Accuracy of the Dynamic Acoustic Map in a Large City Generated by Fixed Monitoring Units
<p>General block diagram of the followed processes in DYNAMAP.</p> "> Figure 2
<p>Number of sites and cumulative probability for Cluster 1 (left side) and Cluster 2 (right side) as a function of the non-acoustic parameter <span class="html-italic">x</span> = Log(T<sub>T</sub>). Bin size is 0.3.</p> "> Figure 3
<p>Cumulative distribution <span class="html-italic">I(x)</span> for Cluster 1 fitted using the analytical expression, Equation (1), <span class="html-italic">I(x)</span> = 10<span class="html-italic"><sup>f(x)</sup>,</span> where <math display="inline"> <semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> is a polynomial of third degree and x = Log(T<sub>T</sub>).</p> "> Figure 4
<p>Cumulative distribution <span class="html-italic">I(x)</span> for Cluster 2 fitted using the analytical expression, Equation (1), <span class="html-italic">I(x)</span> = 10<span class="html-italic"><sup>f(x)</sup></span>, where <math display="inline"> <semantics> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> is a polynomial of third degree and x = Log(T<sub>T</sub>).</p> "> Figure 5
<p>Distribution functions <span class="html-italic">P</span><sub>1</sub><span class="html-italic">(x)</span> and <span class="html-italic">P</span><sub>2</sub><span class="html-italic">(x)</span> (Equations (3)–(5)) for Clusters 1 and 2; <span class="html-italic">x</span> = Log (T<sub>T</sub>)<sub>.</sub></p> "> Figure 6
<p>Mean normalized cluster profiles, <math display="inline"> <semantics> <mrow> <msub> <mover accent="true"> <mo>Δ</mo> <mo>¯</mo> </mover> <mi>k</mi> </msub> </mrow> </semantics> </math>, and the corresponding error band, <span class="html-italic">k</span> indicates the cluster index. Time resolution <math display="inline"> <semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mtext> </mtext> <mn>60</mn> </mrow> </semantics> </math> min. The colored band represents the 1σ confidence level. In these calculations, the normalized noise level is obtained following the procedure described in [<a href="#B40-sensors-20-00412" class="html-bibr">40</a>].</p> "> Figure 7
<p>Mean normalized cluster profiles, <math display="inline"> <semantics> <mrow> <mtext> </mtext> <msub> <mover accent="true"> <mo>Δ</mo> <mo>¯</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> </mrow> </semantics> </math> and the corresponding error band, <span class="html-italic">k</span> indicates the cluster index. Time resolution <math display="inline"> <semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mtext> </mtext> <mn>5</mn> </mrow> </semantics> </math> min. The colored band represents the 1σ confidence level. The normalized level used here is the same as the one determined in <a href="#sensors-20-00412-f006" class="html-fig">Figure 6</a>.</p> "> Figure 8
<p>Histograms (from the 24 monitoring stations) and probability distributions, <span class="html-italic">P</span><sub>1</sub><span class="html-italic">(x)</span> and <span class="html-italic">P</span><sub>2</sub><span class="html-italic">(x),</span> as a function of the non-acoustic parameter, <span class="html-italic">x</span> = Log(T<sub>T</sub>), for Clusters 1 and 2. Bin size is 0.2. <span class="html-italic">P</span><sub>1</sub><span class="html-italic">(x)</span> and <span class="html-italic">P</span><sub>2</sub><span class="html-italic">(x)</span> are the same functions shown in <a href="#sensors-20-00412-f005" class="html-fig">Figure 5</a>.</p> "> Figure 9
