Advanced Estimation Techniques for Vehicle System Dynamic State: A Survey
<p>Illustration of fundamental vehicle states and parameters.</p> "> Figure 2
<p>Two-wheel model of vehicle longitudinal dynamics.</p> "> Figure 3
<p>Double-track model of vehicle lateral dynamics.</p> "> Figure 4
<p>Vehicle roll dynamics model with road bank angle.</p> "> Figure 5
<p>Categorization of vehicle dynamic state estimation methodologies.</p> "> Figure 6
<p>The schematic of artificial neural network (ANN) estimation process.</p> ">
Abstract
:1. Introduction
2. Model-Based Vehicle State Estimation
2.1. Vehicle Dynamics Estimation Model
2.1.1. Vehicle Dynamics Model
2.1.2. Tire Dynamics Model
2.2. Filter-Based Vehicle State Estimation
2.2.1. Kalman Filter(KF)-Based Estimation
2.2.2. Other Filter-Based Estimations
2.3. Observer-Based Vehicle State Estimation
2.3.1. Recursive Least Squares Method
Methodologies | Models | Estimations | Sensor Configurations | References |
---|---|---|---|---|
RLS | Longitudinal model + Burchhardt tire model | μ | ωij, ax | [82] |
RLS | Longitudinal model + Dugoff tire model | μ, Fx | Vx, ax, GPS | [83] |
RLS | Single-track +Linear tire model | β, Cα | rz, δf, ax, ay,ωij, Tij, Fyij, MSU | [84] |
RLS + NLO | Single-track + Linear tire model | β, Cα | rz | [85] |
RLS | Longitudinal model + Linear tire model | μ | Vx, Tm, ωij | [86] |
LRLS + KF | Double-track + Brush tire model | β, Fx, Fy, Fz, μ, Cα, Cs | rz, ax, ay, ωij | [87] |
RLS | Double-track + Suspension model | μ | ax, ay, az | [88] |
LO | Single-track + Linear tire model | β | rz, ay | [89] |
SOLEO | Longitudinal model + Burchhardt tire model | μ | ωij, Tb | [90] |
HO/RO | Single-track + Linear tire model | β | rz | [91,92] |
COO | Double-track + Suspension model | Cα, Fz | ay, rz, p | [93] |
TFO | Longitudinal model + Pacejka tire model | μ, Fx | ωij, Vx | [94] |
FDO, RAO | Single-track + Brush tire model | μ | Fy | [95,96] |
SMO + RLS | Longitudinal model + Brush tire model | μ, Fx | ax,ωij, Tm | [97] |
SMO | Double-track + Roll + Dugoff tire model | β,φ , Fx, Fy, Fz | Vx, Vy, rz, ax, ay, p | [98] |
SMO | Rotational model of wheel + LuGre tire model | μ | ωij | [99,100,101,102] |
SMO | Rotational model of wheel + LuGre tire model | μ, Vx | ωij, Tm | [103] |
SOSMO | Rotational model of wheel + Pacejka tire model | Cs | ωij | [104] |
SOSMO | Longitudinal model + LuGre model | μ | ωij | [105] |
VSSMO | Single-track + Linear tire model | Fx, Fy | rz, ax, ay | [106] |
ROSMO | Double-track + UniTire tire model | β, Fy, Fz | rz,ωij | [107] |
HOSMO | Rotational model of wheel + LuGre tire model | μ | ωij, Tm | [108] |
HOSMO | Double-track + Pacejka tire model | β, Fx | rz,ax, ay | [109] |
HOSMO | Single-track + Roll + Linear tire model | Fz | az | [110] |
NLO | Double-track + Dugoff tire model | Vx, Vy | rz, δf, ax,ay,ωij | [111] |
NLO | Double-track + Pacejka tire model | Vx, Vy | rz, δf, ax, ay,ωij | [112] |
RNLO | Double-track + UniTire tire model | Vx, Vy | rz,ωij, δf | [113] |
ANLO | Double-track + Parametrized friction model | β | rz, δf, ax, ay, ωij | [114] |
HNLO | Single-track + Pacejka tire model | β | rz, δf, Vx, ay | [115] |
NLO | Single-track + Other nolinear tire model | β | rz, δf, Vx,ay | [116,117,118,119] |
UIO | Roll model | φ,θ | Vx, Vy, rz, zij,p | [120] |
NLO | Single-track + Linear tire model | β | Vg, ay | [121] |
SNLO | Double-track + Dugoff tire model | Vx, Vy, μ | rz, ax,ay,ωij | [122,123] |
NLO | Single-track + Other nolinear tire model | Vx, Vy | ωij, Tm,ax,ay | [124] |
NLO | Rotational model of wheel + LuGre tire model | μ, Fx | ωij, Tm | [125] |
NLO | Single-track + Brush tire model | μ, Cα | ωij, Tm | [126] |
NLO | Brush tire model | μ | ay, WPS | [127,128] |
2.3.2. Linear Observer
2.3.3. Sliding Mode Observer
2.3.4. Nonlinear Observer
3. Data-Driven-Based Vehicle Estimation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goodarzi, A.; Esmailzadeh, E. Design of a VDC system for all-wheel independent drive vehicles. IEEE/ASME Trans. Mechatron. 2007, 12, 632–639. [Google Scholar] [CrossRef]
- Jin, X.; Yu, Z.; Yin, G.; Wang, J. Improving vehicle handling stability based on combined AFS and DYC system via robust Takagi-Sugeno fuzzy control. IEEE Trans. Intell. Transp. Syst. 2017, 19, 2696–2707. [Google Scholar] [CrossRef]
- Poussot-Vassal, C.; Sename, O.; Dugard, L.; Savaresi, S.M. Vehicle dynamic stability improvements through gain-scheduled steering and braking control. Veh. Syst. Dyn. 2011, 49, 1597–1621. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, X.; Wang, J. Robust gain-scheduling energy-to-peak control of vehicle lateral dynamics stabilisation. Veh. Syst. Dyn. 2014, 52, 309–340. [Google Scholar] [CrossRef]
- Perić, S.L.; Antić, D.S.; Milovanović, M.B.; Mitić, D.B.; Milojković, M.T.; Nikolić, S.S. Quasi-sliding mode control with orthogonal endocrine neural network-based estimator applied in anti-lock braking system. IEEE/ASME Trans. Mechatron. 2015, 21, 754–764. [Google Scholar]
- Wei, Z.; Guo, X. An ABS control strategy for commercial vehicle. IEEE/ASME Trans. Mechatron. 2014, 20, 384–392. [Google Scholar] [CrossRef]
- Tan, Q.; Shi, L.; Katupitiya, J. A novel control approach for path tracking of a force-controlled two-wheel-steer four-wheel-drive vehicle. Proc. Inst. Mech. Eng. D J. Autom. Eng. 2019, 233, 1480–1494. [Google Scholar] [CrossRef]
- Shu, P.; Sagara, S.; Wang, Q.; Oya, M. Improved adaptive lane-keeping control for four-wheel steering vehicles without lateral velocity measurements. Int. J. Robust Nonlinear Control 2017, 27, 4154–4168. [Google Scholar] [CrossRef]
