopted by
recent deblurring methods, it is difficult to find the global
solution. Solutions obtained by existing methods are local
minima, which depend not only on the relaxation, but also the
numerical procedure including boundary padding, convolution
computation, linear-system solving, etc. For example, it is well
known that the frequency methods for computing convolutions
have Gibbs phenomena and boundary artifacts. Therefore, the
studies of robust image deconvolution, including regulariza-
tion, relaxation, solving scheme, and numerical procedure, are
important and necessary.

Quantitative evaluation is another important aspect of image
deconvolution that has not been fully explored. In previous
work, evaluations were conducted based on conventional met-
rics including the sum of squared differences (SSD) [8] and
the peak signal-to-noise ratio (PSNR) [4], [6]. These metrics
measure the difference between two signals, regardless of
human response. However, for visual signals, absolute lumi-
nance values have different responses from human eyes, which
means that the metrics based on luminance is neither accurate
nor consistent from the visual perception’s point of view.
Visual perceptual metrics, on the other hand, have been studied
with a rich literature in recent years [9]–[11] for measuring
image fidelity, for example the visual signal-to-noise ratio
(VSNR) [11]. Whereas these metrics are designed to output
values highly correlated with perceived distortions, typical
artifacts in image deblurring are not yet to be considered,
such as ringing and boundary artifacts. Furthermore, these
metrics have not been applied for perceptual evaluation of
image deconvolution.

In this paper we focus on non-blind deconvolution and its
perceptual evaluation, assuming that the blur kernel is shift-
invariant. The contributions of this paper are summarized as
follows:

• We present a multi-resolution sparse prior for image
deconvolution, which is a generalization of the natural
image prior. It naturally leads to a remarkable property
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of natural images that derivatives in different resolutions
are subject to similar heavy-tailed distributions.

• We develop a new non-blind deconvolution method us-
ing multi-stage convex relaxation. This scheme, adopted
from machine learning with non-convex regularization,
iteratively refines the convex relaxation using concave
duality. The justification of convergence is automatically
embedded in a joint minimization that induces a convex
formulation.

• We propose a new perceptual metric, called transduced
contrast-to-distortion ratio (TCDR), to evaluate visual
quality of image deconvolution. This metric transforms
luminance contrasts between two images to human visual
responses based on a human visual system (HVS) model.
It has great responses on ringing and boundary artifacts,
since they are large contrasts and therefore large stimuli
to human eyes.

• We conduct perceptual evaluation of image deconvolution
results using VSNR (a state-of-the-art visual metric) and
our new TCDR, which collectively make the evaluation
more comprehensive and convincing. The evaluation is
performed on both synthetic data and real data.

The remainder of this paper is organized as follows. We
briefly review the previous work related to image deconvo-
lution and image fidelity assessment in Section II. We then
present the multi-resolution sparse prior and the deconvolution
method using multi-stage convex relaxation in Section III.
Our new perceptual metric for measuring image deconvolution
based on a HVS model is detailed in Section IV. We finally
demonstrate experimental results of perceptual evaluation on
synthetic and real data in Section V, and conclude the paper
with discussion and future work in Section VI.

II. PREVIOUS WORK

A. Image Deconvolution

Tremendous work has been dedicated to the problem of
image deconvolution, which can be roughly classified into
two categories: non-blind deconvolution and blind deconvolu-
tion, referring to deconvolution with known or unknown ker-
nel, respectively. For non-blind deconvolution, a fundamental
technique is the Richardson-Lucy (RL) deconvolution [12],
which restores the latent image by a Bayesian-based model.
Gaussian prior, inducing the Tikhonov regularization [13],
was adopted in deconvolution at first. Later on, non-Gaussian
prior that gives small penalties on large image edges be-
came popular [14]–[16], such as total variation (TV) regu-
larization [15], [17], half-quadratic regularization [18], and
anisotropic regularization [16]. Recently, the natural image
prior that is a non-convex regularization prevailed in image
deblurring. Levin et al. [2] proposed the sparse prior as a
concise representation of the natural image prior, which has
an outstanding performance in ringing control. It was also
referred to the hyper-Laplacian prior in [6], but with a fast
solving strategy using variation and fast Fourier transform
(FFT). According to a recent evaluation of deconvolution
algorithms [8], the sparse prior has been shown to achieve the
best performance in the non-blind deconvolution process. Yuan