<p>District 9 of the city of Milan city. Streets color corresponds to the different groups of streets according to range of non-acoustic parameter <span class="html-italic">x</span>: (0.0–3.0) (<span class="html-italic">g</span><sub>1</sub>), (3.0–3.5) (<span class="html-italic">g</span><sub>2</sub>), (3.5–3.9) (<span class="html-italic">g</span><sub>3</sub>), (3.9–4.2) (<span class="html-italic">g</span><sub>4</sub>), (4.2–4.5) (<span class="html-italic">g</span><sub>5</sub>), (4.5–5.20) (<span class="html-italic">g</span><sub>6</sub>). Black triangles and purple stars represent the sites where the monitoring stations are installed and the position of test measurements, respectively.</p> "> Figure 10
<p>Operation of calibration on DYNAMAP sensor.</p> "> Figure 11
<p>Correlation between the Class 1 Sound Level Meter and DYNAMAP Sensors. Different colors refer to sensors in each group of streets.</p> "> Figure 12
<p>Comparison between hourly traffic flow (number of vehicles per hour) and traffic flow model calculations. Here, Via Pirelli-U6 (<span class="html-italic">g</span><sub>2</sub>), Via Baldinucci (<span class="html-italic">g</span><sub>2</sub>), Via Quadrio (<span class="html-italic">g</span><sub>4</sub>), Via Veglia (<span class="html-italic">g</span><sub>5</sub>) are some selected locations corresponding to the position of monitoring stations.</p> "> Figure 13
<p>Comparison between traffic noise measurements at Sites 6, 16, 19, 20 and the corresponding DYNAMAP predictions according to two calculation methods (cfr. Equation (8) or Equation (10)).</p> "> Figure 14
<p>(Left side) Comparison between traffic noise measurements and DYNAMAP predictions at: Site 6 (group <span class="html-italic">g</span> = 3), Site 16 (group <span class="html-italic">g</span> = 4), Site 19 (group <span class="html-italic">g</span> = 6), Site 20 (group <span class="html-italic">g</span> = 1). The colored band represents the 1σ confidence level. (Right side) Comparison between traffic flow measurements and AMAT traffic model at the same sites.</p> "> Figure 15
<p>Relative mean hourly deviation between traffic noise measurements and the corresponding DYNAMAP predictions <math display="inline"> <semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi mathvariant="sans-serif">ε</mi> <mi>F</mi> </msub> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics> </math> vs. the relative deviation between the logarithm of traffic flow measurements and the corresponding model calculations at the reference hour (8:00–9:00) <math display="inline"> <semantics> <mrow> <mover accent="true"> <mrow> <msub> <mi mathvariant="sans-serif">ε</mi> <mi>F</mi> </msub> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics> </math> for each group separately. The results refer to: Day time (07:00–21:00) (Left panel), and Evening-Night time (21:00–07:00) (Right panel) periods. The dashed line is just a guide for the eye.</p> "> Figure 16
<p>(Left part) Comparison of traffic noise measurements and DYNAMAP (non-corrected) prediction for: Site 16 (Upper panel), Site 19 (Middle panel), Site 20 (Lower panel). (Right part) Comparison of traffic noise measurements and DYNAMAP (corrected) prediction for the same sites. In the figure, the total error is displayed.</p> "> Figure 17
<p>Comparison between traffic noise measurement and the “locally corrected” DYNAMAP prediction for Site 6.</p> "> Figure 18
<p>Relative mean hourly deviation between traffic noise measurements and the corresponding DYNAMAP predictions, <span class="html-italic">ε<sub>L</sub></span>, versus the relative deviation between the logarithm of traffic flow measurements and the corresponding model calculations at the reference hour (8:00–9:00), <span class="html-italic">ε</span><sub>F</sub>, for each site of group 3.</p> "> Figure 19