- Jin, X.; Yin, G.; Bian, C.; Chen, J.; Li, P.; Chen, N. Gain-scheduled vehicle handling stability control via integration of active front steering and suspension systems. ASME Trans. J. Dyn. Syst. Meas. Control 2016, 138, 014501. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Gao, H.; Shi, P. Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Trans. Fuzzy Syst. 2011, 20, 342–357. [Google Scholar] [CrossRef]
- Weißmann, A.; Görges, D.; Lin, X. Energy-optimal adaptive cruise control combining model predictive control and dynamic programming. Control Eng. Pr. 2018, 72, 125–137. [Google Scholar] [CrossRef]
- Lian, Y.; Zhao, Y.; Hu, L.; Tian, Y. Longitudinal collision avoidance control of electric vehicles based on a new safety distance model and constrained-regenerative-braking-strength-continuity braking force distribution strategy. IEEE Trans. Veh. Technol. 2015, 65, 4079–4094. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.E.; Wang, J.; Cao, D.; Li, K. Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies. IEEE Trans. Intell. Transp. Syst. 2015, 17, 14–26. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Z.; Taghavifar, H.; Na, J.; Qin, Y.; Guo, J.; Wei, C. MME-EKF-Based Path-Tracking Control of Autonomous Vehicles Considering Input Saturation. IEEE Trans. Veh. Technol. 2019, 68, 5246–5258. [Google Scholar] [CrossRef]
- Guanetti, J.; Kim, Y.; Borrelli, F. Control of connected and automated vehicles: State of the art and future challenges. Annu. Rev. Control. 2018, 45, 18–40. [Google Scholar] [CrossRef] [Green Version]
- Hac, A.; Simpson, M.D. Estimation of vehicle side slip angle and yaw rate. SAE Techn. Pap. 2000, 1, 0696. [Google Scholar]
- Piyabongkarn, D.; Rajamani, R.; Grogg, J.A.; Lew, J.Y. Development and experimental evaluation of a slip angle estimator for vehicle stability control. IEEE Trans. Control Syst. Technol. 2009, 17, 78–88. [Google Scholar] [CrossRef]
- Lee, H. Reliability indexed sensor fusion and its application to vehicle velocity estimation. ASME Trans. J. Dyn. Syst. Meas. Control 2006, 128, 236–243. [Google Scholar] [CrossRef]
- Cheli, F.; Sabbioni, E.; Pesce, M.; Melzi, S. A methodology for vehicle sideslip angle identification: Comparison with experimental data. Veh. Syst. Dyn. 2007, 45, 549–563. [Google Scholar] [CrossRef]
- Chen, B.C.; Hsieh, F.C. Sideslip angle estimation using extended Kalman filter. Veh. Syst. Dyn. 2008, 46, 353–364. [Google Scholar] [CrossRef]
- Venhovens, P.J.T.; Naab, K. Vehicle dynamics estimation using Kalman filters. Veh. Syst. Dyn. 1999, 32, 171–184. [Google Scholar] [CrossRef]
- Nam, K.; Oh, S.; Fujimoto, H.; Hori, Y. Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches. IEEE Trans. Ind. Electron. 2012, 60, 988–1000. [Google Scholar] [CrossRef]
- Anderson, R.; Bevly, D.M. Using GPS with a model-based estimator to estimate critical vehicle states. Veh. Syst. Dyn. 2010, 48, 1413–1438. [Google Scholar] [CrossRef]
- Nguyen, B.M.; Wang, Y.; Fujimoto, H.; Hori, Y. Lateral stability control of electric vehicle based on disturbance accommodating kalman filter using the integration of single antenna GPS receiver and yaw rate sensor. J. Electron. Eng. Technol. 2013, 8, 899–910. [Google Scholar] [CrossRef]
- Ryu, J.; Gerdes, J.C. Integrating inertial sensors with global positioning system (GPS) for vehicle dynamics control. ASME Trans. J. Dyn. Syst. Meas. Control. 2004, 126, 243–254. [Google Scholar] [CrossRef]
- Lee, S.; Nakano, K.; Ohori, M. On-board identification of tyre cornering stiffness using dual Kalman filter and GPS. Veh. Syst. Dyn. 2015, 53, 437–448. [Google Scholar] [CrossRef]
- Cho, W.; Yoon, J.; Yim, S.; Koo, B.; Yi, K. Estimation of tire forces for application to vehicle stability control. IEEE Trans. Veh. Technol. 2009, 59, 638–649. [Google Scholar]
- Gadola, M.; Chindamo, D.; Romano, M.; Padula, F. Development and validation of a Kalman filter-based model for vehicle slip angle estimation. Veh. Syst. Dyn. 2014, 52, 68–84. [Google Scholar] [CrossRef]
- Nam, K.; Fujimoto, H.; Hori, Y. Lateral stability control of in-wheel-motor-driven electric vehicles based on sideslip angle estimation using lateral tire force sensors. IEEE Trans. Veh. Technol. 2012, 61, 1972–1985. [Google Scholar]
- Ma, B.; Liu, Y.; Gao, Y.; Yang, Y.; Ji, X.; Bo, Y. Estimation of vehicle sideslip angle based on steering torque. Int. J. Adv. Manuf. Technol. 2018, 94, 3229–3237. [Google Scholar] [CrossRef]
- Han, S.; Huh, K. Monitoring system design for lateral vehicle motion. IEEE Trans. Veh. Technol. 2011, 60, 1394–1403. [Google Scholar] [CrossRef]
- Li, X.; Song, X.; Chan, C. Reliable vehicle sideslip angle fusion estimation using low-cost sensors. Measurement 2014, 51, 241–258. [Google Scholar] [CrossRef]
- Kim, J. Effect of vehicle model on the estimation of lateral vehicle dynamics. Int. J. Autom. Technol. 2010, 11, 331–337. [Google Scholar] [CrossRef]
- Kim, J. Identification of lateral tyre force dynamics using an extended Kalman filter from experimental road test data. Control Eng. Pr. 2009, 17, 357–367. [Google Scholar] [CrossRef]
- Dakhlallah, J.; Glaser, S.; Mammar, S.; Sebsadji, Y. Tire-road forces estimation using extended Kalman filter and sideslip angle evaluation. In Proceedings of the American control conference, Washington, DC, USA, 11–13 June 2008; pp. 4597–4602. [Google Scholar]
