Hyperspectral Fluorescence LIDAR Based on a Liquid Crystal Tunable Filter for Marine Environment Monitoring
<p>Hyperspectral LIDAR fluorosensor with its components. The excitation light emitted by the laser is sent through a Galilean beam expander to the target. The LIF signal is collected by a Cassegrain collection optics configuration and detected by a LCTF coupled with a CIM unit.</p> "> Figure 2
<p>The LCTF transfer test results: (1) the black lines represent the intensities measured at each tuned wavelength by the spectrometer normalized by the light source spectrum; (2) the grey line is the evaluated transfer function.</p> "> Figure 3
<p>Gates scheme and their relations, as implemented in the CIM unit. In figure, the shaded rectangles represent the temporal intervals when each gates G1 and G2 are active; the triangle schematizes the LIF signal and the dotted area on the top is a schematic illustration of the background signals. The continuous line in the last subplot represents the optical input (first plot) integrated with negative gain -1⁄m in the time interval G2 and with unity gain in the time interval G1.</p> "> Figure 4
<p>CIM differential output as function of the anode to cathode voltage in diverse conditions: (<b>a</b>) difference between the CIM output measured at 35 ns and 32 ns of pulse widths and the reference signal measured at 30 ns with constant pulse amplitude; (<b>b</b>) difference between the CIM output at 2.1 V, 2.2 V and 2.3 V of LED pulse amplitudes and the reference signal observed at 2.0 V with constant pulse width.</p> "> Figure 5
<p>Experimental setup: the target has been located 15 m far from the LIDAR system, considering the telescope focusing setup (described in <a href="#sec2dot1-sensors-20-00410" class="html-sec">Section 2.1</a>).</p> "> Figure 6
<p>Laboratory test results: the PMT mean output signal (A.U.) as function of the wavelength (nm) for different Chl-a concentrations (µg L<sup>−1</sup>): (<b>a</b>) the overall spectra between 405 nm and 720 nm; (<b>b</b>) the Chl-a peaks highlighted in the spectral region between 640 nm and 720 nm with their maxima at 680 nm.</p> "> Figure 7
<p>The LIDAR fluorosensor linearity test results. Linear regression model (grey line) has been applied to the measured data corresponding to the Chl-a mean curves and the relative standard deviation.</p> "> Figure A1
<p>Photo of the LIDAR instrument main box: details of the laser, optics and detector.</p> "> Figure A2
<p>Photo of the CIM unit with the LCTF apparatus mounted on his top.</p> "> Figure A3
<p>LCTF transfer function test. From the left: the theoretical fluorescence water spectrum; the convolution between the theoretical spectrum and the LCTF transfer function, as shown in <a href="#sensors-20-00410-f002" class="html-fig">Figure 2</a> of the main text.</p> "> Figure A4
<p>CIM signal output as function of the LED signal pulse amplitude for different background levels.</p> "> Figure A5
<p>The finite-difference response curve as function of the variable LED supply voltage (anode to cathode voltage levels of the PMT at 900 V).</p> ">
Abstract
:1. Introduction
2. Instrument Design
2.1. LIDAR: Light Source and Optical Design
2.2. Detector
3. Laboratory Tests and Discussion
3.1. Experimental Setup
3.2. Discussion about Water Raman and Chl-a Signals
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. CIM and LIDAR Photos
Appendix B. Further Test on the LCTF: Transfer Function Characterization
Appendix C. CIM Sensitivity in Different Background Conditions
