A Novel 2-DOF Lorentz Force Actuator for the Modular Magnetic Suspension Platform
<p>Construction of the 2-DOF Lorentz force actuator.</p> "> Figure 2
<p>Magnetic suspension platform.</p> "> Figure 3
<p>Equivalent magnetic circuit.</p> "> Figure 4
<p>Flux nephogram of the 2-DOF Lorentz force actuator.</p> "> Figure 5
<p>Magnetic field distribution of the 2-DOF Lorentz force actuator: (<b>a</b>) Distribution of magnetic flux density at the vertical winding region ①; (<b>b</b>) distribution of magnetic flux density at the left horizontal winding region ②; (<b>c</b>) distribution of magnetic flux density at the partition region ③.</p> "> Figure 6
<p>Magnetic flux density of the yoke versus the excited current.</p> "> Figure 7
<p>Driving force versus deflection: (<b>a</b>) Deflection around <span class="html-italic">X</span>-axis; (<b>b</b>) deflection around <span class="html-italic">Y</span>-axis; (<b>c</b>) deflection around <span class="html-italic">Z</span>-axis.</p> "> Figure 8
<p>Experiment platform: (<b>a</b>) Measurement of horizontal driving force; (<b>b</b>) measurement of vertical driving force.</p> "> Figure 9
<p>Driving force versus control current: (<b>a</b>) horizontal driving force; (<b>b</b>) vertical driving force.</p> "> Figure 10
<p>Results of finite-element method (FEM) and measurement of the driving force: (<b>a</b>) Vertical driving force; (<b>b</b>) horizontal driving force.</p> "> Figure 11
<p>Experimental results of driving force: (<b>a</b>) Vertical driving force; (<b>b</b>) horizontal diving force.</p> "> Figure 12
<p>Experimental system: (<b>a</b>) Simulink Real-Time hardware; (<b>b</b>) Close-loop model; (<b>c</b>) test system.</p> "> Figure 13
<p>Test results with the step response.</p> "> Figure 14
<p>Test results with the sinusoidal signal.</p> "> Figure 15
<p>Sine signal tracking error.</p> "> Figure 16
<p>Positioning accuracy.</p> ">
Abstract
:1. Introduction
2. Structure and Working Principle
3. Mathematical Model
3.1. Analysis of Magnetic Circuit
3.2. Calculation of Electromagnetic Force
4. Mathematical Model Analysis of Distribution Characteristics of Magnetic Flux Density
5. Experimental Verification
5.1. Characteristics of Electromagnetic Force
5.2. Levitation Performance
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Masten, M.K. Inertially stabilized platforms for optical imaging systems. IEEE Control. Syst. 2008, 28, 47–64. [Google Scholar]
- Sun, X.; Chen, L.; Yang, Z.; Zhu, H. Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer. IEEE/ASME Trans. Mechatron. 2013, 18, 1357–1366. [Google Scholar] [CrossRef]
- Zhuchong, L.; Kun, L.; Wei, Z. Inertially stabilized platform for airborne remote sensing using magnetic bearings. IEEE/ASME Trans. Mechatron. 2016, 21, 288–301. [Google Scholar] [CrossRef]
- Sun, X.; Shi, Z.; Chen, L.; Yang, Z. Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method. IEEE Trans. Energy Convers. 2016, 31, 1539–1548. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Y.; Wu, H.; Song, C.; Ran, S. Study on mixed H2/H∞ output feedback control of maglev actuator for microgravity vibration isolation system. Adv. Mech. Eng. 2019, 11. [Google Scholar] [CrossRef]
- Stewart, D. A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 2016, 180, 371–386. [Google Scholar] [CrossRef]
- Porath, M.D.C.; Bortoni, L.A.F.; Simoni, R.; Schipmann, E.J. Offline and online strategies to improve pose accuracy of a Stewart Platform using indoor-GPS. Precis. Eng. 2020, 63, 83–93. [Google Scholar] [CrossRef]
- Zhu, H.; Teo, T.J.; Pang, C.K. Magnetically levitated Parallel Actuated Dual-Stage (Maglev-PAD) system for six-axis precision positioning. IEEE/ASME Trans. Mechatron. 2019, 24, 1829–1838. [Google Scholar] [CrossRef]
- Qian, J.; Chen, X.; Han, C.; Zeng, L.; Li, X. Magnetic Field Analysis of Lorentz motors using a novel segmented magnetic equivalent circuit method. Sensors 2013, 13, 1664–1678. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Z.; Zhu, Y.; Zhang, M.; Liu, H. Performance-oriented precision LARC tracking motion control of a magnetically levitated planar motor with comparative experiments. IEEE Trans. Ind. Electron. 2016, 63, 5763–5773. [Google Scholar] [CrossRef]