- Li, L.; Song, J.; Li, H.; Zhang, X. A variable structure adaptive extended Kalman filter for vehicle slip angle estimation. Int. J. Veh. Des. 2011, 56, 161–185. [Google Scholar] [CrossRef]
- Doumiati, M.; Victorino, A.; Lechner, D.; Baffet, G.; Charara, A. Observers for vehicle tyre/road forces estimation: Experimental validation. Veh. Syst. Dyn. 2010, 48, 1345–1378. [Google Scholar] [CrossRef]
- Guo, H.; Chen, H.; Xu, F.; Wang, F.; Lu, G. Implementation of EKF for vehicle velocities estimation on FPGA. IEEE Trans. Ind. Electron. 2012, 60, 3823–3835. [Google Scholar] [CrossRef]
- Liu, W.; He, H.; Sun, F. Vehicle state estimation based on Minimum Model Error criterion combining with Extended Kalman Filter. J. Frankl. Inst. 2016, 353, 834–856. [Google Scholar] [CrossRef]
- Baffet, G.; Charara, A.; Dherbomez, G. An observer of tire-road forces and friction for active security vehicle systems. IEEE/ASME Trans. Mechatron. 2007, 12, 651–661. [Google Scholar] [CrossRef]
- Hodgson, G.; Best, M.C. A parameter identifying a Kalman filter observer for vehicle handling dynamics. Proc. Inst. Mech. Eng. D J. Autom. Eng. 2006, 220, 1063–1072. [Google Scholar] [CrossRef]
- Li, B.; Du, H.; Li, W. Comparative study of vehicle tyre–road friction coefficient estimation with a novel cost-effective method. Veh. Syst. Dyn. 2014, 52, 1066–1098. [Google Scholar] [CrossRef]
- Enisz, K.; Szalay, I.; Kohlrusz, G.; Fodor, D. Tyre-road friction coefficient estimation based on the discrete-time extended Kalman filter. Proc. Inst. Mech. Eng. D J. Autom. Eng. 2015, 229, 1158–1168. [Google Scholar] [CrossRef]
- Qi, Z.; Taheri, S.; Wang, B.; Yu, H. Estimation of the tyre–road maximum friction coefficient and slip slope based on a novel tyre model. Veh. Syst. Dyn. 2015, 53, 506–525. [Google Scholar] [CrossRef]
- Huang, J.; Tan, H.S. A low-order DGPS-based vehicle positioning system under urban environment. IEEE/ASME Trans. Mechatron. 2006, 11, 567–575. [Google Scholar] [CrossRef]
- Li, X.; Chan, C.Y.; Wang, Y. A reliable fusion methodology for simultaneous estimation of vehicle sideslip and yaw angles. IEEE Trans. Veh. Technol. 2015, 65, 4440–4458. [Google Scholar] [CrossRef]
- Yoon, J.H.; Li, S.E.; Ahn, C. Estimation of vehicle sideslip angle and tire-road friction coefficient based on magnetometer with GPS. Int. J. Autom. Technol. 2016, 17, 427–435. [Google Scholar] [CrossRef]
- Bechtoff, J.; Isermann, R. Cornering stiffness and sideslip angle estimation for integrated vehicle dynamics control. Ifac-Pap. 2016, 49, 297–304. [Google Scholar] [CrossRef]
- Wenzel, T.A.; Burnham, K.J.; Blundell, M.V.; Williams, R.A. Dual extended Kalman filter for vehicle state and parameter estimation. Veh. Syst. Dyn. 2006, 44, 153–171. [Google Scholar] [CrossRef]
- Cheng, C.; Cebon, D. Parameter and state estimation for articulated heavy vehicles. Veh. Syst. Dyn. 2011, 49, 399–418. [Google Scholar] [CrossRef]
- Zong, C.; Hu, D.; Zheng, H. Dual extended Kalman filter for combined estimation of vehicle state and road friction. Chin. J. Mech. Eng. 2013, 26, 313–324. [Google Scholar] [CrossRef]
- Tsunashima, H.; Murakami, M.; Miyataa, J. Vehicle and road state estimation using interacting multiple model approach. Veh. Syst. Dyn. 2006, 44, 750–758. [Google Scholar] [CrossRef]
- Jin, X.; Yin, G. Estimation of lateral tire-road forces and sideslip angle for electric vehicles using interacting multiple model filter approach. J. Frankl. Inst. 2015, 352, 686–707. [Google Scholar] [CrossRef]
- Jung, H.; Choi, S.B. Real-time individual tire force estimation for an all-wheel drive vehicle. IEEE Trans. Veh. Technol. 2017, 67, 2934–2944. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, H.; Yang, J.; Wu, X.; Yu, Z. Estimation of the vehicle speed in the driving mode for a hybrid electric car based on an unscented Kalman filter. Proc. Inst. Mech. Eng. D J. Autom. Eng. 2015, 229, 437–456. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, F.; Wang, T.; Ren, H. A robust control method for lateral stability control of in-wheel motored electric vehicle based on sideslip angle observer. Shock. Vibrat. 2018. [Google Scholar] [CrossRef]
- Chen, J.; Song, J.; Li, L.; Jia, G.; Ran, X.; Yang, C. UKF-based adaptive variable structure observer for vehicle sideslip with dynamic correction. Iet Control Theory Appl. 2016, 10, 1641–1652. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, Y.; Gu, L.; Dong, M. Vehicle system state estimation based on adaptive unscented Kalman filtering combing with road classification. IEEE Access 2017, 5, 27786–27799. [Google Scholar] [CrossRef]
- Strano, S.; Terzo, M. Constrained nonlinear filter for vehicle sideslip angle estimation with no a priori knowledge of tyre characteristics. Control Eng. Pr. 2018, 71, 10–17. [Google Scholar] [CrossRef]
- Doumiati, M.; Victorino, A.C.; Charara, A.; Lechner, D. Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle. IEEE/ASME Trans. Mechatron. 2010, 16, 601–614. [Google Scholar] [CrossRef]
- Ren, H.; Chen, S.; Shim, T.; Wu, Z. Effective assessment of tyre-road friction coefficient using a hybrid estimator. Veh. Syst. Dyn. 2014, 52, 1047–1065. [Google Scholar] [CrossRef]
- Chen, L.; Bian, M.; Luo, Y.; Li, K. Real-time identification of the tyre-road friction coefficient using an unscented Kalman filter and mean-square-error-weighted fusion. Proc. Inst. Mech. Eng. D J. Autom. Eng. 2016, 230, 788–802. [Google Scholar] [CrossRef]
- Antonov, S.; Fehn, A.; Kugi, A. Unscented Kalman filter for vehicle state estimation. Veh. Syst. Dyn. 2011, 49, 1497–1520. [Google Scholar] [CrossRef]
