Artificial Intelligence-Based Optimal Grasping Control
<p>Configuration of tactile sensing module: (<b>a</b>) silicone base of the module, (<b>b</b>) air pressure sensor, (<b>c</b>) robot hand, (<b>d</b>) tactile sensing module, (<b>e</b>) module applied to robot hand.</p> "> Figure 2
<p>Configuration of finger skin.</p> "> Figure 3
<p>Object weight detection experiment.</p> "> Figure 4
<p>Weight sensing training with deep neural network.</p> "> Figure 5
<p>Parameters of arrival of time (AoT) algorithm.</p> "> Figure 6
<p>Artificial neural network for contact area training.</p> "> Figure 7
<p>Range setting according to contact area: (<b>a</b>) size 1, (<b>b</b>) size 4–1, (<b>c</b>) size 9, (<b>d</b>) size 16, (<b>e</b>) size 12, (<b>f</b>) size 4–2.</p> "> Figure 8
<p>Structure for conversion of contact.</p> "> Figure 9
<p>Experiment measured by converting contact area and force.</p> "> Figure 10
<p>Results of contact area prediction through MLP training.</p> "> Figure 11
<p>Sensing expression according to touch point of tactile sensing module.</p> "> Figure 12
<p>Optimal grasping controller.</p> "> Figure 13
<p>Fuzzy control system.</p> "> Figure 14
<p>Fuzzy control system.</p> "> Figure 15
<p>Contact pressure error membership functions (MFs).</p> "> Figure 16
<p>Contact pressure derivative MFs.</p> "> Figure 17
<p>Optimal torque MFs.</p> "> Figure 18
<p>Surface of fuzzy controller.</p> "> Figure 19
<p>Control system configuration.</p> "> Figure 20
<p>Robot hand control module.</p> "> Figure 21
<p>Bottom layer of Robot hand control module.</p> "> Figure 22
<p>Grasping of various objects (<b>a</b>–<b>f</b>).</p> "> Figure 23
<p>Current value of cylinder grasping: (<b>a</b>) torque min, (<b>b</b>) torque max.</p> "> Figure 24
<p>Grasp angle of the fuzzy proportional-integral-derivative (PID) controller.</p> ">
Abstract
:1. Introduction
2. Sensing of Contact Force through Air Pressure Sensors
2.1. Configuration of Tactile Sensing Module through Air Pressure Sensors
2.2. Neural Network Configuration for Predicting Contact Force
3. Touch Sensing Using Arrival of Time (AoT) Algorithm
4. Enhancement of Sensing Resolution through Learning
5. Fuzzy Controller for Optimal Grasping
6. Robot Hand Control System
7. Adaptive Grasping Experiment
8. Discussion/Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lepora, N.F.; Church, A.; Kerchhove, C.D.; Hadsell, R.; Lloyd, J. From Pixels to Percepts: Highly Robust Edge Perception and Contour Following Using Deep Learning and an Optical Biomimetic Tactile Sensor. IEEE Robot. Autom. Lett. 2019, 4, 2101–2107. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.J.; Choi, H.R.; Kang, S.C. Development of Tactile Sensor for Detecting Contact Force and Slip. Trans. Korean Soc. Mech. Eng. A 2005, 30, 2638–2643. [Google Scholar] [CrossRef]
- De Maria, G.; Natale, C.; Pirozzi, S. Force/tactile sensor for robotic applications. Sens. Actuators A Phys. 2012, 175, 60–72. [Google Scholar] [CrossRef]
- Dang, H.; Allen, P.K. Stable grasping under pose uncertainty using tactile feedback. Auton. Robot. 2014, 36, 309–330. [Google Scholar] [CrossRef]
- Wan, Q.; Adams, R.P.; Howe, R.D. Variability and Predictability in Tactile Sensing During Grasping. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 158–164. [Google Scholar]