<p>Mean prediction error <<span class="html-italic">ε<sub>Leq</sub></span>> as function of the relative traffic flow error (8:00–9:00) <span class="html-italic">ε<sub>F</sub></span> for Sites 3, 6, and 21. The graphs have been obtained assuming for simplicity that the relation between <span class="html-italic">ε<sub>L</sub></span> and <span class="html-italic">ε<sub>F</sub></span> is linear within group <span class="html-italic">g</span><sub>3</sub> (see <a href="#sensors-20-00412-f018" class="html-fig">Figure 18</a>). The dashed line represents the 3 dB threshold.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Sampling Campaign and Statistical Analysis
2.2. Dynamic Map
2.3. Average Over the Monitoring Stations in Each Group: 1st Method
2.4. Clustering of the 24 Monitoring Stations: 2nd Method
Updating Procedure for the 2nd Method
2.5. Dynamic Noise Level at an Arbitrary Location
2.6. Measurement Campaign
2.7. DYNAMAP Sensors Calibration
2.8. DYNAMAP Sensors Reliability
3. Results
3.1. Traffic Flow Data
3.2. DYNAMAP Predictions
4. Discussion
Prediction Corrections
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Acronyms
AMAT | Agenzia Mobilità Ambiente Territorio |
ANEs | Anomalous Noise Events |
ANED | Anomalous Noise Events Detection |
ARM | Advanced RISC Machines |
CADNA | Computer Aided Noise Abatement |
cfr | confer |
CNOSSOS-EU | Common Noise Assessment Methods in Europe |
DYNAMAP | DYNamic Acoustic MAPping |
END | Environmental Noise Directive |
e.g., | exempli gratia |
GIS | Geographic Information System |
N.C. | Not Calibrated |
RISC | Reduced Instruction Set Computer |
References
- Licitra, G.; Ascari, E.; Fredianelli, L. Prioritizing process in action plans: A review of approaches. Curr. Pollut. Rep. 2017, 3, 151–161. [Google Scholar] [CrossRef]
- Muzet, A. Environmental noise, sleep and health. Sleep Med. Rev. 2007, 11, 135–142. [Google Scholar] [CrossRef]
- de Kluizenaar, Y.; Janssen, S.A.; van Lenthe, F.J.; Miedema, H.M.; Mackenbach, J.P. Long-term road traffic noise exposure is associated with an increase in morning tiredness. J. Acoust. Soc. Am. 2009, 126, 626–633. [Google Scholar] [CrossRef]
- Babisch, W.; Beule, B.; Schust, M.; Kersten, N.; Ising, H. Traffic noise and risk of myocardial infarction. Epidemiology 2005, 16, 33–40. [Google Scholar] [CrossRef]
- Babisch, W. Road traffic noise and cardiovascular risk. Noise Health 2008, 10, 27–33. [Google Scholar] [CrossRef]
- Belojevic, G.; Jakovljevic, B.; Slepcevic, V. Noise and mental performance: Personality attributes and noise sensitivity. Noise Health 2003, 6, 77–89. [Google Scholar] [PubMed]
- Van Kempen, E.; Babisch, W. The quantitative relationship between road traffic noise and hypertension: A meta-analysis. J. Hypertens. 2012, 30, 1075–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lercher, P.; Evans, G.W.; Meis, M. Ambient noise and cognitive processes among primary schoolchildren. Environ. Behav. 2003, 35, 725–735. [Google Scholar] [CrossRef]
- Chetoni, M.; Ascari, E.; Bianco, F.; Fredianelli, L.; Licitra, G.; Cori, L. Global noise score indicator for classroom evaluation of acoustic performances in LIFE GIOCONDA project. Noise Mapp. 2016, 3, 157–171. [Google Scholar] [CrossRef]
- European Union. Directive 2002/49/EC of the European Parliament and the Council of 25 June 2002 relating to the assessment and management of environmental noise. Off. J. Eur. Commun. 2002, L189, 12. [Google Scholar]