- Cheng, Q.; Correa-Victorino, A.; Charara, A. A new nonlinear observer of sideslip angle with unknown vehicle parameter using the dual unscented Kalman filter. In Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AL, USA, 16–19 September 2012. [Google Scholar]
- Davoodabadi, I.; Ramezani, A.A.; Mahmoodi, M.-K.; Ahmadizadeh, P. Identification of tire forces using Dual Unscented Kalman Filter algorithm. Nonlinear Dyn. 2014, 78, 1907–1919. [Google Scholar] [CrossRef]
- Xin, X.; Chen, J.; Zou, J. Vehicle state estimation using cubature kalman filter. In Proceedings of the 17th International Conference on Computational Science and Engineering, Chengdu, China, 19–21 December 2014; pp. 44–48. [Google Scholar]
- Jin, X.; Yin, G.; Hanif, A. Cubature kalman filter-based state estimation for distributed drive electric vehicles. In Proceedings of the 35th Chinese Control Conference, Chengdu, China, 27–29 July 2016; pp. 9038–9042. [Google Scholar]
- Wei, W.; Bei, S.; Zhu, K.; Zhang, L.; Wang, Y. Vehicle state and parameter estimation based on adaptive cubature Kalman filter. ICIC Express Lett. 2016, 10, 1871–1877. [Google Scholar]
- Cheng, S.; Li, L.; Chen, J. Fusion algorithm design based on adaptive SCKF and integral correction for side-slip angle observation. IEEE Trans. Ind. Electron. 2017, 65, 5754–5763. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Q. Joint estimation of states and parameters of vehicle model using cubature kalman filter. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 9–12 October 2016; pp. 000977–000982. [Google Scholar]
- Li, J.; Zhang, J. Vehicle sideslip angle estimation based on hybrid Kalman filter. Math. Prob. Eng. 2016. [Google Scholar] [CrossRef]
- Nishida, T.; Kogushi, W.; Takagi, N.; Kurogi, S. Dynamic state estimation using particle filter and adaptive vector quantizer. In Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, Daejeon, South Korea, 15–18 December 2009; pp. 429–434. [Google Scholar]
- Wang, B.; Cheng, Q.; Victorino, A.C.; Charara, A. Nonlinear observers of tire forces and sideslip angle estimation applied to road safety: Simulation and experimental validation. In Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems, Anchorage, AL, USA, 16–19 September 2012; pp. 1333–1338. [Google Scholar]
- Chu, W.; Luo, Y.; Dai, Y.; Li, K. In–wheel motor electric vehicle state estimation by using unscented particle filter. Int. J. Veh. Des. 2015, 67, 115–136. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, H. Estimation of vehicle yaw rate and side slip angle using moving horizon strategy. In Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; pp. 1828–1832. [Google Scholar]
- Canale, M.; Fagiano, L.; Novara, C. A direct Moving Horizon approach to vehicle side-slip angle estimation. In Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, USA, 15–17 December; pp. 2898–2903.
- Strano, S.; Terzo, M. Vehicle sideslip angle estimation via a Riccati equation based nonlinear filter. Meccanica 2017, 52, 3513–3529. [Google Scholar] [CrossRef]
- O’Brien, R.T., Jr.; Kiriakidis, K.A. Comparison of H∞ with Kalman Filtering in Vehicle State and Parameter Identification. In Proceedings of the American Control Conference, Minneapolis, MN, USA, 14–16 June 2006. [Google Scholar]
- Brembeck, J. Nonlinear constrained moving horizon estimation applied to vehicle position estimation. Sensors 2019, 19, 2276. [Google Scholar] [CrossRef]
- Dawood, M.; Cappelle, C.; El Najjar, M.E.; Khalil, M.; Pomorski, D. Vehicle geo-localization based on IMM-UKF data fusion using a GPS receiver, a video camera and a 3D city model. In Proceedings of the IEEE Intelligent Vehicles Symposium, Baden-Baden, Germany, 5–9 June 2011. [Google Scholar]
- Arasaratnam, I.; Haykin, S. Cubature kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef]
- Tanelli, M.; Piroddi, L.; Savaresi, S.M. Real-time identification of tire-road friction conditions. IET Control Theory Appl. 2009, 3, 891–906. [Google Scholar] [CrossRef]
- Rajamani, R.; Phanomchoeng, G.; Piyabongkarn, D.; Lew, J.Y. Algorithms for real-time estimation of individual wheel tire-road friction coefficients. IEEE/ASME Trans. Mechatron. 2011, 17, 1183–1195. [Google Scholar] [CrossRef]
- Nam, K. Application of novel lateral tire force sensors to vehicle parameter estimation of electric vehicles. Sensors 2015, 15, 28385–28401. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.F.; Zhao, Y.; Hu, L.L.; Tian, Y.T. Cornering stiffness and sideslip angle estimation based on simplified lateral dynamic models for four-in-wheel-motor-driven electric vehicles with lateral tire force information. Int. J. Autom. Technol. 2015, 16, 669–683. [Google Scholar] [CrossRef]
- Chen, L.; Bian, M.; Luo, Y.; Qin, Z.; Li, K. Tire-road friction coefficient estimation based on the resonance frequency of in-wheel motor drive system. Veh. Syst. Dyn. 2016, 54, 1–19. [Google Scholar] [CrossRef]
- Choi, M.; Oh, J.J.; Choi, S.B. Linearized recursive least squares methods for real-time identification of tire-road friction coefficient. IEEE Trans. Veh. Technol. 2013, 62, 2906–2918. [Google Scholar] [CrossRef]
- Kim, C.S.; Hahn, J.O.; Hong, K.S.; Yoo, W.S. Estimation of tire-road friction based on onboard 6-DoF acceleration measurement. IEEE Trans. Veh. Technol. 2014, 64, 3368–3377. [Google Scholar] [CrossRef]
