An Expert System for Quantification of Bradykinesia Based on Wearable Inertial Sensors
<p>Illustration of the inertial sensor system, with local coordinate systems of the thumb <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>Y</mi> <mn>1</mn> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> and index finger <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>Y</mi> <mn>2</mn> </msub> <mo>,</mo> <mo> </mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math> sensors. SCU-sensor-control unit.</p> "> Figure 2
<p>Block diagram of the expert system for UPDRS finger-tapping score calculation.</p> "> Figure 3
<p>An example of the normalized dominant component of the relative angular velocity <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mrow> <mi>rd</mi> </mrow> </msub> </mrow> </semantics></math> for one MSA patient (ID: MSA11) with extracted markers.</p> "> Figure 4
<p>Upper panel: Angle estimation. The dashed grey line marks the drifted angle sequence, and the solid black line corresponds to the angle sequence after drift removal. Red crosses show “zero posture” markers, and the dotted red line presents the polynomial fit used for drift removal. Lower panel: Angle amplitude decrement. The solid grey line shows the angle sequence, whereas black circles mark the angle amplitudes (highest finger apertures) per tap. The dashed red line presents the threshold <math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>H</mi> <mi mathvariant="sans-serif">α</mi> </msub> </mrow> </semantics></math> used for the detection of decreased amplitudes. The example is given for one MSA patient (ID: MSA11).</p> "> Figure 5
<p>Calculation of hesitations and freezes: angular velocity <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mrow> <mi>rd</mi> </mrow> </msub> </mrow> </semantics></math> (upper panel) and calculated <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>S</mi> <msub> <mi>A</mi> <mi mathvariant="normal">T</mi> </msub> </mrow> </semantics></math> characteristic (bottom panel). The solid grey horizontal line marks the average <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>S</mi> <msub> <mi>A</mi> <mi mathvariant="normal">T</mi> </msub> </mrow> </semantics></math> value. The dashed grey horizontal line corresponds to the upper threshold <math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>H</mi> <mrow> <mn>50</mn> </mrow> </msub> <mo>=</mo> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math> of the <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>S</mi> <msub> <mi>A</mi> <mi mathvariant="normal">T</mi> </msub> </mrow> </semantics></math> average value. The dotted black horizontal line shows the lower threshold <math display="inline"><semantics> <mrow> <mi>T</mi> <msub> <mi>H</mi> <mrow> <mn>25</mn> </mrow> </msub> <mo>=</mo> <mn>25</mn> <mo>%</mo> </mrow> </semantics></math> of the <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>S</mi> <msub> <mi>A</mi> <mi mathvariant="normal">T</mi> </msub> </mrow> </semantics></math><sub>-</sub> average value. Similarly, dotted grey vertical lines show areas that are classified as hesitations (an “H” mark) and freezes (an “F” mark). The example is given for one PSP patient (ID: PSP14).</p> "> Figure 6
<p>Calculation of the frequency characteristic: scalogram of the obtained continuous wavelet transform (CWT) coefficients. The dashed black line marks the <span class="html-italic">i</span>-th sample. The CWT coefficients at the <span class="html-italic">i</span>-th sample are presented in the smaller upper panel. The red dashed line in the upper panel marks the frequency with the highest amplitude of the CWT coefficients for the <span class="html-italic">i</span>-th sample (referred to as <math display="inline"><semantics> <mrow> <msup> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> </mrow> </semantics></math>). The example is given for one PSP patient (ID: PSP14).</p> "> Figure 7
<p>The block scheme of the decision support system. The system is divided into four processing blocks (bordered with dashed black rectangles). The inputs to the blocks are the calculated features: <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mi>a</mi> <mi>v</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msubsup> <mi>f</mi> <mrow> <mi>a</mi> <mi>v</mi> </mrow> <mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mtext> </mtext> <msub> <mi>i</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>c</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>H</mi> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> </mrow> </msub> <mo>,</mo> <mtext> </mtext> <msub> <mi>F</mi> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> </mrow> </msub> <mo>,</mo> </mrow> </semantics></math> respectively. Each block implements rules and assigns a subscore for the input feature. The final score <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mrow> <mi>F</mi> <mi>T</mi> </mrow> </msub> </mrow> </semantics></math> is decided based on the results obtained from all four blocks.</p> "> Figure 8
<p>Dependency of: (<b>a</b>) calculated scores and the <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mrow> <mi>a</mi> <mi>v</mi> </mrow> </msub> </mrow> </semantics></math> feature; (<b>b</b>) calculated scores the and <math display="inline"><semantics> <mrow> <msubsup> <mi>f</mi> <mrow> <mi>a</mi> <mi>v</mi> </mrow> <mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </msubsup> </mrow> </semantics></math> feature. Grey circles mark samples that are assigned to the <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> </mrow> </semantics></math> cluster (“wider and slower” performance), whereas black crosses correspond to members of the cluster <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> </mrow> </semantics></math> (“narrower and faster” performance).</p> "> Figure 9
<p>Presentation of results using the confusion matrix. (<b>a</b>) Case I—The result obtained when all recordings are included. (<b>b</b>) Case II—The result obtained using only recordings on which both raters agreed. The cells on the diagonal of the confusion matrix show the overall success rate for each score (expressed as a percentage (%)), whereas the cells outside the diagonal show the error rate for the scores (expressed as a percentage (%)).</p> "> Figure 10
<p>The result of the expert system comprising a graphical representation with detected irregularities, calculated features, and the final score. The example is given for one MSA patient (ID: MSA11), right hand, and one PSP patient (ID: PSP14), right hand.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement System
2.2. Subjects
2.3. Measurement Methodology
2.4. Scoring by Neurologists
2.5. Data Processing and Analysis
2.5.1. Individual Taps
2.5.2. Amplitude
2.5.3. Amplitude Decrement
2.5.4. Hesitations and Freezes
2.5.5. Speed
2.5.6. Decision Support System
- 0
- Normal: Regular rhythm, without hesitations or freezes. Fast movement, large amplitude, no amplitude decrement.