- European Commission. Report From The Commission To The European Parliament And The Council On the Implementation of the Environmental Noise Directive in accordance with Article 11 of Directive 2002/49/EC; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Kephalopoulos, S.; Paviotti, M.; Anfosso Lédée, F. Common Noise Assessment Methods in Europe (CNOSSOS-EU); Publications Office of the European Union: Luxembourg, 2002; pp. 1–180. [Google Scholar]
- Morley, D.; de Hoogh, K.; Fecht, D.; Fabbri, F.; Bell, M.; Goodman, P.; Elliott, P.; Hodgson, S.; Hansell, A.; Gulliver, J. International scale implementation of the CNOSSOS-EU road traffic noise prediction model for epidemiological studies. Environ. Pollut. 2015, 206, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.; Faus, L. Statistical analysis of noise levels in urban areas. Appl. Acoust. 1991, 34, 227–247. [Google Scholar] [CrossRef]
- Licitra, G.; Ascari, E.; Brambilla, G. Comparative analysis of methods to estimate urban noise exposure of inhabitants. Acta Acust. United Acust. 2012, 98, 659–666. [Google Scholar] [CrossRef]
- Ausejo, M.; Recuero, M.; Asensio, C.; Pavon, I.; Pagan, R. Study of uncertainty in noise mapping. In Proceedings of the 39th International Congress on 25 Noise Control Engineering, INTERNOISE 2010, Lisbon, Portugal, 13–16 June 2010; pp. 6210–6219. [Google Scholar]
- Licitra, G.; Gallo, P.; Rossi, E.; Brambilla, G. A novel method to determine multiexposure priority indices tested for Pisa action plan. Appl. Acoust. 2011, 72, 505–510. [Google Scholar] [CrossRef]
- Wei, W.; van Renterghem, T.; De Coensel, B.; Botteldooren, D. Dynamic noise mapping: A map-based interpolation between noise measurements with high temporal resolution. Appl. Acoust. 2016, 101, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Brambilla, G.; Confalonieri, C.; Benocci, R. Application of the intermittency ratio metric for the classification of urban sites based on road traffic noise events. Sensors 2019, 19, 5136. [Google Scholar] [CrossRef] [Green Version]
- Ventura, R.; Mallet, V.; Issarny, V. Assimilation of mobile phone measurements for noise mapping of a neighbourhood. J. Acoust. Soc. Am. 2018, 144, 1279. [Google Scholar] [CrossRef]
- Quintero, G.; Aumond, P.; Can, A.; Balastegu, A.; Romeu, J. Statistical requirements for noise mapping based on mobile measurements using bikes. Appl. Acoust. 2019, 156, 271–278. [Google Scholar] [CrossRef]
- Cana, A.; Dekoninckb, L.; Botteldooren, D. Measurement network for urban noise assessment: Comparisonof mobile measurements and spatial interpolation approaches. Appl. Acoust. 2014, 83, 32–39. [Google Scholar] [CrossRef] [Green Version]
- King, E.A.; Rice, H.J. The development of a practical framework for strategic noise mapping. Appl. Acoust. 2009, 70, 1116–1127. [Google Scholar] [CrossRef]
- Aumond, P.; Can, A.; Mallet, V.; De Coensel, B.; Ribeiro, C.; Botteldooren, D.; Lavandier, C. Kriging-based spatial interpolation from measurements for sound level mapping in urban areas. J. Acoust. Soc. Am. 2018, 143, 2847–2857. [Google Scholar] [CrossRef] [Green Version]
- Licitra, G. Noise Mapping in the EU: Models and Procedures; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Kang, J.; Aletta, F.; Gjestland, T.T.; Brown, L.A.; Botteldooren, D.; Schulte-Fortkamp, B.; Lercher, P.; van Kamp, I.; Genuit, K.; Fiebig, A.; et al. Ten questions on the soundscapes of the built environment. Build Environ. 2016, 108, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Aumond, P.; Jacquesson, L.; Can, A. Probabilistic modelling framework for multisource sound mapping. Appl. Acoust. 2018, 139, 34–43. [Google Scholar] [CrossRef] [Green Version]
- DYNAMAP. 2014. Available online: http://www.life-dynamap.eu/ (accessed on 13 December 2019).
