[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Computer model for leg agility quantification and assessment for Parkinson’s disease patients

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a progressive disorder that affects motor regulation. The Unified Parkinson’s Disease Rating Scale sponsored by the Movement Disorder Society (MDS-UPDRS) quantifies the illness progression based on clinical observations. The leg agility is an item in this scale, yet only a visual detection of the features is used, leading to subjectivity. Overall, 50 patients (85 measurements) with varying motor impairment severity were asked to perform the leg agility item while wearing inertial sensor units on each ankle. We quantified features based on the MDS-UPDRS and designed a fuzzy inference model to capture clinical knowledge for assessment. The model proposed is capable of capturing all details regardless of the task speed, reducing the inherent uncertainty of the examiner observations obtaining a 92.35% of coincidence with at least one expert. In addition, the continuous scale implemented in this work prevents the inherent “floor/ceil” effect of discrete scales. This model proves the feasibility of quantification and assessment of the leg agility through inertial signals. Moreover, it allows a better follow-up of the PD patient state, due to the repeatability of our computer model and the continuous output, which are not objectively achievable through visual examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shulman LM, Gruber-Baldini AL, Anderson KE, Vaughan CG, Reich SG, Fishman PS, Weiner WJ (2008) The evolution of disability in Parkinson disease. Mov Disord 23:790–796. https://doi.org/10.1002/mds.21879

    Article  PubMed  Google Scholar 

  2. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376. https://doi.org/10.1136/jnnp.2007.131045

    Article  CAS  PubMed  Google Scholar 

  3. De Lau LML, Giesbergen PCLM, De Rijk MC et al (2004) Incidence of parkinsonism and Parkinson disease in a general population the Rotterdam study. Neurology 63:1240–1244. https://doi.org/10.1212/01.WNL.0000140706.52798.BE

    Article  PubMed  Google Scholar 

  4. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N, for the Movement Disorder Society UPDRS Revision Task Force (2008) Movement Disorder Society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23:2129–2170. https://doi.org/10.1002/mds.22340

    Article  PubMed  Google Scholar 

  5. Ramaker C, Marinus J, Stiggelbout AM, van Hilten BJ (2002) Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov Disord 17:867–876. https://doi.org/10.1002/mds.10248

    Article  PubMed  Google Scholar 

  6. Lee HJ, Kim SK, Park H, Kim HB, Jeon HS, Jung YJ, Oh E, Kim HJ, Yun JY, Jeon BS, Park KS (2015) Clinicians’ tendencies to under-rate parkinsonian tremors in the less affected hand. PLoS One 10:e0131703. https://doi.org/10.1371/journal.pone.0131703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang K, Xiong W-X, Liu F-T et al (2016) Objective and quantitative assessment of motor function in Parkinson’s disease—from the perspective of practical applications. Ann Transl Med 4:90–90. https://doi.org/10.21037/atm.2016.03.09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stack E, Jupp K, Ashburn A (2004) Developing methods to evaluate how people with Parkinson’s disease turn 180°: an activity frequently associated with falls. Disabil Rehabil 26:478–484. https://doi.org/10.1080/09638280410001663085

    Article  CAS  PubMed  Google Scholar 

  9. Pan D, Dhall R, Lieberman A, Petitti DB (2015) A mobile cloud-based Parkinson’s disease assessment system for home-based monitoring. JMIR mHealth and uHealth 3:e29. https://doi.org/10.2196/mhealth.3956

    Article  PubMed  PubMed Central  Google Scholar 

  10. Darwish A, Hassanien AE (2011) Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors 11:5561–5595. https://doi.org/10.3390/s110605561

    Article  Google Scholar 

  11. Pantelopoulos A, Bourbakis NG (2010) A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst Man Cybern Part C Appl Rev 40:1–12. https://doi.org/10.1109/TSMCC.2009.2032660

    Article  Google Scholar 

  12. Kubota KJ, Chen JA, Little MA (2016) Machine learning for large-scale wearable sensor data in Parkinson’s disease: concepts, promises, pitfalls, and futures. Mov Disord 31:1314–1326. https://doi.org/10.1002/mds.26693