- Stephant, J.; Charara, A.; Meizel, D. Linear observers for vehicle sideslip angle: Experimental validation. Proceedings of IEEE International Symposium on Industrial Electronics, Ajaccio, France, 4–7 May 2004; pp. 341–346. [Google Scholar]
- Zhao, Y.Q.; Li, H.Q.; Lin, F.; Wang, J.; Ji, X.W. Estimation of road friction coefficient in different road conditions based on vehicle braking dynamics. Chin. J. Mech. Eng. 2017, 30, 982–990. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Wang, J. Sideslip Angle Estimation of an Electric Ground Vehicle via Finite-Frequency H∞ Approach. IEEE Trans. Transp. Electrif. 2015, 2, 200–209. [Google Scholar] [CrossRef]
- Chen, T.; Chen, L.; Cai, Y.; Xu, X. Robust sideslip angle observer with regional stability constraint for an uncertain singular intelligent vehicle system. IET Control Theory Appl. 2018, 12, 1802–1811. [Google Scholar] [CrossRef]
- Ozkan, B.; Margolis, D.; Pengov, M. The controller output observer: Estimation of vehicle tire cornering and normal forces. ASME Trans. J. Dyn. Syst. Meas. Control 2008, 130, 061002. [Google Scholar] [CrossRef]
- Hsiao, T. Robust estimation and control of tire traction forces. IEEE Trans. Veh. Technol. 2012, 62, 1378–1383. [Google Scholar] [CrossRef]
- Ahn, C.; Peng, H.; Tseng, H.E. Robust estimation of road friction coefficient using lateral and longitudinal vehicle dynamics. Veh. Syst. Dyn. 2012, 50, 961–985. [Google Scholar] [CrossRef]
- Ahn, C.; Peng, H.; Tseng, H.E. Robust estimation of road frictional coefficient. IEEE Trans. Control Syst. Technol. 2011, 21, 1–13. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Zhu, B. Coordinative traction control of vehicles based on identification of the tyre-road friction coefficient. Proc. Inst. Mech. Eng. D J. Autom. Eng. 2016, 230, 1585–1604. [Google Scholar] [CrossRef]
- Cadiou, J.C.; El Hadri, A.; Chikhi, F. Non-linear tyre forces estimation based on vehicle dynamics observation in a finite time. Proc. Inst. Mech. Eng. D J. Autom. Eng. 2004, 218, 1379–1392. [Google Scholar] [CrossRef]
- Lee, D.J.; Park, Y.S. Sliding-mode-based parameter identification with application to tire pressure and tire-road friction. Int. J. Autom. Technol. 2011, 12, 571–577. [Google Scholar] [CrossRef]
- Song, Z.B.; Zweiri, Y.H.; Seneviratne, L.D.; Althoefer, K. Non-linear observer for slip estimation of tracked vehicles. Proc. Inst. Mech. Eng. D J. Autom. Eng. 2008, 222, 515–533. [Google Scholar] [CrossRef]
- Subudhi, B.; Ge, S.S. Sliding-mode-observer-based adaptive slip ratio control for electric and hybrid vehicles. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1617–1626. [Google Scholar] [CrossRef]
- Patel, N.; Edwards, C.; Spurgeon, S.K. Optimal braking and estimation of tyre friction in automotive vehicles using sliding modes. J. Mech. Syst. Sci. 2007, 38, 901–912. [Google Scholar] [CrossRef]
- Tanelli, M.; Ferrara, A.; Giani, P. Combined vehicle velocity and tire-road friction estimation via sliding mode observers. In Proceedings of the IEEE International Conference on Control Applications, Dubrovnik, Croatia, 3–5 October 2012; pp. 130–135. [Google Scholar]
- M’sirdi, N.K.; Rabhi, A.; Fridman, L.; Davila, J.; Delanne, Y. Second order sliding mode observer for estimation of velocities, wheel sleep, radius and stiffness. In Proceedings of the American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; pp. 3316–3321. [Google Scholar]
- Patel, N.; Edwards, C.; Spurgeon, S.K. Tyre-road friction estimation—A comparative study. Proc. Inst. Mech. Eng. D J. Autom. Eng. 2008, 222, 2337–2351. [Google Scholar] [CrossRef]
- Khemoudj, O.; Imine, H.; Djemai, M. Heavy duty vehicle tyre forces estimation using variable gain sliding mode observer. Int. J. Veh. Des. 2013, 62, 274–288. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, Y.; Guo, K. A reduced-order nonlinear sliding mode observer for vehicle slip angle and tyre forces. Veh. Syst. Dyn. 2014, 52, 1716–1728. [Google Scholar] [CrossRef]
- Rath, J.J.; Veluvolu, K.C.; Defoort, M.; Soh, Y.C. Higher-order sliding mode observer for estimation of tyre friction in ground vehicles. Iet Control Theory Appl. 2014, 8, 399–408. [Google Scholar] [CrossRef]
- Chen, T.; Chen, L.; Xu, X.; Cai, Y.; Jiang, H.; Sun, X. Estimation of longitudinal force and sideslip angle for intelligent four-wheel independent drive electric vehicles by observer iteration and information fusion. Sensors 2018, 18, 1268. [Google Scholar] [CrossRef]
- Imine, H.; Benallegue, A.; Madani, T.; Srairi, S. Rollover risk prediction of heavy vehicle using high-order sliding-mode observer: Experimental results. IEEE Trans. Veh. Technol. 2013, 63, 2533–2543. [Google Scholar] [CrossRef]
- Zhao, L.H.; Liu, Z.Y.; Chen, H. Design of a nonlinear observer for vehicle velocity estimation and experiments. IEEE Trans. Control Syst. Technol. 2010, 19, 664–672. [Google Scholar] [CrossRef]
- Imsland, L.; Johansen, T.A.; Fossen, T.I.; Grip, H.F.; Kalkkuhl, J.C.; Suissa, A. Vehicle velocity estimation using nonlinear observers. Automatica 2006, 42, 2091–2103. [Google Scholar] [CrossRef]
- Guo, H.; Chen, H.; Cao, D.; Jin, W. Design of a reduced-order non-linear observer for vehicle velocities estimation. Iet Control Theory Appl. 2013, 7, 2056–2068. [Google Scholar] [CrossRef]
- Grip, H.F.; Imsland, L.; Johansen, T.A.; Fossen, T.I.; Kalkkuhl, J.C.; Suissa, A. Nonlinear vehicle side-slip estimation with friction adaptation. Automatica 2008, 44, 611–622. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Z.; Neubeck, J.; Wiedemann, J. Sideslip angle estimation based on input-output linearisation with tire-road friction adaptation. Veh. Syst. Dyn. 2010, 48, 217–234. [Google Scholar] [CrossRef]