et al. [19] proposed a progressive inter-scale and intra-scale
approach based on an edge-preserving bilateral Richardson-
Lucy (BRL) deconvolution. The deconvolution was performed
on the residual image between the blurred image and the sharp
image from the last iteration convolved with a blur kernel.
It has a special feature in ringing control, but the residual
deconvolution in the detailed layer is less stable in existence
of noise. Joshi et al. [4] exploited color priors as well as the
sparse prior in non-blind image deconvolution, and applied
them to deblurring and denoising. Cho et al. [7] proposed
a content-aware image prior that estimates spatially-varying
gradient statistics, and applied it together with the sparse prior
for non-blind deconvolution.

Blind deconvolution is more challenging since both the
latent image and the kernel are unknown. Some researchers
attempted to address the problem using a single image
with regularization terms including TV regularization [15],
anisotropic regularization [16], non-convex regularization [1],
etc. Fergus et al. [1] used a zero-mean mixture-of-Gaussians
model learned from a natural image as image prior to recover
the blur kernel. In [3], Shan et al. exploited a concatenation
of two piece-wise continuous linear and quadratic functions
to model image prior in their deblurring framework. Cai et
al. [5] used the curvelet system for kernels and the framelet
system for images to reduce the ill-posed problem to a joint
optimization that maximizes the sparsity of the kernel and the
sharp image. In [20], a fast deblurring method was proposed
by introducing a prediction step. The graphics processing unit
(GPU) implementation makes their algorithm very fast. In [8],
Levin et al. analyzed maximum a posterior (MAP) failure in
blind deconvolution, and evaluated single-image deconvolu-
tion algorithms using collected blur data with ground truth.
Multiple blurred images can provide more information of the
scene, which can reduce ambiguities of blind deblurring. Chen
et al. [21] developed an algorithm to deblur two consecutively-
captured blurred photos from camera shaking. In [22], Cai et
al. relaxed this requirement by extremely sparse representation
in the redundant curvelet system, but still required manual
alignment of the two images. For non-uniform deblurring,
Whyte et al. [23] proposed a parametrized geometric model
based on the rotational velocity of the camera, and applied it
to blind and non-blind deblurring.

Multiple images or specially-designed cameras were also
adopted to aid deconvolution. In [24], a hybrid camera that
simultaneously captures a high-resolution image together with
a sequence of low-resolution images was employed in motion
deblurring. Rasker et al. [25] proposed a fluttered shutter
camera with coded exposure, which opens and closes the
shutter during a normal exposure time. Yuan et al. [26] ex-
ploited blurred/noisy image pairs for deblurring, which contain
a blurred image under a long exposure and a noisy image by
fast shutter. Levin et al. [2] inserted a patterned occluder within
the aperture of the camera lens, creating a coded aperture as
known PSF. Zhou and Nayar [27] evaluated aperture patterns
based on the quality of deblurring. In [28], Levin et al. built a
prototype camera that translates within its exposure following
a parabolic displacement rule. Hence blur can be removed by
deconvolving the entire image with an identical, known PSF.
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Hirsch et al. [29] proposed a class of linear transforms for
space-varying filters in multiframe blind deconvolution. They
used the efficient filter flow (EFF) framework for rapid com-
putation of matrix-vector-multiplication. In [30], a prototype
with gyroscopes and accelerometers to estimate the camera
motion was presented, where deconvolution was performed
based on the “measured” blur kernel by the sensors, coupled
with a natural image prior.