- Dahiya, R.S.; Metta, G.; Valle, M.M.; Sandini, G. Tactile Sensing—From Humans to Humanoids. IEEE Trans. Rob. 2010, 26, 1–20. [Google Scholar] [CrossRef]
- Yuan, W.; Dong, S.; Adelson, E.H. Gelsight: High-resolution robot tactile sensors for estimating geometry and force. Sensors 2017, 7, 2762. [Google Scholar] [CrossRef] [Green Version]
- Seo, D.G.; Cho, Y.H. Resonating tactile stimulators based on peizoelectric polymer films. J. Mech. Sci. Technol. 2018, 32, 631–636. [Google Scholar] [CrossRef]
- Liu, G.; Tan, Q.; Kou, H.; Zhang, L.; Wang, J.; Lv, W.; Dong, H.; Xiong, J. A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors 2018, 18, 1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, A.; Maggiali, M.; Natale, L.; Bonino, B.; Metta, G. A tactile sensor for the fingertips of the humanoid robot icub. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 2212–2217. [Google Scholar]
- Preechayasomboon, P.; Rombokas, E. ConTact Sensors: A Tactile Sensor Readily Integrable into Soft Robots. In Proceedings of the 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Korea, 14–18 April 2019; pp. 605–610. [Google Scholar]
- Castellini, C.; Ravindra, V. A wearable low-cost device based upon Force-Sensing Resistors to detect single-finger forces. In Proceedings of the 2014 IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Sao Paulo, Brazil, 12–15 August 2014; pp. 199–203. [Google Scholar]
- Parmar, S.; Khodasevych, I.; Troynikov, O. Evaluation of flexible force sensors for pressure monitoring in treatment of chronic venous disorders. Sensors 2017, 17, 1923. [Google Scholar] [CrossRef] [PubMed]
- Heever, D.J.; Schreve, K.; Scheffer, C. Tactile Sensing Using Force Sensing Resistors and a Super-Resolution Algorithm. IEEE Sens. J. 2009, 9, 29–35. [Google Scholar] [CrossRef]
- Kim, D.E.; Kim, K.S.; Park, J.H.; Li, A.; Lee, J.M. Stable Grasping of Objects Using Air Pressure Sensors on a Robot Hand. In Proceedings of the 18th International Conference on Control, Automation and System (ICCAS), Jeju, Korea, 17–20 October 2018; pp. 500–502. [Google Scholar]
- Pastor, F.; Gandarias, J.M.; García-Cerezo, A.J.; Gómez-de-Gabriel, J.M. Using 3D Convolutional Neural Networks for Tactile Object Recognition with Robotic Palpation. Sensors 2019, 19, 5356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, M.; Patzelt, F.; Haschke, R.; Ritter, H.J. Tactile convolutional networks for online slip and rotation detection. In Proceedings of the International Conference on Artificial Neural Networks, Barcelona, Spain, 6–9 September 2016; Springer: Cham, Switzerland, 2016; pp. 12–19. [Google Scholar]
- Yuan, W.; Mo, Y.; Wang, S.; Adelson, E.H. Active clothing material perception using tactile sensing and deep learning. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1–8. [Google Scholar]
- Jeong, D.K.; Kim, D.E.; Li, A.; Lee, J.M. Artificial Neural Network based Tactile Sensing Unit for Robotic Hand. In Proceedings of the International Conference on Intelligent Robotics and Applications, Shenyang, China, 8–11 August 2019; Springer: Cham, Switzerland, 2019; pp. 481–487. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Yu, C.H.; Moon, K.H.; Choi, H.P.; Seo, Y.B. Sensor localization algorithm in underwater wireless sensor networks. In Proceedings of the 2009 ICCAS-SICE, Fukuoka, Japan, 18–21 August 2009; pp. 1760–1764. [Google Scholar]