- 1
- Slight: Any of the following: (a) the regular rhythm is broken with one or two interruptions or hesitations of the tapping movement; (b) slight slowing; (c) the amplitude decrements near the end of the 10 taps.
- 2
- Mild: Any of the following: (a) three to five interruptions during tapping; (b) mild slowing; (c) the amplitude decrements midway in the 10-tap sequence.
- 3
- Moderate: Any of the following: (a) over five interruptions during tapping or at least one freeze in ongoing movement; (b) moderate slowing; (c) the amplitude decrements starting after the first tap.
- 4
- Severe: Cannot or can only barely perform the task due to slowing, interruptions, or decrements.
2.5.7. Statistical Analysis and Evaluation
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rovini, E.; Maremmani, C.; Cavallo, F. How wearable sensors can support parkinson’s disease diagnosis and treatment: A systematic review. Front. Neurosci. 2017, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef] [PubMed]
- MDS UPDRS Rating Scale. Available online: https://www.movementdisorders.org/MDS-Files1/PDFs/Rating-Scales/MDS-UPDRS_English_FINAL.pdf (accessed on 31 January 2019).
- Lin, Z.; Xiong, Y.; Cai, G.; Dai, H.; Xia, X.; Tan, Y.; Lueth, T.C. Quantification of Parkinsonian Bradykinesia Based on Axis-Angle Representation and SVM Multiclass Classification Method. IEEE Access 2018, 6, 26895–26903. [Google Scholar] [CrossRef]
- Lainscsek, C.; Rowat, P.; Schettino, L.; Lee, D.; Song, D.; Letellier, C.; Poizner, H. Finger tapping movements of Parkinson’s disease patients automatically rated using nonlinear delay differential equations. Chaos An Interdiscip. J. Nonlinear Sci. 2012, 22, 013119. [Google Scholar] [CrossRef] [PubMed]
- Djuric-Jovicic, M.; Jovicic, N.; Radovanovic, S.; Jecmenica-Lukic, M.; Belic, M.; Popovic, M.; Kostic, V. Finger and foot tapping sensor system for objective motor assessment. Vojnosanit. Pregl. 2018. [Google Scholar] [CrossRef]
- Kim, J.-W.; Lee, J.-H.; Kwon, Y.; Kim, C.-S.; Eom, G.-M.; Koh, S.-B.; Kwon, D.-Y.; Park, K.-W. Quantification of bradykinesia during clinical finger taps using a gyrosensor in patients with Parkinson’s disease. Med. Biol. Eng. Comput. 2011, 49, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, J.; Ambroise, J.; Crémers, J.; Sharei, H.; Delvaux, V.; Macq, B.; Garraux, G. Finger Tapping Clinimetric Score Prediction in Parkinson’s Disease Using Low-Cost Accelerometers. Comput. Intell. Neurosci. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Garza-Rodríguez, A.; Sánchez-Fernández, L.P.; Sánchez-Pérez, L.A.; Ornelas-Vences, C.; Ehrenberg-Inzunza, M. Pronation and supination analysis based on biomechanical signals from Parkinson’s disease patients. Artif. Intell. Med. 2018, 84, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Piro, N.; Piro, L.; Kassubek, J.; Blechschmidt-Trapp, R.; Piro, N.E.; Piro, L.K.; Kassubek, J.; Blechschmidt-Trapp, R.A. Analysis and Visualization of 3D Motion Data for UPDRS Rating of Patients with Parkinson’s Disease. Sensors 2016, 16, 930. [Google Scholar] [CrossRef]
- Ferraris, C.; Nerino, R.; Chimienti, A.; Pettiti, G.; Cau, N.; Cimolin, V.; Azzaro, C.; Albani, G.; Priano, L.; Mauro, A.; et al. A Self-Managed System for Automated Assessment of UPDRS Upper Limb Tasks in Parkinson’s Disease. Sensors 2018, 18, 3523. [Google Scholar] [CrossRef]
- Lee, W.L.; Sinclair, N.C.; Jones, M.; Tan, J.L.; Proud, E.L.; Peppard, R.; McDermott, H.J.; Perera, T. Objective evaluation of bradykinesia in Parkinson’s disease using an inexpensive marker-less motion tracking system. Physiol. Meas. 2019, 40, 014004. [Google Scholar] [CrossRef] [PubMed]