In addition to deblurring, image deconvolution has been
applied to other problems such as super-resolution and denois-
ing. In [31], Shan et al. applied their deconvolution method
in [3] to fast super-resolution by assuming that the convolution
kernel is a Gaussian function. Joshi et. el. used deconvolution
to perform denoising in [4]. In [32], three applications were
performed: deblurring, super-resolution, and denoising.

B. Image Fidelity Assessment

Previous evaluations of image deconvolution were based
on two conventional metrics: PSNR [4], [6] and SSD [8].
However, for visual signals such as images, it is well known
that human eyes are more sensitive to luminance ratios rather
than absolute luminance values. It prompts researchers to seek
perceptual metric that responds to perceived distortions in the
same or similar ways with human eyes. The HVS model
has been studied for decades, with many efforts to design
perceptual evaluation of image distortion. The widely-used
property of HVS is contrast sensitivity, which induces metrics
based on the contrast sensitivity function [33]–[37]. Another
class of metric uses high-level properties of vision, based
on overarching hypotheses of what the human visual system
attempts to achieve. Wang et al. [9] proposed the structural
similarity (SSIM) metric that operates based on the notion that
the HVS has evolved to extract structural information from
natural images. In [10], an informative-theoretic approach
was proposed using an informative fidelity criterion (IFC)
derived from natural-scene statistics. In the recent work [11],
a wavelet-based VSNR was proposed to quantify the visual
fidelity of natural images based on near-threshold and supra-
threshold properties of human vision.

Recently, a concise HVS model was presented and applied
to the design and assessment of High Dynamic Range (HDR)
image display. Mantiuk et al. [38] proposed a framework
for image processing operations that works in the visual
response space, and applied it to contrast mapping, contrast
equalization, and color-to-gray conversion. They studied the
contrast discrimination model for HDR images, and intro-
duced a transducer function that can represent the response
of the HVS model. In [39], they defined visual distortion for
tone reproduction and proposed a tone mapping operator to
minimize the distortion. Aydin et al. [40] presented an image
quality metric for HDR images, using the HVS model. Their
metric is based on three types of distortions: loss of visible
contrast, amplification of invisible contrast, and reversal of
visible contrast.

Fig. 1. Two natural images and their statistical responses of three derivative
filters with different resolutions, which are selected from 1-ring, 2-ring, and
3-ring neighbors of the central pixel (0). The patterns of these three filters are
shown at the lower-right corner of the left-hand images.

III. IMAGE DECONVOLUTION USING MULTI-STAGE
CONVEX RELAXATION

In this section, we introduce our deconvolution method
using a multi-resolution sparse prior and the multi-stage con-
vex relaxation. Since we focus on non-blind deconvolution, a
kernel is required as an input, which can be obtained by the
blurred/noisy image pair [26] or Fergus’s method in [1]).

A. Multi-resolution Sparse Prior
Natural images have an intrinsic property on the statistics

of their gradient magnitudes: the heavy-tailed distribution. It
generates sparse regularization in the objective function, and
therefore, makes it non-convex. In our observation, magnitudes
of multi-resolution gradients are also subject to this property.
Fig. 1 shows two natural images and their statistical responses
of three derivative filters with different resolutions, selected
from 1-ring, 2-ring, and 3-ring neighbors of the central pixel.
It illustrates that the responses of derivative filters within a
certain size of local neighborhood (3-ring in this example)
have similar distributions. Moreover, the tails of response
distribution become lighter when the distance of the derivative
filter increases, indicating the spatial affects to the distribution
of filter outputs.

Inspired by the above observations, we propose a multi-
resolution sparse prior

p(x) =

J∏
j=1

e−ϕ(x,fj), (1)

where ϕ(x, fj) is the potential function of image x and deriva-
tive filter {fj}. For neighborhood size m×m, J = (m2−1)/2
forward filters are utilized. We adopt the hyper-Laplacian
function to represent the natural image prior, and embed a
spatial Gaussian function Gσ(fj) to reflect spatial affects,
which yields