- Solmaz, S.; Başlamışlı, S.Ç. A nonlinear sideslip observer design methodology for automotive vehicles based on a rational tire model. Int. J. Adv. Manuf. Technol. 2012, 60, 765–775. [Google Scholar] [CrossRef]
- Phanomchoeng, G.; Rajamani, R.; Piyabongkarn, D. Nonlinear observer for bounded Jacobian systems, with applications to automotive slip angle estimation. IEEE Trans. Autom. Control 2011, 56, 1163–1170. [Google Scholar] [CrossRef]
- Li, L.; Song, J.; Kong, L.; Huang, Q. Vehicle velocity estimation for real-time dynamic stability control. Int. J. Autom. Technol. 2009, 10, 675. [Google Scholar] [CrossRef]
- Chen, C.; Jia, Y.; Wang, Y.; Shu, M. Non-linear velocity observer for vehicles with tyre–road friction estimation. Int. J. Syst. Sci. 2018, 49, 1403–1418. [Google Scholar] [CrossRef]
- Hashemi, E.; Zarringhalam, R.; Khajepour, A.; Melek, W.; Kasaiezadeh, A.; Chen, S.K. Real-time estimation of the road bank and grade angles with unknown input observers. Veh. Syst. Dyn. 2017, 55, 648–667. [Google Scholar] [CrossRef] [Green Version]
- Stéphant, J.; Charara, A. Observability matrix and parameter identification: Application to vehicle tire cornering stiffness. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 12–15 December 2005; pp. 6734–6739. [Google Scholar]
- Sun, F.; Huang, X.; Rudolph, J.; Lolenko, K. Vehicle state estimation for anti-lock control with nonlinear observer. Control Eng. Pr. 2015, 43, 69–84. [Google Scholar] [CrossRef]
- Solmaz, S.; Başlamışlı, S.Ç. Simultaneous estimation of road friction and sideslip angle based on switched multiple non-linear observers. IET Control Theory Appl. 2012, 6, 2235–2247. [Google Scholar] [CrossRef]
- Ko, S.Y.; Ko, J.W.; Lee, S.M.; Cheon, J.S.; Kim, H.S. Vehicle velocity estimation using effective inertia for an in-wheel electric vehicle. Int. J. Autom. Technol. 2014, 15, 815–821. [Google Scholar] [CrossRef]
- Xia, X.; Xiong, L.; Sun, K.; Yu, Z.P. Estimation of maximum road friction coefficient based on Lyapunov method. Int. J. Autom. Technol. 2016, 17, 991–1002. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J. Tire-road friction coefficient and tire cornering stiffness estimation based on longitudinal tire force difference generation. Control Eng. Pr. 2013, 21, 65–75. [Google Scholar] [CrossRef]
- Erdogan, G.; Alexander, L.; Rajamani, R. Estimation of tire-road friction coefficient using a novel wireless piezoelectric tire sensor. IEEE Sens. J. 2010, 11, 267–279. [Google Scholar] [CrossRef]
- Hong, S.; Erdogan, G.; Hedrick, K.; Borrelli, F. Tyre-road friction coefficient estimation based on tyre sensors and lateral tyre deflection: Modelling, simulations and experiments. Veh. Syst. Dyn. 2013, 51, 627–647. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, F.Y.; Wang, K.; Lin, W.H.; Xu, X.; Chen, C. Data-driven intelligent transportation systems: A survey. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1624–1639. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, X.; Shi, Y.; Xia, L.; Pan, S.; Wu, J.; Zhao, X. A review of data-driven approaches for prediction and classification of building energy consumption. Renew. Sust. Energ. Rev. 2018, 82, 1027–1047. [Google Scholar] [CrossRef]
- You, G.W.; Park, S.; Oh, D. Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach. Appl. Energy 2016, 176, 92–103. [Google Scholar] [CrossRef]
- Gurney, K. An Introduction to Neural Networks; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Dong, G.; Zhang, X.; Zhang, C.; Chen, Z. A method for state of energy estimation of lithium-ion batteries based on neural network model. Energy 2015, 90, 879–888. [Google Scholar] [CrossRef]
- Chang, Y.; Jiang, T.; Pu, Z. Adaptive control of hypersonic vehicles based on characteristic models with fuzzy neural network estimators. Aerosp. Sci. Technol. 2017, 68, 475–485. [Google Scholar] [CrossRef]
- Shafiei, M.H.; Binazadeh, T. Application of neural network and genetic algorithm in identification of a model of a variable mass underwater vehicle. Ocean. Eng. 2015, 96, 173–180. [Google Scholar] [CrossRef]
- Hatamleh, K.S.; Al-Shabi, M.; Al-Ghasem, A.; Asad, A.A. Unmanned aerial vehicles parameter estimation using artificial neural networks and iterative bi-section shooting method. Appl. Soft. Comput. 2015, 36, 457–467. [Google Scholar] [CrossRef]
- Saadeddin, K.; Abdel-Hafez, M.F.; Jaradat, M.A.; Jarrah, M.A. Performance enhancement of low-cost, high-accuracy, state estimation for vehicle collision prevention system using ANFIS. Mech. Syst. Signal Process. 2013, 41, 239–253. [Google Scholar] [CrossRef]
- Vargas-Melendez, L.; Boada, B.; Boada, M.; Gauchia, A.; Diaz, V. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States. Sensors 2017, 17, 987. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.-H.; Zhou, C. Improving GPS/INS integration through neural networks. arXiv 2010, arXiv:1005.5115. [Google Scholar]
- Gwak, M.; Jo, K.; Sunwoo, M. Neural-network multiple models filter (NMM)-based position estimation system for autonomous vehicles. Int. J. Autom. Technol. 2013, 14, 265–274. [Google Scholar] [CrossRef]
- Kim, H.U.; Bae, T.S. Deep Learning-Based GNSS Network-Based Real-Time Kinematic Improvement for Autonomous Ground Vehicle Navigation. J. Sens. 2019. [Google Scholar] [CrossRef]