- Zhu, H.; Teo, T.J.; Pang, C.K. Design and modeling of a six-degree of-freedom magnetically levitated positioner using square coils and 1-D Halbach arrays. IEEE Trans. Ind. Electron. 2017, 64, 440–450. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Kim, W.-J. Two-phase Lorentz coils and linear halbach array for multi axis precision-positioning stages with magnetic levitation. IEEE/ASME Trans. Mechatron. 2017, 22, 2662–2672. [Google Scholar] [CrossRef]
- Xu, F.; Lu, X.; Zheng, T.; Xu, X. Motion control of a magnetic levitation actuator based on a wrench model considering yaw angle. IEEE Trans. Ind. Electron. 2020, 67, 8545–8554. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, B.; Cui, N.; Zhao, S. Tracking control of a Maglev vibration isolation system based on a high-precision relative position and attitude model. Sensors 2019, 19, 3375. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Yue, H.; Liu, R. Measurement model and precision analysis of accelerometers for Maglev vibration isolation platforms. Sensors 2015, 15, 20053–20068. [Google Scholar] [CrossRef] [Green Version]
- Popa, D.-C.; Micu, D.D.; Miron, O.-R.; Szabo, L. Optimized design of a novel modular tubular transverse flux reluctance machine. IEEE Trans. Magn. 2013, 49, 5533–5542. [Google Scholar] [CrossRef]
- Spooner, E.; Williamson, A.C.; Catto, G. Modular design of permanent-magnet generators for wind turbines. IEE Proc. Electr. Power Appl. 2002, 143, 388–395. [Google Scholar] [CrossRef]
- El-Hasan, T.S.; Luk, P.C.K. Modular design of high-speed permanent-magnet axial-flux generators. IEEE Trans. Magn. 2000, 36, 3558–3561. [Google Scholar] [CrossRef]
- Fei, W.; Luk, P.C.K.; El-Hasan, T.S. Rotor integrity design for a high-speed modular air-cored axial-flux permanent-magnet generator. IEEE Trans. Ind. Electron. 2011, 58, 3848–3858. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Jeong, J.; Kim, H.; Gweon, D. A six-degree-of-freedom magnetic levitation fine stage for a high-precision and high-acceleration dual-servo stage. Smart Mater. Struct. 2015, 24. [Google Scholar] [CrossRef]
- Choi, Y.; Gweon, D. A high-precision dual-servo stage using Halbach linear active magnetic bearings. IEEE/ASME Trans. Mechatron. 2011, 16, 925–931. [Google Scholar] [CrossRef]
- Ding, S.; Sun, J.; Han, W.; Deng, G.; Jiang, F.; Wang, C. Modeling and analysis of a novel guidance magnet for high-speed Maglev train. IEEE Access 2019, 7, 133324–133334. [Google Scholar] [CrossRef]
- Fang, J.; Wang, Y.; Han, B.; Zheng, S. Field balancing of magnetically levitated rotors without trial weights. Sensors 2013, 13, 16000–16022. [Google Scholar] [CrossRef]
- Kurnyta-Mazurek, P.; Kurnyta, A.; Henzel, M. Measurement system of a magnetic suspension system for a jet engine rotor. Sensors 2020, 20, 862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Cai, Y.; Ren, Y.; Xin, C.; Fan, Y.; Hu, D. Design and analysis of Lorentz force-type magnetic bearing based on high precision and low power consumption. J. Magn. 2017, 22, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Teo, T.J.; Pang, C.K. Flexure-based magnetically levitated dual-stage system for high-bandwidth positioning. IEEE Trans. Ind. Inf. 2019, 15, 4665–4675. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Q.; Ma, L.; Wang, K. Novel Lorentz force-type magnetic bearing with flux congregating rings for magnetically suspended Gyrowheel. IEEE Trans. Magn. 2019, 55, 1–8. [Google Scholar] [CrossRef]
- Li, J.; He, W. Modeling and analysis of a Biaxial noncontact Lorentz force actuator. IEEE Trans. Magn. 2019, 55, 1–9. [Google Scholar] [CrossRef]
- Shakir, S.V.; Kim, W.J. Novel electromagnetic actuation scheme for multiaxis nanopositioning, magneticsI. IEEE Trans. 2006, 42, 2052–2062. [Google Scholar]
- Estevez, P.; Mulder, A.; Munnig Schmidt, H.R. 6-DoF miniature maglev positioning stage for application in haptic micro-manipulation. Mechatronics 2012, 22, 1015–1022.