ϕ(x, fj) = Gσ(fj)|x⊗ fj |p, (2)
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where ⊗ is the convolution operator, σ is the standard devi-
ation of Gaussian, and p is a positive exponent value set in
the range of [0.5, 0.8] as suggested by [2], [6]. The sparse
function favors natural images, since their gradients are very
non-Gaussian. Compared with p=2 (Gaussian prior) and p=1
(Laplacian prior), it applies less penalties on larger gradients.
Hence, it is more likely to favor sharp explanations in image
deconvolution than the Gaussian prior and Laplacian prior. For
extensive justification and comparison, please refer to [8]. The
spatial Gaussian Gσ(fj) is defined as the one in the bilateral
filter [41]. This prior reflects the intrinsic characteristic of
natural images with concise expression, and will serve as the
regularization term in the subsequent minimization problem.

B. Deconvolution with Sparse Regularization

Shift-invariant motion blur is commonly modeled as a
convolution process. The blurred image is interpreted as a
latent image x convolved by a blur kernel k with additive
noise n, written as

y = x⊗ k + n. (3)

Derived from Bayes’ rule, the estimation of the latent image
x was modeled as a minimization problem with loss function
R0(x) and a set of non-convex regularization terms {Rj(x)},

x̂ = argmin
x

R0(x) +

J∑
j=1

Rj(x)

 . (4)

The loss function here is set in a least-square fashion by
assuming a Gaussian noise model,

R0(x) = (x⊗ k − y)2. (5)

The non-convex regularization terms come from the adopted
image prior, which are

Rj(x) = λGσ(fj)|x⊗ fj |p, (6)

in our work. Therefore, we can re-write Eq. (4) as,

x̂ = argmin
x

(x⊗ k − y)2 + λ
J∑

j=1

Gσ(fj)|x⊗ fj |p
 . (7)

C. Multi-stage Convex Relaxation

In previous work of image deblurring, the non-convex reg-
ularization was solved by FFT-based variational methods [3],
[6] or iterative re-weighted least-square (IRLS) method [2].
FFT-based variational methods decompose the objective func-
tion into sub-problems. Their results are not solutions to the
non-convex objective function, and also suffer from boundary
artifacts due to FFT. The IRLS method can be interpreted as a
one-stage convex relation approach, based on the majorization-
minimization (MM) principle. We adopt the multi-stage con-
vex relaxation [42] to solve the deconvolution with sparse
regularization. This solving scheme, originally proposed in
machine learning, was used for solving problems with non-
convex objective functions. Specifically, it considers a non-
convex component, e.g., Rj(x) in Eq. (4). Let hj(x) be a

function with range Ωj , and assume that there exists a function
R̄j(x) defined on Ωj , which yields

Rj(x) = R̄j(hj(x)). (8)

Assume that there is a function uj so that the R̄j(uj) is con-
cave on uj ∈ Ωj . Zhang [42] showed that the regularization
function can be re-written, using the concave duality [43], as

Rj(x) = inf
vj

[
vTj hj(x) +R∗

j (vj)
]
, (9)

where R∗
j (vj) is the concave dual of R̄j(uj) given by

R∗
j (vj) = inf

uj

[
−vTj uj + R̄j(uj)

]
. (10)

According to [42], the minimization of the right-hand side of
Eq. (10) is achieved at

v̂j = ∇uj R̄j(uj)|uj=hj(x). (11)

Using concave duality, the minimization with non-convex
regularization can be solved in a multi-stage convex relaxation
method. Let hj(x) be a convex relaxation of Rj(x). The
minimization problem in Eq. (4) is relaxed to

x̂ = argmin
x

R0(x) +
J∑

j=1

hj(x)
T vj

 , (12)

where all of the components are convex. However, the solution
obtained from this simple relaxation is different from the
solution of Eq. (4). Using the representation of Rj(x) in
Eq. (9), the minimization in Eq. (4) can be re-written as

[x̂, v̂] = arg min
x,{vj}

R0(x) +
J∑

j=1

(hj(x)
T vj +R∗

j (vj))

 .