- Sano, Y.; Kandori, A.; Shima, K.; Yamaguchi, Y.; Tsuji, T.; Noda, M.; Higashikawa, F.; Yokoe, M.; Sakoda, S. Quantifying Parkinson’s disease finger-tapping severity by extracting and synthesizing finger motion properties. Med. Biol. Eng. Comput. 2016, 54, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Venkataraman, V.; Zhan, A.; Donohue, S.; Biglan, K.M.M.; Dorsey, E.R.R.; Little, M.A.A. Detecting and monitoring the symptoms of Parkinson’s disease using smartphones: A pilot study. Park. Relat. Disord. 2015, 21, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Van den Noort, J.C.; Verhagen, R.; van Dijk, K.J.; Veltink, P.H.; Vos, M.C.P.M.; de Bie, R.M.A.; Bour, L.J.; Heida, C.T. Quantification of Hand Motor Symptoms in Parkinson’s Disease: A Proof-of-Principle Study Using Inertial and Force Sensors. Ann. Biomed. Eng. 2017, 45, 2423–2436. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Dai, H.; Xiong, Y.; Xia, X.; Horng, S.-J. Quantification assessment of bradykinesia in Parkinson’s disease based on a wearable device. In Proceedings of the 2017 39th IEEE Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 803–806. [Google Scholar]
- Dai, H.; Lin, H.; Lueth, T.C. Quantitative assessment of parkinsonian bradykinesia based on an inertial measurement unit. Biomed. Eng. Online 2015, 14, 68. [Google Scholar] [CrossRef] [PubMed]
- McKay, G.N.; Harrigan, T.P.; Brašić, J.R. A low-cost quantitative continuous measurement of movements in the extremities of people with Parkinson’s disease. MethodsX 2019, 6, 169–189. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Tabassum, T.; Munia, K.; Tavakolian, K. A Quantitative Assessment of Bradykinesia Using Inertial Measurement Unit Performance Measurement View project Signal-Image Processing View project. In Proceedings of the 2017 Design of Medical Devices Conference, Minneapolis, MN, USA, 10–13 April 2017. [Google Scholar]
- Patel, S.; Lorincz, K.; Hughes, R.; Huggins, N.; Growdon, J.; Standaert, D.; Akay, M.; Dy, J.; Welsh, M.; Bonato, P. Monitoring motor fluctuations in patients with parkinsons disease using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 864–873. [Google Scholar] [CrossRef]
- Djurić-Jovičić, M.; Petrović, I.; Ječmenica-Lukić, M.; Radovanović, S.; Dragašević-Mišković, N.; Belić, M.; Miler-Jerković, V.; Popović, M.B.; Kostić, V.S. Finger tapping analysis in patients with Parkinson’s disease and atypical parkinsonism. J. Clin. Neurosci. 2016, 30, 49–55. [Google Scholar] [CrossRef]
- Delrobaei, M.; Tran, S.; Gilmore, G.; McIsaac, K.; Jog, M. Characterization of multi-joint upper limb movements in a single task to assess bradykinesia. J. Neurol. Sci. 2016, 368, 337–342. [Google Scholar] [CrossRef]
- Ornelas-Vences, C.; Sánchez-Fernández, L.P.; Sánchez-Pérez, L.A.; Martínez-Hernández, J.M. Computer model for leg agility quantification and assessment for Parkinson’s disease patients. Med. Biol. Eng. Comput. 2019, 57, 463–476. [Google Scholar] [CrossRef]
- Mentzel, T.Q.; Lieverse, R.; Levens, A.; Mentzel, C.L.; Tenback, D.E.; Bakker, P.R.; Daanen, H.A.M.; van Harten, P.N. Reliability and validity of an instrument for the assessment of bradykinesia. Psychiatry Res. 2016, 238, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Memar, S.; Delrobaei, M.; Pieterman, M.; McIsaac, K.; Jog, M. Quantification of whole-body bradykinesia in Parkinson’s disease participants using multiple inertial sensors. J. Neurol. Sci. 2018, 387, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Kinesia ONETM. Available online: https://glneurotech.com/kinesia/products/kinesia-one/ (accessed on 13 May 2019).