- Benocci, R.; Bellucci, P.; Peruzzi, L.; Bisceglie, A.; Angelini, F.; Confalonieri, C.; Zambon, G. Dynamic noise mapping in the suburban area of Rome (Italy). Environments 2019, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Romeu, J.; Jimenez, S.; Genescà, M.; Pamies, T.; Capdevila, R. Spatial sampling for night levels estimation in urban environments. J. Acoust. Soc. Am. 2006, 120, 791–800. [Google Scholar] [CrossRef]
- Socoró, J.C.; Alías, F.; Alsina-Pagés, R.M. An anomalous noise events detector for dynamic road traffic noise mapping in real-life urban and suburban environments. Sensors 2017, 17, 2323. [Google Scholar] [CrossRef]
- Alsina-Pagès, R.M.; Alías, F.; Socoró, J.C.; Orga, F.; Benocci, R.; Zambon, G. Anomalous events removal for automated traffic noise maps generation. Appl. Acoust. 2019, 151, 183–192. [Google Scholar] [CrossRef]
- Orga, F.C.; Socoró, J.; Alías, F.; Alsina-Pagés, R.M.; Zambon, G.; Benocci, R.; Bisceglie, A. Anomalous noise events considerations for the computation of road traffic noise levels: The DYNAMAP’s Milan case study. In Proceedings of the 24th International Congress on Sound and Vibration, London, UK, 23–27 July 2017; pp. 23–27. [Google Scholar]
- Ausejo, M.; Simón, L.; García, R.; Esteban, M.; Arias, R.; Puga, J.; Rivera, J. Dynamic Noise Map based on permanent monitoring network and street categorization. In Proceedings of the INTERNOISE 2019, Madrid, Spain, 16–19 June 2019. [Google Scholar]
- Zambon, G.; Angelini, F.; Salvi, D.; Zanaboni, W.; Smiraglia, M. Traffic noise monitoring in the City of Milan: Construction of a representative statistical collection of acoustic trends. In Proceedings of the 22nd International Congress on Sound and Vibration, ICSV 2015, Florence, Italy; 2015. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: https://www.r-project.org/ (accessed on 7 January 2020).
- Brock, G.; Pihur, V.; Datta, S. clValid: An R Package for Cluster Validation. J. Stat. Softw. 2008, 25, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Package ′clValid′ version 0.6-4. 2013. Available online: https://cran.r-project.org/web/packages/clValid/clValid.pdf (accessed on 7 January 2020).
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Zambon, G.; Benocci, R.; Brambilla, G. Statistical Road Classification Applied to Stratified Spatial Sampling of Road Traffic Noise in Urban Areas. Int. J. Environ. Res. 2016, 10, 411–420. [Google Scholar]
- Smiraglia, M.; Benocci, R.; Zambon, G.; Roman, H.E. Predicting hourly traffic noise from traffic ow rate model: Underlying concepts for the DYNAMAP project. Noise Mapp. 2016, 3, 130–139. [Google Scholar]
- Barrigón Morillas, J.M.; Gomez, V.; Mendez, J.; Vilchez, R.; Trujillo, J. A categorization method applied to the study of urban road traffic noise. J. Acoust. Soc. Am. 2005, 117, 2844–2852. [Google Scholar] [CrossRef] [PubMed]
- Zambon, G.; Roman, H.E.; Smiraglia, M.; Benocci, R. Monitoring and Prediction of Traffic Noise in Large Urban Areas. Appl. Sci. 2018, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Zambon, G.; Benocci, R.; Bisceglie, A.; Roman, H.E. Milan dynamic noise mapping from few monitoring stations: Statistical analysis on road network. In Proceedings of the INTERNOISE 2016, Hamburg, Germany, 21–24 August 2016. [Google Scholar]
- Benocci, R.; Molteni, A.; Cambiaghi, M.; Angelini, F.; Roman, H.E.; Zambon, G. Reliability of DYNAMAP traffic noise prediction. Appl. Acoust. 2019, 156, 142–150. [Google Scholar] [CrossRef]
- AMAT. Available online: https://www.amat-mi.it/it/ (accessed on 13 December 2019).
- Good Practice Guide for Strategic Noise Mapping and the Production of Associated Data on Noise Exposure. 13 January 2006. Available online: http://sicaweb.cedex.es/docs/documentacion/Good-Practice-Guidefor-Strategic-Noise-Mapping.pdf (accessed on 13 December 2019).