(13)
This can be solved by an alternate optimization strategy, which
optimizes x with fixed v and then optimizes v with fixed x.
The first optimization is equivalent to Eq. (12), since R∗

j (vj)
is independent of x. The second optimization is non-convex,
but has a closed-form solution given in Eq. (11).

Above we outlined the general procedure of multi-stage
convex relaxation proposed by [42]. It has some nice prop-
erties compared with the standard one-stage convex relaxation
method. The justification of convergence is automatically
embedded in the joint minimization in Eq. (13), which induces
a convex formulation. Moreover, Zhang [42] showed that for
sparse regularization, since the local solution found by this
algorithm is the global solution of a refined convex relaxation,
it should be closer to the desired solution of the non-convex
regularization than that of the one-stage convex relation. Now,
we consider the minimization problem in image deconvolution
with our multi-resolution prior given in Eq. (7). We define the
convex relaxation function hj(x) as

hj(x) = |x⊗ fj |q, (14)

with exponent q ≥ 1, and the concave function R̄j(uj) as

R̄j(uj) = λGσ(fj)|uj |p/q. (15)
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Fig. 2. Deconvolution with strong edges: (a) is the latent image with strong
edges; (b) is a blurred image; (c) is the result by sparse prior [2] with PSNR
24.34dB; (d) is our result with PSNR 27.09dB.

Fig. 3. Deconvolution with large noise: (a) is the latent image; (b) is a
blurred image with 5% random noise; (c) is the result by sparse prior [2]
with PSNR 25.67dB; (d) is our result with PSNR 26.18dB.

The first-step optimization can be expressed as

x̂ = argmin
x

(x⊗ k − y)2 +
J∑

j=1

|x⊗ fj |qvj

 , (16)

which can be solved using the Euler equation and conjugate
gradient method. According to Eq. (11), we take the deriva-
tive of Eq. (15) with respect to uj , and obtain the second
optimization

v̂j = λ(p/q)Gσ(fj)|hj |(p/q−1), j = 1, 2, ..., J. (17)

The proposed method with multi-resolution sparse prior and
multi-stage convex relaxation has stronger ability for artifact
and noise control than previous approaches using the sparse
prior [2], [6], especially for the cases with strong edges and
large noise, as shown in Fig. 2 and Fig. 3. The sparse prior,
as a concise representation of natural image prior, gives small

penalties on large derivatives, which therefore restrain the
noise while keeping edges. For comparison purpose, the multi-
resolution prior is an extension of the sparse prior, but con-
siders multi-resolution derivatives in a larger neighborhood.
Moreover, our solving scheme using multi-stage relaxation
ensures convergence to some local minimum, and has expected
better solutions in the sparse relaxation. Extensive evaluations
will be given in Section V.

IV. PERCEPTUAL METRIC: TCDR

We now introduce a concise HVS model, and propose a
new perceptual metric TCDR for image deconvolution.

A. Human Visual System Model

A HVS model aims to transform input luminance to re-
sponse that simulates human vision. It is essential for image
quality assessment since human vision is sensitive to con-
trast not luminance values. We adopt a concise model of
HVS in [38] based on perceived contrast. To simplify the
formulation, we start with the contrast as logarithmic ratio
of luminance:

G(L1, L2) = log10(L1/L2), (18)

where L1 and L2 are two luminance values. Next, we need
a transducer function that predicts the hypothetical response
of the HVS for a given measured contrast. The transducer
function in [38] is derived from [44], based on the assumption
that the response value should change by one unit for each
Just-Noticeable Difference (JND), beginning with

T (0) = 0, T (Gθ) = 1, (19)

where the threshold of contrast detection (i.e., JND) Gθ is
approximated with 1% contrast log10(0.01 + 1). The rest of
the transducer function is approximated by its first derivative:

∆T ≈ dT (G)

dG
∆G(G) = 1, (20)

where ∆G(G) is the discrimination threshold obtained from
Whittle’s psychophysical experimental measurements [45]. We
suggest that readers refer to [38] for more details. However,
Mantiuk’s model works in full range of luminance for HDR
display. Thus we normalize the response by a scale

R(G) =
1

T (Gmax)
T (G), (21)

where the maximum contrast for 8-bit low dynamic range
images is Gmax = log10(255) . Fig. 4 shows the normalized
response of the transducer function, where the horizontal axis
is the contrast defined by Eq. (18), and the vertical axis denotes
the response of the transducer function defined by Eq. (21).