- Boada, B.L.; Boada, M.J.L.; Gauchía, A.; Olmeda, E.; Díaz, V. Sideslip angle estimator based on ANFIS for vehicle handling and stability. J. Mech. Sci. Technol. 2015, 29, 1473–1481. [Google Scholar] [CrossRef] [Green Version]
- Boada, B.L.; Boada, M.J.L.; Diaz, V. Vehicle sideslip angle measurement based on sensor data fusion using an integrated ANFIS and an Unscented Kalman Filter algorithm. Mech. Syst. Signal Process. 2016, 72, 832–845. [Google Scholar] [CrossRef]
- Wei, W.; Bei, S.; Zhang, L.; Zhu, K.; Wang, Y.; Hang, W. Vehicle sideslip angle estimation based on general regression neural network. Math. Prob. Eng. 2016. [Google Scholar] [CrossRef]
- Liu, H.; Yang, J.; Yang, H.; Yi, F. Soft sensor of vehicle state estimation based on the kernel principal component and improved neural network. J. Sens. 2016. [Google Scholar] [CrossRef]
- Melzi, S.; Sabbioni, E. On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results. Mech. Syst. Signal Process. 2011, 25, 2005–2019. [Google Scholar] [CrossRef]
- Ghosh, J.; Tonoli, A.; Amati, N. A Deep Learning based Virtual Sensor for Vehicle Sideslip Angle Estimation: Experimental Results. SAE Tech. Pap. 2018, 1, 1089. [Google Scholar]
- Boada, B.L.; Boada, M.J.L.; Vargas-Melendez, L.; Diaz, V. A robust observer based on H∞ filtering with parameter uncertainties combined with Neural Networks for estimation of vehicle roll angle. Mech. Syst. Signal Process. 2018, 99, 611–623. [Google Scholar] [CrossRef]
- García Guzmán, J.; Prieto González, L.; Pajares Redondo, J.; Montalvo Martínez, M.L.; Boada, M. Real-Time Vehicle Roll Angle Estimation Based on Neural Networks in IoT Low-Cost Devices. Sensors 2018, 18, 2188. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Meléndez, L.; Boada, B.; Boada, M.; Gauchía, A.; Díaz, V. A sensor fusion method based on an integrated neural network and Kalman filter for vehicle roll angle estimation. Sensors 2016, 16, 1400. [Google Scholar] [CrossRef] [PubMed]
- Acosta, M.; Kanarachos, S. Tire lateral force estimation and grip potential identification using Neural Networks, Extended Kalman Filter, and Recursive Least Squares. Neural. Comput. Appl. 2018, 30, 3445–3465. [Google Scholar] [CrossRef]
- Matuško, J.; Petrović, I.; Perić, N. Neural network based tire/road friction force estimation. Eng. Appl. Artif Intel. 2008, 21, 442–456. [Google Scholar] [CrossRef]
- Xu, D.; Yap, F.F.; Han, X.; Wen, G.L. Identification of spring-force factors of suspension systems using progressive neural network on a validated computer model. Inverse. Probl. Sci. Eng. 2003, 11, 55–74. [Google Scholar] [CrossRef]
- Dye, J.; Lankarani, H. Hybrid simulation of a dynamic multibody vehicle suspension system using neural network modeling fit of tire data. In Proceedings of the ASME Design Engineering Technical Conference, Charlotte, NC, USA, 21–26 August 2016; pp. 21–24. [Google Scholar]
- Alagappan, A.V.; Rao, K.N.; Kumar, R.K. A comparison of various algorithms to extract Magic Formula tyre model coefficients for vehicle dynamics simulations. Veh. Syst. Dyn. 2015, 53, 154–178. [Google Scholar] [CrossRef]
- Song, S.; Min, K.; Park, J.; Kim, H.; Huh, K. Estimating the Maximum Road Friction Coefficient with Uncertainty Using Deep Learning. In Proceedings of the 21st International Conference on Intelligent Transportation Systems, Maui, HI, USA, 4–7 November 2018; pp. 3156–3161. [Google Scholar]
- Castillo Aguilar, J.; Cabrera Carrillo, J.; Guerra Fernández, A.; Carabias Acosta, E. Robust road condition detection system using in-vehicle standard sensors. Sensors 2015, 15, 32056–32078. [Google Scholar] [CrossRef]
- Zareian, A.; Azadi, S.; Kazemi, R. Estimation of road friction coefficient using extended Kalman filter, recursive least square, and neural network. Proc. Inst. Mech. Eng. K J. Mul. Dyn. 2016, 230, 52–68. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, K.W.E.; Zeng, J. A novel multi-sensors fusion framework based on Kalman Filter and neural network for AFS application. T.I. Meas.Control. 2015, 37, 1049–1059. [Google Scholar] [CrossRef]
- Taghavifar, H.; Mardani, A. Use of artificial neural networks for estimation of agricultural wheel traction force in soil bin. Neural. Comput. Appl. 2014, 24, 1249–1258. [Google Scholar] [CrossRef]
- Yousefzadeh, M.; Azadi, S.; Soltani, A. Road profile estimation using neural network algorithm. J. Mech. Sci. Technol. 2010, 24, 743–754. [Google Scholar] [CrossRef]
- Solhmirzaei, A.; Azadi, S.; Kazemi, R. Road profile estimation using wavelet neural network and 7-DOF vehicle dynamic systems. J. Mech. Sci. Technol. 2012, 26, 3029–3036. [Google Scholar] [CrossRef]
- Luque, P.; Mántaras, D.A.; Fidalgo, E.; álvarez, J.; Riva, P.; Girón, P.; Ferran, J. Tyre-road grip coefficient assessment—Part II: Online estimation using instrumented vehicle, extended Kalman filter, and neural network. Veh. Syst. Dyn. 2013, 51, 1872–1893. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, N.; Du, H. Real-time identification of vehicle motion-modes using neural networks. Mech. Syst. Signal Process. 2015, 50, 632–645. [Google Scholar] [CrossRef]
- Yu, R.; Xia, X. Vehicle handling evaluation models using artificial neural networks. Int. J. Control Autom. 2015, 8, 249–258. [Google Scholar] [CrossRef]
- Wefky, A.M.; Espinosa, F.; Jiménez, J.A.; Santiso, E.; Rodríguez, J.M.; Fernández, A.J. Alternative sensor system and MLP neural network for vehicle pedal activity estimation. Sensors 2010, 10, 3798–3814. [Google Scholar] [CrossRef]