Sensor Code | Group gi | x = Log(TT) | Cluster |
---|---|---|---|
135 | 1 | 2.89 | 2 |
137 | 1 | 1.90 | 2 |
139 | 1 | 1.13 | 2 |
144 | 1 | 2.94 | 2 |
108 | 2 | 3.06 | 1 |
124 | 2 | 3.50 | 2 |
125 | 2 | 2.69 | 2 |
145 | 2 | 3.42 | 2 |
115 | 3 | 3.58 | 2 |
116 | 3 | 3.60 | 2 |
120 | 3 | 3.74 | 1 |
133 | 3 | 3.75 | 2 |
121 | 4 | 4.06 | 1 |
127 | 4 | 3.90 | 2 |
129 | 4 | 3.94 | 1 |
138 | 4 | 4.19 | 2 |
106 | 5 | 3.90 | 1 |
123 | 5 | 4.30 | 1 |
136 | 5 | 4.21 | 1 |
151 | 5 | 4.40 | 1 |
109 | 6 | 4.75 | 1 |
114 | 6 | 4.58 | 1 |
117 | 6 | 4.85 | 1 |
140 | 6 | 4.70 | 1 |
Range of x | 0.0–3.0 | 3.0–3.5 | 3.5–3.9 | 3.9–4.2 | 4.2–4.5 | 4.5–5.2 |
---|---|---|---|---|---|---|
1 | 0.99 | 0.81 | 0.63 | 0.50 | 0.41 | 0.16 |
2 | 0.01 | 0.19 | 0.37 | 0.50 | 0.59 | 0.84 |
Station (Group gi) | Address | Station (Group gi) | Address |
106 (5) | Via Modigliani | 127 (5) | Via Quadrio |
108 (2) | Via Pirelli | 129 (4) | Via Crespi |
109 (6) | Viale Stelvio | 133 (3) | Via Maffucci |
114 (6) | Via Melchiorre Gioia | 135 (1) | Via Lambruschini |
115 (3) | Via Fara | 136 (5) | Via Comasina |
116 (3) | Via Moncallieri | 137 (1) | Via Maestri del Lavoro |
117 (6) | Viale Fermi | 138 (4) | Via Novaro |
120 (3) | Via Baldinucci | 139 (1) | Via Bruni |
121 (4) | Via Pirelli | 140 (6) | Viale Jenner |
123 (5) | Via Galvani | 144 (1) | Via D’intignano |
124 (2) | Via Grivola | 145 (2) | Via F.lli Grimm |
125 (2) | Via Abba | 151 (5) | Via Veglia |
Site (Group gi) | Address | Site (Group gi) | Address |
1 (5) | Via Suzzani | 12 (2) | Via Pastro |
2 (2) | Via Bernina | 13 (4) | Via Bauer |
3 (3) | Via Ciaia | 14 (2) | Via Polvani |
4 (3) | Via Cosenz | 15 (4) | Via Gregorovius |
5 (5) | Via Majorana | 16 (4) | Via Catone |
6 (3) | Via Maffucci | 17 (6) | V.le Sarca |
7 (2) | Via Ippocrate | 18 (1) | Via Boschi Di Stefano |
8 (3) | Via Chiese | 19 (6) | Via Murat |
9 (5) | Via Moro | 20 (1) | Via Sarzana |
10 (1) | Via Marchionni | 21 (3) | Via Cosenz |
11 (1) | Via Gabbro |
Sensor | Site | Deviation [dB] |
---|---|---|
145 | Via F.lli Grimm | −0.1 |
136 | Via Comasina | −0.5 |
138 | Via Novaro | +0.2 |
125 | Via Abba | −0.6 |
123 | Via Galvani | −0.2 |
115 | Via Fara | −0.1 |
114 | Via Melchiorre Gioia | −0.8 |
127 | Via Quadrio | N.C. |
140 | Viale Jenner | −0.9 |
133 | Via Maffucci | −0.3 |