B. Perceptual Metric

Based on this HVS model, we define our pixel-wise mea-
surement and perceptual metric for image quality assessment.
This perceptual metric is directly computed from the contrast
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Fig. 4. Normalized response of transducer function in the HVS model. The
x-axis is the contrast defined by Eq. (18), and the y-axis denotes the response
of the transducer function defined by Eq. (21).

between two images with luminance maps L1 and L2 at pixel
i, given by

G(L1(i), L2(i)) = log10(L1(i)/L2(i)). (22)

According to Eq. (21), the visual distortion map of two images
can be computed by

RL1,L2(i) = R(G(L1(i), L2(i))). (23)

This is a pixel-wise measurement also referred as visual
difference of two images, which can be interpreted as a visual
distortion map. Then we compute the mean square distortion
(MSD) on L1 and L2, given by

MSD(L1, L2) =
1

N

N∑
i

|RL1,L2(i)|2, (24)

where N is the number of pixels. Ultimately, we reach the
transduced contrast-to-distortion ratio (TCDR), defined as

TCDR = 10 log10

[
R(Gmax)

2

MSD

]
, (25)

where Gmax is the maximum contrast of L1 and L2.
The TCDR measures the visual difference of two images.

Since the normalized transducer function R(G) in Eq. (21)
is monotonic with respect to the contrast G, greater contrasts
will produce greater responses. Therefore, the metric TCDR is
indeed a metric, which is sensitive to artifacts that have large
contrasts.

C. Fast Implementation

One merit of the TCDR metric is that, it can be computed
very fast. The domain transducer function in Eq. (21) can be
transformed from the contrast G to the ratio of luminance
Lr = Lmax/Lmin. Furthermore, this function can be imple-
mented as a lookup table RLUT (Lr), which is subject to

RLUT (Lmin/Lmax) = −RLUT (Lmax/Lmin).

This feature results from the symmetry of the transducer
function to contrast G. The relation between pixel intensity
I and physical luminance L can be modeled by the gamma
correction, given by

L(I) = Iγ , (26)
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Fig. 5. Subjective ratings of perceived distortion plotted with respect to
predicted values of metric TCDR. The y-axis denotes perceived distortion as
reported by subjects, and the x-axis corresponds to transformed metric outputs.

where γ is the gamma of display monitor, which is set to be 2.2
in our implementation. The range of intensity I is [0,1], and
hence the range of luminance L is also [0,1]. The computation
of two pixels is then reduced to a power operation, a division,
and a read operation from a table stored in memory.

V. EXPERIMENTAL RESULTS

In this section, we first analyze the proposed perceptual
metric TCDR, and then conduct perceptual evaluation of
image deconvolution on both synthetic and real data. The de-
convolution methods used for comparison include: the sparse
prior method (sparse) [2], and the fast hyper-Laplacian method
(fast) [6]. The sparse method with Lp regularization is solved
by the conjugate gradient method and IRLS. The fast method
has the same regularization with the sparse method, but is
solved by FFT-based variation.

A. Metric Analysis

As a perceptual metric, The TCDR should be correlated
to ratings of subjects on perceived distortion. Therefore, we
examine the TCDR on the A57 database 1. This database
contains 18 distorted images with scaling ratings by subjects in
psychophysical experiments. The perceived distortion includes
“flat” allocation, baseline JPEG compression, baseline JPEG-
2000 compression, JPEG-2000+DCQ compression, Gaussian
blur, and Gaussian white noise. The plot of ratings with respect
to predicted values of TCDR is shown in Fig. 5. The y-axis
denotes perceived distortion as reported by subjects, and the
x-axis corresponds to transformed metric outputs, given by a
logistic function [11]

f(x) =
τ1 − τ2

1 + e
x−τ3
τ4

+ τ2, (27)

where parameters τ1, τ2, τ3, and τ4 are obtained by minimizing
the sum of squared errors between the transformed metric
outputs {f(x)} and the corresponding subjective ratings. The
correlation between subjective ratings and transformed outputs
of TCDR is Corr=0.6436. The plot of VSNR as well as other
metrics is referred to [11].