Appendix D. CIM Sensitivity in Different Background Conditions
References
- Pörtner, H.O.; Karl, D.M.; Boyd, P.W.; Cheung, W.W.L.; Lluch-Cota, S.E.; Nojiri, Y.; Schmidt, D.N.; Zavialov, P.O. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Ducklow, H.W.; Steinberg, D.K.; Buesseler, K.O. Upper ocean carbon export and the biological pump. Oceanography 2001, 14, 50–58. [Google Scholar] [CrossRef]
- Zheng, G.; DiGiacomo, P.M. Remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of phytoplankton. Remote Sens. Environ. 2017, 201, 331–341. [Google Scholar] [CrossRef]
- Aguilar-Maldonado, J.A.; Santamaría-del-Ángel, E.; Gonzalez-Silvera, A.; Sebastiá Frasquet, M.T. Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms. Sensors 2019, 19, 3339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Ljungholm, M.; Malmqvist, E.; Bianco, G.; Hansson, L.A.; Svanberg, S.; Brydegaard, M. Inelastic hyperspectral lidar for profiling aquatic ecosystems. Laser Photonics Rev. 2016, 10, 807–813. [Google Scholar] [CrossRef]
- Hoge, F.E.; Wright, C.W.; Swift, R.N.; Yungel, J.K. Airborne laserinduced oceanic chlorophyll fluorescence: Solar-induced quenching corrections by use of concurrent downwelling irradiance measurements. Appl. Opt. 1998, 37, 3222–3226. [Google Scholar] [CrossRef] [PubMed]
- Babichenko, S.; Poryvkina, L.; Rebane, O.; Sobolev, I. Compact HLIF LiDAR for marine applications. Int. J. Remote Sens. 2016, 37, 3924–3937. [Google Scholar] [CrossRef] [Green Version]
- Babichenko, S. Laser remote sensing of the European marine environment: LIF technology and applications. In Remote Sensing of the European Seas; Barale, V., Gade, M., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 189–204. [Google Scholar]
- Duan, Z.; Li, Y.; Wang, J.; Zhao, G.; Svanberg, S. Aquatic environment monitoring using a drone-based fluorosensor. Appl. Phys. B 2019, 125, 108. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Niu, Z.; Sun, G.; Gao, S.; Wu, M. Deriving backscatter reflective factors from 32-channel full-waveform LiDAR data for the estimation of leaf biochemical contents. Opt. Express 2016, 24, 4771–4785. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Duan, Z.; Brydegaard, M.; Svanberg, S.; Zhao, G. Drone-based area scanning of vegetation fluorescence height profiles using a miniaturized hyperspectral lidar system. Appl. Phys. B 2018, 124, 207. [Google Scholar] [CrossRef]
- Palombi, L.; Alderighi, D.; Cecchi, G.; Raimondi, V.; Toci, G.; Lognoli, D. A fluorescence LIDAR sensor for hyper-spectral time-resolved remote sensing and mapping. Opt. Express 2013, 21, 14736–14746. [Google Scholar] [CrossRef] [PubMed]
- Hakala, T.; Suomalainen, J.; Kaasalainen, S.; Chen, Y. Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt. Express 2012, 20, 7119–7127. [Google Scholar] [CrossRef] [PubMed]
- Alaruri, S.D. Multiwavelength laser induced fluorescence (LIF) LIDAR system for remote detection and identification of oil spills. Optik 2019, 181, 239–245. [Google Scholar] [CrossRef]
- Li, W.; Jiang, C.; Chen, Y.; Hyyppä, J.; Tang, L.; Wang, S.W. A Liquid Crystal Tunable Filter Based Hyper-spectral LiDAR System and its Application on Vegetation Red Edge Detection. IEEE Geosci. Remote Sens. 2019, 16, 291–295. [Google Scholar] [CrossRef]
- Fiorani, L.; Angelini, F.; Artuso, F.; Cataldi, D.; Colao, F. Lidar Monitoring of Chlorophyll a During the XXIX and XXXI Italian Antarctic Expeditions. Int. J. Environ. Res. 2019, 13, 253–263. [Google Scholar] [CrossRef]
- Colao, F.; Palucci, A. Italy BO2005A000622; ENEA: Roma, Italy, 2005. [Google Scholar]