- He, D.; Shinshi, T.; Nakai, T. Development of a maglev lens driving actuator for off-axis control and adjustment of the focal point in laser beam machining. Precis. Eng. 2013, 37, 255–264. [Google Scholar] [CrossRef]
- Ke, Z.; Zinan, W.; Qingyuan, W. The characteristics of studying high speed motorized spindle dynamic magnetic coupled. IOP Conf. Ser. Mater. Sci. Eng. 2018, 39, 012027. [Google Scholar] [CrossRef]
- Wang, C.E.; Fang, J.; Tang, J.; Sun, J. Structure and coupling analysis of a novel 3-DOF conical magnetic bearing. Int. J. Appl. Electromagn. Mech. 2013, 43, 389–401. [Google Scholar] [CrossRef]
- Zhang, H.; Kou, B.; Zhang, H.; Jin, Y. A three-degree-of-freedom short-stroke Lorentz-force-driven planar motor using a halbach permanent-magnet array with unequal thickness. IEEE Trans. Ind. Electron. 2015, 62, 3640–3650. [Google Scholar] [CrossRef]
- Zhang, Z.; Menq, C.-H. Six-axis magnetic levitation and motion control. IEEE Trans. Robot. 2007, 23, 196–205. [Google Scholar] [CrossRef]
Movement of the Platform | Driving Force |
---|---|
Translation along X-axis direction | Horizontal driving forces produced by actuators 1and 3 |
Translation along Y-axis direction | Horizontal driving forces produced by actuators 2 and 4 |
Translation motion in Z-axis direction | Vertical driving forces produced by actuators 1, 2, 3 and 4 |
Deflection around X-axis | Vertical driving forces produced by actuators 1 and 3 |
Deflection around Y-axis | Vertical driving forces produced by actuators 2 and 4 |
Rotate around Z-axis | Horizontal driving forces produced by actuators 1, 2, 3 and 4 |
Parameter | Value |
---|---|
Length of the vertical PM/mm | 36 |
Width of the vertical PM/mm | 45 |
Thickness of the vertical PM/mm | 17 |
Distance between vertical PM and horizontal PM/mm | 7 |
Layer number of the vertical winding | 26 |
Turns of the vertical winding | 364 |
Air-gap between vertical PMs/mm | 25 |
Air-gap between horizontal PMs/mm | 19 |
Length of the horizontal PM/mm | 22 |
Width of the horizontal PM/mm | 45 |
thickness of the horizontal PM/mm | 14 |
Turns of the horizontal winding | 108 |
Layer number of horizontal winding | 9 |
Radius the coil/mm | 0.5 |
Weight of the actuator/kg | 2.59 |
The overall dimension/mm | 117 × 106 × 118 |
Parameters | In this Paper | In the Reference |
---|---|---|
Wire diameter | 1 mm | 0.41 mm |
Vertical coils | 2 × 182 turns | 2 × 130 turns |
Horizontal coils | 108 turns | 2 × 22 turns |
Maximum continuous current | 2 A | 0.9 A |
Magnetic flux density | 0.33 T | 0.34 T |
Vertical force coefficient | 5.549 N/A | 1.8 N/A |
Horizontal force coefficient | 4.027 N/A | 0.31N/A |
Working range | 5 × 5 × 5 mm | 2.5 × 2.5 × 2.5 mm |
Rotation | 10° × 10°×10° | 4° × 4°× 4° |
Resolution | 15 μm | Better than 4.4 nm |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Zhao, Y.; Mu, X.; Zhang, W.; Jiang, L.; Yue, H.; Liu, R. A Novel 2-DOF Lorentz Force Actuator for the Modular Magnetic Suspension Platform. Sensors 2020, 20, 4365. https://doi.org/10.3390/s20164365
Yang F, Zhao Y, Mu X, Zhang W, Jiang L, Yue H, Liu R. A Novel 2-DOF Lorentz Force Actuator for the Modular Magnetic Suspension Platform. Sensors. 2020; 20(16):4365. https://doi.org/10.3390/s20164365
Chicago/Turabian StyleYang, Fei, Yong Zhao, Xingke Mu, Wenqiao Zhang, Lingtong Jiang, Honghao Yue, and Rongqiang Liu. 2020. "A Novel 2-DOF Lorentz Force Actuator for the Modular Magnetic Suspension Platform" Sensors 20, no. 16: 4365. https://doi.org/10.3390/s20164365