120 | Via Baldinucci | −0.5 |
129 | Via Crespi | −0.7 |
151 | Via Veglia | −0.4 |
116 | Via Moncalieri | −0.2 |
124 | Via Grivola | −0.6 |
137 | Via Maestri del Lavoro | −0.5 |
144 | Via d’Intignano | −0.5 |
121 | Via Pirelli | 0.0 |
108 | Via Pirelli | −0.2 |
135 | Via Lambruschini | −0.1 |
109 | Viale Stelvio | N.C. |
106 | Via Litta Modignani | +0.2 |
117 | Viale Fermi | 0.0 |
139 | Via Bruni | N.C. |
Site (Street Name) | Group gi | Values of x = Log(TT) | ||
---|---|---|---|---|
Model | Meas. | Model | Meas. | |
Via Lambruschini | 1 | 2 | 2.95 | 3.50 |
Via Maestri del Lavoro | 1 | 2 | 2.90 | 3.41 |
Via Grivola | 2 | 1 | 3.29 | 2.92 |
Via Pirelli | 2 | 4 | 3.42 | 4.04 |
Via Fara | 3 | 3 | 3.75 | 3.66 |
Via Baldinucci | 3 | 3 | 3.54 | 3.89 |
Via Quadrio | 4 | 3 | 3.90 | 3.68 |
Via Crespi | 4 | 4 | 4.15 | 4.08 |
Via Comasina | 5 | 5 | 4.33 | 4.25 |
Via Veglia | 5 | 4 | 4.33 | 4.03 |
Site | Group gi | Leqref g1,s | Leqref g2,s | Leqref g3,s | Leqref g4,s | Leqref g5,s | Leqref g6,s |
---|---|---|---|---|---|---|---|
1 | 5 | 21.1 | 47.8 | 56.8 | 28.3 | 64.9 | 37.7 |
2 | 2 | 12.0 | 64.6 | 15.0 | 15.0 | 15.0 | 59.6 |
3 | 3 | 0.0 | 56.1 | 62.7 | 0.0 | 0.0 | 0.0 |
4 | 3 | 17.5 | 25.3 | 59.4 | 48.8 | 51.9 | 0.0 |
5 | 5 | 29.7 | 25.9 | 32.4 | 29.4 | 67.8 | 33.6 |
6 | 3 | 41.3 | 45.9 | 66.4 | 34.5 | 27.0 | 28.0 |
7 | 2 | 24.1 | 58.1 | 51.4 | 17.8 | 42.2 | 45.6 |
8 | 3 | 21.1 | 21.9 | 53.9 | 49.4 | 26.9 | 29.9 |
9 | 5 | 8.1 | 32.5 | 35.2 | 43.6 | 62.3 | 0.0 |
10 | 1 | 38.2 | 43.0 | 27.2 | 25.2 | 32.7 | 28.4 |
11 | 1 | 55.8 | 20.6 | 32.0 | 37.7 | 42.9 | 0.0 |
12 | 2 | 41.1 | 62.4 | 24.5 | 20.8 | 48.8 | 40.2 |
13 | 4 | 42.1 | 56.0 | 38.3 | 69.2 | 41.9 | 38.8 |
14 | 2 | 44.3 | 61.1 | 51.9 | 45.6 | 36.0 | 34.4 |
15 | 4 | 12.5 | 29.7 | 29.8 | 70.2 | 50.5 | 33.2 |
16 | 4 | 33.2 | 30.6 | 47.9 | 68.6 | 54.3 | 37.1 |
17 | 6 | 25.4 | 24.0 | 34.4 | 51.3 | 50.6 | 69.7 |
18 | 1 | 49.0 | 45.0 | 59.1 | 56.9 | 57.0 | 53.3 |
19 | 6 | 24.2 | 32.6 | 39.7 | 38.3 | 37.3 | 71.7 |
20 | 1 | 51.0 | 38.7 | 52.1 | 30.6 | 35.6 | 36.1 |
21 | 3 | 17.0 | 15.8 | 56.8 | 48.2 | 51.7 | 0.0 |
Site | Group gi | Mean Deviation–1st Method (24 h) [dB] | Mean Deviation–2nd Method (24 h) [dB] |
---|---|---|---|
10 | 1 | 6.4 ± 2.5 | 11.0 ± 2.6 |
11 | 1 | 3.2 ± 2.3 | 3.8 ± 2.1 |
18 | 1 | 6.5 ± 1.5 | 7.5 ± 1.4 |
20 | 1 | 4.7 ± 2.3 | 5.1 ± 2.3 |