- Li, L.; Qian, B.; Lian, J.; Zheng, W.; Zhou, Y. Traffic scene segmentation based on RGB-D image and deep learning. IEEE Trans. Intell. Transp. Syst. 2017, 19, 1664–1669. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Qi, X.; Sun, J. Simultaneous modeling of car-following and lane-changing behaviors using deep learning. Transp. Res. C Emerg. Technol. 2019, 104, 287–304. [Google Scholar] [CrossRef]
Methodologies | Models | Estimations | Sensor Configurations | References |
---|---|---|---|---|
KF | Single-track + Linear tire model | Vy | rz, δf | [21] |
KF + RLS | Single-track + Roll + Linear tire model | β, φ | rz, δf, ax, ay, ωij, Tij, Fyij, MSU | [22] |
KF | Single-track + Linear tire model | β | rz, ψ, GPS | [23,24,25] |
DKF | Single-track + Linear tire model | Cα | Vx, Vy, ψ, GPS | [26] |
RWKF | Double-track + Linear tire model | Fx, Fy | rz, ax, ay, ωij | [27] |
EKF | Single-track + Pacejka tire model | β | rz, ay | [28] |
EKF | Single-track + Linear tire model | β, Cα | rz, Fyij, MSU | [29] |
EKF | Single-track + Pacejka tire model | β | Tδf, rz, ax, ay | [30] |
EKF + SMC | Single-track+Roll+Dugoff tire model | β, φ | Vx, rz, ax, ay | [31] |
EKF | Single-track + Pacejka tire model | β | rz, ay | [32] |
EKF | Double-track + Roll + Pacejka tire model | Vx, Vy, φ, Fy, DBE | rz, ax, ay, p | [33,34] |
EKF | Double-track + Dugoff tire model | β, Fy | rz, δf, ax, ay, ωij | [35] |
VSEKF | Double-track + Dugoff tire model | β | rz, δf, ay | [36] |
EKF | Double-track + Roll + Dugoff tire model | β, Fy, Fz | rz, ax, ay, p | [37] |
EKF | Double-track + Pacejka tire model | Vx, Vy | rz, δf, ax, ay, ωij | [38] |
EKF + MME | Double-track + Pacejka tire model | Vx, Vy, Fx, Fy | rz, δf, ay | [39] |
EKF | Single-track + Burchhardt tire model | β, Fx, Fy, μ | rz, δf, ax, ay, ωij | [40] |
EKF | Single-track + Pacejka tire model | β | rz, ay | [41] |
EKF | Longitudinal model + Pacejka tire model | μ | ay, ωij | [42,43] |
DEKF | Double-track + Roll + Pacejka tire model | μ, Fx, Fy, Fz | rz, ax, ay, p | [44] |
EKF | Single-track + Roll + Linear tire model | β, φ | rz, δf, ax, ay, ψ, GPS | [45,46] |
EKF | Single-track + Brush tire model | β, μ | Vx, Vy, ψ, rz, ax, ay, p, GPS | [47] |
EKF | Single-track + Pacejka tire model | Vx, β, θ, Cα,μ | rz, δf, ax, ay, ωij | [48] |
DEKF | Double-track + Pacejka tire model | β, m, Izz | rz, ay, Vx | [49] |
DEKF | Single-track + Roll + Linear tire model | β, φ, Cα, Izz | rz, δf, ax, ay, p | [50] |
DEKF | Double-track +Dugoff tire model | β, μ | rz, ax, ay | [51] |
IMM-EKF | Single-track + Other nolinear tire model | β, μ | rz, ay | [52] |
IMM-UKF | Double-track + Roll + Dugoff tire model | β,φ | rz, ax, ay, p, ωij | [53] |
IMM-EKF | Single-track + Other nolinear tire model | β, Fx, Fy | rz, δf, Vx, ay | [54] |
UKF | Double - track+ UniTire tire model | Vx, Vy | rz, ax, ay, ωij | [55] |
UKF | Single-track + Linear tire model | β | ax, ay | [56] |
AUKF | Double-track + Pacejka tire model | β | ay, rz | [57,58] |
CUKF | Single-track + Random Walk model | β, Fy | rz, ay | [59] |
UKF/EKF | Double-track + Dugoff tire model | β, Fy | rz, δf, ax, ay, ωij | [60] |
UKF | Double-track + Dugoff tire model | μ | ax, ay | [61,62] |
UKF | Double-track + Pacejka tire model | Vx, Vy,μ | rz, ay, ωij | [63] |
DUKF | Double-track + Dugoff tire model | β, m | rz, ay, Vy | [64] |
DUKF | Double-track + Roll + Pacejka tire model | β, φ, Fy, Fz, DBE | rz, ax, ay, p, ωij | [65] |
CKF | Single-track + Linear tire model | β | δf, ay | [66] |
CKF | Double-track + Roll + Dugoff tire model | β,φ, Fx, Fy | rz, ax, ay, p, ωij | [67] |
ACKF | Double-track + Pacejka tire model | Vx, Vy | rz, δf, ax, ay, ωij | [68,69] |
JCKF, DCKF | Double-track + Pacejka tire model | Vx, Vy,μ | rz, ax, ay | [70] |
IMM+CKF | Double-track + Pacejka tire model | Vx, Vy | rz, ax, ay | [71] |
PF | Double-track + Dugoff tire model | β, Fx, Fy | rz, ax, ay | [72,73] |
UPF | Double-track + Pacejka tire model | β, Fy | rz, ax, ay | [74] |
MHE | Single-track + Pacejka tire model | β | rz | [75,76] |
SDRE + EKF | Single-track + Random Walk model | β | rz, ay | [77] |
EHF | Single-track + Linear tire model | β, Cα | rz, ψ, GPS | [78] |
MHE | Single-track + Pacejka tire model | β, Pp | rz, Pc, GNSS | [79] |
Methodologies | Estimations | Trained Inputs | References |
---|---|---|---|
ANFIS | Vx, Pp | Pc, GPS, IMU | [137] |
NN | φ | rz, ax, ay, p | [138] |
NN | Pp | Pc, GPS, IMU | [139,140] |
DL | Pp | Pc, GPS, IMU | [141] |
ANFIS | β | rz, δf, ax, ay | [142,143] |
GRNN | β | rz, ay | [144] |
IEMM | β | rz, δf, ay | [145] |
NN | β | rz, δf, Vx, ay | [146] |
DL | β | rz, δf, ax, ay,ωij | [147] |
NN | φ | rz, ax, ay, p | [148,149,150] |
FNN | Fy | ax,α | [151] |
NN | Fx | Vx, ax,ωij | [152] |
PNN | Fz | az, zm | [153] |
NN-GD | Fy | α, Pt, Fz | [154] |
NN | B, D, E | Fx, Fy,α, s | [155] |
DL | μ | rz, δf, ax, ay, azα,s,ωij | [156] |
NN | Mx | Fx, Fy, Fz, δf | [157] |
MPNN | μ | Fx, Fy, Fz,α,s | [158] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Yin, G.; Chen, N. Advanced Estimation Techniques for Vehicle System Dynamic State: A Survey. Sensors 2019, 19, 4289. https://doi.org/10.3390/s19194289
Jin X, Yin G, Chen N. Advanced Estimation Techniques for Vehicle System Dynamic State: A Survey. Sensors. 2019; 19(19):4289. https://doi.org/10.3390/s19194289
Chicago/Turabian StyleJin, Xianjian, Guodong Yin, and Nan Chen. 2019. "Advanced Estimation Techniques for Vehicle System Dynamic State: A Survey" Sensors 19, no. 19: 4289. https://doi.org/10.3390/s19194289