1http://foulard.ece.cornell.edu/dmc27/vsnr/vsnr.html
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Fig. 6. Two distorted images and their distortion maps with: (a) ringing and
(b) noise. The evaluation values are shown in Table I.

TABLE I
EVALUATION VALUES ON IMAGES IN FIG. 6.

Metric PSNR VSNR TCDR

Image (a) (dB) 31.09 10.37 18.36

Image (b) (dB) 30.89 6.90 18.45

Computation time (s) 0.0097 0.2650 0.0765

Perceptual metrics have been widely used to measure image
fidelity in image compression. However, the psychophysical
ratings are very subjective, and highly dependent on the
dataset. We notice that familiar artifacts (such as ringing
and boundary) in deblurring are not considered in previous
subjective ratings of visual fidelity. It may be somehow
confusing to evaluate image deconvolution using previous
perceptual metrics such as VSNR. For instance, we obtain two
distorted images with: ringing (a) and noise (b) in Fig. 6, and
evaluate their qualities with respect to the original image. The
evaluation values are given in Table I. Different conclusions
are drawn using different metrics: by PSNR, (a) is slightly
better than (b); by VSNR, (a) is much better than (b); and by
TCDR, (b) is slightly better than (a). It is not odd to have these
discrepancies when evaluating images with different metrics.
In this particular case, the result by TCDR is more reasonable,
since ringings are large stimuli to human eyes and strongly
affect the visual quality. This experiment highlights the feature
that the TCDR has strong responses to (ringing and boundary)
artifacts in deblurring, which are large contrasts and therefore
large stimuli to human eyes. It is interesting and necessary to
have more than one perceptual metrics for comprehensive and
convincing evaluation of image deconvolution, since artifacts
in deblurring have not been included in the psychophysical
ratings. Therefore, in the following experiments, we will use
both VSNR and TCDR to conduct perceptual evaluations. The
PSNR values are also given for comparison purpose.

Moreover, the computation of TCDR is very fast. It can be
implemented by a lookup table storing the transducer function
R(L1, L2) in Eq. (21). In Fig. 6, the image size is 481×321,
and the computation time of the three metrics is given in
Table I, obtained on a laptop with Duo CPU 2.53GHz.

Fig. 7. Synthetic data: four selected images from the Berkeley Segmentation
Dataset and four blur kernels.

Fig. 8. An example of the experiment on synthetic data: (a) a blurred image,
(b) sparse method, (c) fast method, and (d) ours. Detailed evaluation values
and the statistical analysis can be found in Fig. 9 and Table II.

B. Synthetic Data

In our synthetic data, we select four images from the
Berkeley Segmentation Dataset [46] operated with four blur
kernels, as shown in Fig. 7. The four kernels are: synthetic
thin kernel, Gaussian kernel, coded aperture [2], and camera
shake kernel. The blurred images form two groups of data by
adding 1% and 3% random noise, respectively. This dataset
therefore contains 32 blurred images with different levels of
noise. The image resolution is 481×321, and the kernel size
varies from 15×15 to 21×21.

We compare three methods on the synthetic data: sparse,
fast, and our method. We use boundary value replication for
boundary condition in our method. For all three methods,
parameters are tuned on one image in each data group, and
applied to the rest of the images in the group. Since images
in one group have similar levels of blur and noise, they
can share the same parameters. Specifically, the parameters
of the three methods for the first data group (1% noise)
are λ=0.0001, [λ=6000, α=0.4], and [σ=0.8, λ=0.0001]. The
parameters for the second data group (3% noise) are λ=0.001,
[λ=4000,α=0.1], and [σ=0.8, λ=0.0006]. Fig. 8 shows an
example (with 3% noise) in this experiment. In this case, the
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Fig. 9. Evaluation values on synthetic data: group 1 with 1% noise (first row) and group 2 with 3% noise (second row). The average improvements of our
method over the other two methods are shown in Table II.