- Djurić-Jovičić, M.; Jovičić, N.; Roby-Brami, A.; Popović, M.; Kostić, V.; Djordjević, A.; Djurić-Jovičić, M.; Jovičić, N.S.; Roby-Brami, A.; Popović, M.B.; et al. Quantification of Finger-Tapping Angle Based on Wearable Sensors. Sensors 2017, 17, 203. [Google Scholar] [CrossRef] [PubMed]
- Bobic, V.; Djuric-Jovicic, M.; Jarrasse, N.; Jecmenica-Lukic, M.; Petrovic, I.; Radovanovic, S.; Dragasevic, N.; Kostic, V. Spectral parameters for finger tapping quantification. Facta Univ.-Ser. Electron. Energ. 2017, 30, 585–597. [Google Scholar] [CrossRef] [Green Version]
- Senhadji, L.; Wendling, F. Epileptic transient detection: Wavelets and time-frequency approaches. Neurophysiol. Clin. Neurophysiol. 2002, 32, 175–192. [Google Scholar] [CrossRef]
Group | Statistics | H&Y | UPDRS Total | UPDRS III | FTN1 Score | FTN2 Score | ||
---|---|---|---|---|---|---|---|---|
Less AH | More AH | Less AH | More AH | |||||
PD | Avg ± std | 1.80 ± 0.79 | 42.60 ± 16.93 | 24.60 ± 9.07 | 1.67 ± 0.89 | 2.17 ± 0.94 | 1.75 ± 0.97 | 2.17 ± 0.94 |
Median | 2 | 36 | 19.5 | 2 | 2 | 2 | 2 | |
MSA | Avg ± std | 3.18 ± 0.75 | 77.73 ± 13.70 | 46.64 ± 9.08 | 2.31 ± 0.70 | 2.81 ± 0.54 | 2.38 ± 0.72 | 2.81 ± 0.54 |
Median | 3 | 79 | 45 | 2 | 3 | 2.5 | 3 | |
PSP | Avg ± std | 3.45 ± 0.93 | 74.45 ± 20.08 | 42.91 ± 13.14 | 2.17 ± 0.94 | 2.62 ± 0.77 | 2.08 ± 0.79 | 2.77 ± 0.73 |
Median | 4 | 79 | 46 | 2.5 | 3 | 2 | 3 | |
HC | Avg ± std | / | / | / | 0.44 ± 0.63 | 0.50 ± 0.73 | ||
Median | / | / | / | 0 | 0 |
Group | |||||
---|---|---|---|---|---|
PD | 2.04 ± 0.87 | 63.08 ± 8.54 | 5.00 ± 5.66 | 0–4 | 0 |
MSA | 1.71 ± 1.26 | 56.27 ± 36.11 | 4.03 ± 4.74 | 0–7 | 0–2 |
PSP | 2.37 ± 1.11 | 44.87 ± 31.74 | 5.62 ± 4.88 | 0–4 | 0–1 |
HC | 3.32 ± 0.89 | 80.48 ± 26.55 | 11.00 ± 10.99 | / | / |
Group | Case I Accuracy (%) | Case II Accuracy (%) |
---|---|---|
PD | 82.69 ± 2.72 | 84.00 |
MSA | 82.36 ± 8.32 | 89.65 |
PSP | 83.76 ± 7.86 | 90.91 |
TOTAL | 83.33 ± 6.50 | 88.16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobić, V.; Djurić-Jovičić, M.; Dragašević, N.; Popović, M.B.; Kostić, V.S.; Kvaščev, G. An Expert System for Quantification of Bradykinesia Based on Wearable Inertial Sensors. Sensors 2019, 19, 2644. https://doi.org/10.3390/s19112644
Bobić V, Djurić-Jovičić M, Dragašević N, Popović MB, Kostić VS, Kvaščev G. An Expert System for Quantification of Bradykinesia Based on Wearable Inertial Sensors. Sensors. 2019; 19(11):2644. https://doi.org/10.3390/s19112644
Chicago/Turabian StyleBobić, Vladislava, Milica Djurić-Jovičić, Nataša Dragašević, Mirjana B. Popović, Vladimir S. Kostić, and Goran Kvaščev. 2019. "An Expert System for Quantification of Bradykinesia Based on Wearable Inertial Sensors" Sensors 19, no. 11: 2644. https://doi.org/10.3390/s19112644
APA StyleBobić, V., Djurić-Jovičić, M., Dragašević, N., Popović, M. B., Kostić, V. S., & Kvaščev, G. (2019). An Expert System for Quantification of Bradykinesia Based on Wearable Inertial Sensors. Sensors, 19(11), 2644. https://doi.org/10.3390/s19112644