7 | 2 | 1.7 ± 1.5 | 3.6 ± 1.4 |
12 | 2 | 7.5 ± 2.333 | 2.7 ± 2.0 |
14 | 2 | 3.4 ± 1.6 | 1.4 ± 0.9 |
3 | 3 | 2.8 ± 1.7 | 5.2 ± 2.0 |
4 | 3 | 3.0 ± 2.7 | 2.0 ± 1.9 |
6 | 3 | 3.2 ± 1.9 | 4.5 ± 2.0 |
8 | 3 | 2.0 ± 1.3 | 1.2 ± 1.1 |
21 | 3 | 1.7 ± 1.1 | 0.9 ± 0.7 |
13 | 4 | 4.0 ± 1.3 | 5.5 ± 1.4 |
15 | 4 | 3.0 ± 1.2 | 4.7 ± 1.0 |
16 | 4 | 8.4 ± 1.5 | 10.0 ± 1.3 |
1 | 5 | 4.9 ± 1.3 | 6.5 ± 1.5 |
5 | 5 | 2.0 ± 1.3 | 1.9 ± 1.4 |
9 | 5 | 1.3 ± 0.9 | 2.1 ± 1.2 |
17 | 6 | 1.4 ± 0.8 | 2.8 ± 1.1 |
19 | 6 | 4.0 ± 1.2 | 4.7 ± 1.6 |
Site | Group gi | <εLeq>N | <εLeq>C | <εLeq>M | Group gi | <εLeq(g)>N | <εLeq(g)>C | <εLeq(g)>M |
---|---|---|---|---|---|---|---|---|
10 | 1 | 5.0 | 5.2 | 5.2 | 1 | 5.3 | 5.1 | 5.2 |
11 | 1 | 4.5 | 4.0 | 4.1 | 2 | 4.2 | 3.2 | 2.8 |
18 | 1 | 6.4 | 6.1 | 6.1 | 3 | 2.5 | 2.5 | 2.8 |
20 | 1 | 5.3 | 5.5 | 5.6 | 4 | 5.3 | 2.4 | 2.1 |
7 | 2 | 1.9 | 4.0 | 2.9 | 5 | 2.6 | 2.4 | 2.2 |
12 | 2 | 7.8 | 2.5 | 3.8 | 6 | 3.4 | 1.3 | 1.3 |
14 | 2 | 2.8 | 3.1 | 1.6 | ||||
3 | 3 | 1.8 | 2.3 | 2.5 | ||||
6 | 3 | 4.2 | 4.5 | 5.9 | ||||
4 | 3 | 2.1 | 1.5 | 2.0 | ||||
21 | 3 | 1.8 | 1.5 | 0.7 | ||||
13 | 4 | 4.1 | 2.0 | 0.8 | ||||
15 | 4 | 3.3 | 2.6 | 1.3 | ||||
16 | 4 | 8.4 | 2.6 | 4.2 | ||||
1 | 5 | 4.5 | 3.0 | 4.4 | ||||
5 | 5 | 1.9 | 2.4 | 1.2 | ||||
9 | 5 | 1.4 | 1.9 | 1.0 | ||||
19 | 6 | 3.4 | 1.3 | 1.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benocci, R.; Confalonieri, C.; Roman, H.E.; Angelini, F.; Zambon, G. Accuracy of the Dynamic Acoustic Map in a Large City Generated by Fixed Monitoring Units. Sensors 2020, 20, 412. https://doi.org/10.3390/s20020412
Benocci R, Confalonieri C, Roman HE, Angelini F, Zambon G. Accuracy of the Dynamic Acoustic Map in a Large City Generated by Fixed Monitoring Units. Sensors. 2020; 20(2):412. https://doi.org/10.3390/s20020412
Chicago/Turabian StyleBenocci, Roberto, Chiara Confalonieri, Hector Eduardo Roman, Fabio Angelini, and Giovanni Zambon. 2020. "Accuracy of the Dynamic Acoustic Map in a Large City Generated by Fixed Monitoring Units" Sensors 20, no. 2: 412. https://doi.org/10.3390/s20020412
APA StyleBenocci, R., Confalonieri, C., Roman, H. E., Angelini, F., & Zambon, G. (2020). Accuracy of the Dynamic Acoustic Map in a Large City Generated by Fixed Monitoring Units. Sensors, 20(2), 412. https://doi.org/10.3390/s20020412