- Van Laarhoven, T. L2 regularization versus batch and weight normalization. arXiv 2017, arXiv:1706.05350. [Google Scholar]
- Chen, P.; Hasegawa, Y.; Yamashita, M. Grasping control of robot hand using fuzzy neural network. In Proceedings of the International Symposium on Neural Networks, Chengdu, China, 28 May–1 June 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1178–1187. [Google Scholar]
Object Weight (gf) | Sensor 1 (hpa) | Sensor 2 (hpa) | Sensor 3 (hpa) | Expect. Weight (gf) |
---|---|---|---|---|
0 | 1191.25 | 1199.02 | 1018.04 | 0.18 |
50 | 1191.69 | 1199.16 | 1018.38 | 50.14 |
100 | 1191.96 | 1199.55 | 1018.67 | 100.17 |
110 | 1192.02 | 1199.62 | 1018.71 | 110.12 |
120 | 1192.05 | 1199.65 | 1018.76 | 118.83 |
130 | 1192.07 | 1199.68 | 1018.79 | 130.27 |
140 | 1192.12 | 1199.74 | 1018.84 | 139.94 |
150 | 1192.14 | 1199.78 | 1018.86 | 150.19 |
160 | 1192.23 | 1199.83 | 1018.92 | 160.32 |
170 | 1192.25 | 1199.86 | 1018.96 | 170.18 |
180 | 1192.36 | 1200.01 | 1019.16 | 180.24 |
190 | 1192.41 | 1200.04 | 1019.17 | 189.81 |
200 | 1192.47 | 1200.06 | 1019.18 | 200.24 |
Contact Force (kgf) | Sensor 1 (hpa) | Sensor 2 (hpa) | Sensor 3 (hpa) | Size | Average |
---|---|---|---|---|---|
0 | 1010.22 | 1010.12 | 1010.6 | 0 | 0 |
5 | 1017.52 | 1010.14 | 1026.75 | 1 | 1.1 |
5 | 1017.57 | 1010.15 | 1026.71 | 1 | 1.1 |
7 | 1028.35 | 1010.02 | 1054.76 | 1 | 1.1 |
7 | 1028.36 | 1010.04 | 1054.83 | 1 | 1.1 |
9 | 1045.37 | 1011.43 | 1071.78 | 1 | 1.1 |
9 | 1045.42 | 1011.42 | 1071.73 | 1 | 1.1 |
0 | 1010.35 | 1010.04 | 1010.5 | 0 | 0 |
5 | 1029.58 | 1011.16 | 1038.54 | 1 | 1.5 |
5 | 1029.57 | 1011.15 | 1038.66 | 1 | 1.5 |
7 | 1053.44 | 1010.73 | 1053.96 | 1 | 1.5 |
7 | 1053.35 | 1010.82 | 1053.94 | 1 | 1.5 |
9 | 1080.16 | 1013.27 | 1053.78 | 1 | 1.5 |
9 | 1080.2 | 1013.34 | 1053.76 | 1 | 1.5 |
Abbreviation | Meaning |
---|---|
NH | Negative Huge |
NB | Negative Big |
NM | Negative Medium |
NS | Negative Small |
ZO | Zero |
PS | Positive Small |
PM | Positive Medium |
PB | Positive Big |
PH | Positive Huge |
ID | Model | Spec |
---|---|---|
1 and 2 | Maxon W10 | DC motor 24 V, 150 W |
3 and 4 | Maxon W06 | DC motor 24 V, 70 W |
5 | Maxon W01 | DC motor 24 V, 20 W |
Robot hand | Dynamixel (MX-28) | Coreless 12 V, RS485 |
Object | Torque Min | Torque Max |
---|---|---|
Cube | 80 | 400 |
Cylinder | 120 | 400 |
Cone | 80 | 1023 |
Ellipsoid | 50 | 400 |
Paper cup | 50 | 1023 |
Scroll tissue | 160 | 370 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Lee, J.; Chung, W.-Y.; Lee, J. Artificial Intelligence-Based Optimal Grasping Control. Sensors 2020, 20, 6390. https://doi.org/10.3390/s20216390
Kim D, Lee J, Chung W-Y, Lee J. Artificial Intelligence-Based Optimal Grasping Control. Sensors. 2020; 20(21):6390. https://doi.org/10.3390/s20216390
Chicago/Turabian StyleKim, Dongeon, Jonghak Lee, Wan-Young Chung, and Jangmyung Lee. 2020. "Artificial Intelligence-Based Optimal Grasping Control" Sensors 20, no. 21: 6390. https://doi.org/10.3390/s20216390
APA StyleKim, D., Lee, J., Chung, W.-Y., & Lee, J. (2020). Artificial Intelligence-Based Optimal Grasping Control. Sensors, 20(21), 6390. https://doi.org/10.3390/s20216390