- Angelini, F.; Colao, F. Optimization of laser wavelength, power and pulse duration for eye-safe Raman spectroscopy. J. Eur. Opt. Soc. Rapid Publ. 2019, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Harsdorf, S.; Reuter, R. Stable deconvolution of noisy LIDAR signals. In Proceedings of the EARSeL-SIG-Workshop LIDAR, Dresden/FRG, Germany, 16–17 June 2000. [Google Scholar]
- Determann, S.; Reuter, R.; Willkomm, R. Fluorescent matter in the eastern Atlantic Ocean, Part 1: Method of measurement and near surface distribution. Deep Sea Res. Part I 1994, 41, 659–675. [Google Scholar] [CrossRef]
- Friend, M.; Franklin, G.B.; Quinn, B. An LED pulser for measuring photomultiplier linearity. Nucl. Instrum. Methods Sect. A 2011, 676, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Cisek, M.; Colao, F.; Demetrio, E.; Di Cicco, A.; Drozdowska, V.; Fiorani, L.; Goszczko, I.; Lazic, V.; Okladnikov, I.G.; Palucci, A.; et al. Remote and local monitoring of dissolved and suspended fluorescent organic matter off the Svalbard. J. Optoelectron. Adv. M 2010, 12, 1604–1618. [Google Scholar]
- Pisano, A.; De Dominicis, M.; Biamino, W.; Bignami, F.; Gherardi, S.; Colao, F.; Coppini, G.; Marullo, S.; Sprovieri, M.; Trivero, P.; et al. An oceanographic survey for oil spill monitoring and model forecasting validation using remote sensing and in situ data in the Mediterranean Sea. Deep-Sea Res. Part II 2016, 133, 132–145. [Google Scholar] [CrossRef]
- Wright, S.W.; Jeffrey, S.W.; Mantoura, R.F.C.; Llewellyn, C.A.; Bjornland, T.; Repeta, D.; Welschmeyer, N. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser. 1991, 77, 183–196. [Google Scholar] [CrossRef]
Curve | R2 | RMSE | |
---|---|---|---|
- | p1 = 7.6 (6.6, 8.6) p2 = −4100 (−4967, −3232) | 0.987 | 104 |
- | p1 = 18.6 (17.4, 19.9) p2 = −1.048 × 104 (−1.156 × 104, −9403) | 0.997 | 1230 |
- | p1 = 9.0 (8.2, 9.9) p2 = −4905 (−5631, −4178) | 0.993 | 87 |
- | p1 = 16.7 (15.6, 17.8) p2 = −9145 (−1.006 × 104, −8226) | 0.997 | 111 |
- | p1 = 23.2 (21.4, 25.1) p2 = −1.3 × 104 (−1.5 × 104, −1.1 × 104) | 0.995 | 195 |
Estimated Slope | SE | tStat | p-Value | RMSE | R-Squared | |
---|---|---|---|---|---|---|
Chl-a Peak Area | 329.4 | 19.5 | 16.9 | 2.8 × 10−6 | 24.6 | 0.97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aruffo, E.; Chiuri, A.; Angelini, F.; Artuso, F.; Cataldi, D.; Colao, F.; Fiorani, L.; Menicucci, I.; Nuvoli, M.; Pistilli, M.; et al. Hyperspectral Fluorescence LIDAR Based on a Liquid Crystal Tunable Filter for Marine Environment Monitoring. Sensors 2020, 20, 410. https://doi.org/10.3390/s20020410
Aruffo E, Chiuri A, Angelini F, Artuso F, Cataldi D, Colao F, Fiorani L, Menicucci I, Nuvoli M, Pistilli M, et al. Hyperspectral Fluorescence LIDAR Based on a Liquid Crystal Tunable Filter for Marine Environment Monitoring. Sensors. 2020; 20(2):410. https://doi.org/10.3390/s20020410
Chicago/Turabian StyleAruffo, Eleonora, Andrea Chiuri, Federico Angelini, Florinda Artuso, Dario Cataldi, Francesco Colao, Luca Fiorani, Ivano Menicucci, Marcello Nuvoli, Marco Pistilli, and et al. 2020. "Hyperspectral Fluorescence LIDAR Based on a Liquid Crystal Tunable Filter for Marine Environment Monitoring" Sensors 20, no. 2: 410. https://doi.org/10.3390/s20020410
APA StyleAruffo, E., Chiuri, A., Angelini, F., Artuso, F., Cataldi, D., Colao, F., Fiorani, L., Menicucci, I., Nuvoli, M., Pistilli, M., Spizzichino, V., & Palucci, A. (2020). Hyperspectral Fluorescence LIDAR Based on a Liquid Crystal Tunable Filter for Marine Environment Monitoring. Sensors, 20(2), 410. https://doi.org/10.3390/s20020410