TABLE II
AVERAGE IMPROVEMENT OF OUR METHOD ON SYNTHETIC DATA.

Methods PSNR (dB) VSNR (dB) TCDR (dB)

Our-Sparse
0.1156 0.1473 0.0546
0.6512 0.3859 0.1602

Our-Fast
1.5019 7.6998 3.1063
-0.5906 5.8564 1.8784

fast method has severe boundary effects, because it uses FFT
and IFFT to accelerate the computation. The sparse method
and our method have high-quality results, while our method
is slightly better. The complete evaluation values are shown
in Fig. 9, and the average improvements of our method to the
other two methods are shown in Table II. By PSNR only, it is
not convincing to tell which method is better. By perceptual
metrics (both VSNR and TCDR), our method is slightly better
than the sparse method, and much better than the fast method.
It demonstrates that our method has highest visual quality with
artifacts and noise being considered. Moreover, the improve-
ment of our method over the sparse method increases when
the noise becomes larger.

C. Real Data

For real data, we utilize the dataset in [8]. This dataset
contains 32 images obtained from four photos and 8 kernels.
The photos are nailed to a large board, and the ground truth is
obtained by mounting the camera on a tripod. The kernels
estimated by minimizing ∥k ⊗ x − y∥2 have some noise,
which challenges the deconvolution. The image resolution is
255×255, and the kernel size varies from 10 to 25 pixels.
Therefore, the blurries are very large in this dataset. Similar
to the experiment of synthetic data, parameters are tuned on

TABLE III
AVERAGE IMPROVEMENT OF OUR METHOD ON REAL DATA.

Methods PSNR (dB) VSNR (dB) TCDR (dB)

Our-Sparse 0.1112 0.6211 0.2987

Our-Fast -2.7471 2.3086 0.7483

one image in each group with the same kernel, and applied
to the rest of the images in the group. Fig. 10 shows two
experimental examples on real data. The complete evaluation
values are shown in Fig. 11, and the average improvements
of our method over the other two methods are documented
in Table III. Again, the result by PSNR does not clearly
indicate which method is indeed better. For most cases, the
fast method reaches higher PSNRs than the other two, which
is consistent with the evaluation results in [6]. However, by
perceptual metrics, the fast method has lower visual qualities
due to severe artifacts. Our method achieves highest VSNRs
and TCDRs in all cases, which indicates highest visual fi-
delity. This perceptual experiment further demonstrates that
our method has high visual quality.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have developed a non-blind deconvolution
method using a multi-resolution sparse prior and the multi-
stage convex relaxation. Our method enhances the robustness
of deconvolution, especially when strong edges and large
errors are presented. We have also proposed a new perceptual
metric for measuring image deconvolution in a quantitative
way. This metric, equipped with fast computation, has strong
responses on artifacts in deblurring. From a new perspective of
quantifying image deconvolution, we have conducted compre-
hensive perceptual evaluations using VSNR and TCDR. The
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Fig. 10. Two examples of the experiment on real data: (a) blurred images, (b) sparse method, (c) fast method, and (d) ours. Detailed evaluation values and
the statistical analysis can be found in Fig. 11 and Tab. III.
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Fig. 11. Evaluation values on real data. The average improvements of our method over the other two methods are shown in Table III.

evaluation results on both synthetic and real data demonstrate
that our new method indeed improves the visual quality with
low distortion and small artifacts.

In the near future, we plan to further improve our decon-
volution algorithm via GPU acceleration to achieve real-time
computation. We will also continue to investigate the stability
of deconvolution methods from other aspects, such as shift-
variant kernels.
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