    Article  PubMed  Google Scholar 

  13. Maetzler W, Domingos J, Srulijes K, Ferreira JJ, Bloem BR (2013) Quantitative wearable sensors for objective assessment of Parkinson’s disease. Mov Disord 28:1628–1637

    Article  PubMed  Google Scholar 

  14. Pasluosta CF, Gassner H, Winkler J, Klucken J, Eskofier BM (2015) An emerging era in the management of Parkinson’s disease: wearable technologies and the internet of things. IEEE J Biomed Health Inform 19:1873–1881. https://doi.org/10.1109/JBHI.2015.2461555

    Article  PubMed  Google Scholar 

  15. Pastorino M, Arredondo MT, Cancela J, Guillen S (2013) Wearable sensor network for health monitoring: the case of Parkinson disease. J Phys Conf Ser 450:012055. https://doi.org/10.1088/1742-6596/450/1/012055

    Article  Google Scholar 

  16. Pierleoni P, Palma L, Belli A, Pernini L (2014) A real-time system to aid clinical classification and quantification of tremor in Parkinson’s disease. In: 2014 IEEE-EMBS international conference on biomedical and health informatics, BHI 2014. pp 113–116

  17. Rigas G, Tzallas AT, Tsipouras MG, Bougia P, Tripoliti EE, Baga D, Fotiadis DI, Tsouli SG, Konitsiotis S (2012) Assessment of tremor activity in the Parkinsons disease using a set of wearable sensors. IEEE Trans Inf Technol Biomed 16:478–487. https://doi.org/10.1109/TITB.2011.2182616

    Article  PubMed  Google Scholar 

  18. Dai H, Zhang P, Lueth TC (2015) Quantitative assessment of parkinsonian tremor based on an inertial measurement unit. Sensors 15:25055–25071. https://doi.org/10.3390/s151025055

    Article  PubMed  Google Scholar 

  19. Zwartjes DGM, Heida T, Van Vugt JPP et al (2010) Ambulatory monitoring of activities and motor symptoms in Parkinsons disease. IEEE Trans Biomed Eng 57:2778–2786. https://doi.org/10.1109/TBME.2010.2049573

    Article  Google Scholar 

  20. Chelaru MI, Duval C, Jog M (2010) Levodopa-induced dyskinesias detection based on the complexity of involuntary movements. J Neurosci Methods 186:81–89. https://doi.org/10.1016/j.jneumeth.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  21. Griffiths RI, Kotschet K, Arfon S, Xu ZM, Johnson W, Drago J, Evans A, Kempster P, Raghav S, Horne MK (2012) Automated assessment of bradykinesia and dyskinesia in Parkinson’s disease. J Parkinsons Dis 2:47–55. https://doi.org/10.3233/JPD-2012-11071

    Article  PubMed  Google Scholar 

  22. Tsipouras MG, Tzallas AT, Rigas G, Tsouli S, Fotiadis DI, Konitsiotis S (2012) An automated methodology for levodopa-induced dyskinesia: assessment based on gyroscope and accelerometer signals. Artif Intell Med 55:127–135. https://doi.org/10.1016/j.artmed.2012.03.003

    Article  PubMed  Google Scholar 

  23. Ossig C, Antonini A, Buhmann C, Classen J, Csoti I, Falkenburger B, Schwarz M, Winkler J, Storch A (2016) Wearable sensor-based objective assessment of motor symptoms in Parkinson’s disease. J Neural Transm 123:57–64

    Article  CAS  PubMed  Google Scholar 

  24. Del Din S, Godfrey A, Rochester L (2016) Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in healthy older adults and Parkinson’s disease: toward clinical and at home use. IEEE J Biomed Heal Informatics 20:838–847. https://doi.org/10.1109/JBHI.2015.2419317

    Article  Google Scholar 

  25. Salarian A, Burkhard PR, Vingerhoets FJG, Jolles BM, Aminian K (2013) A novel approach to reducing number of sensing units for wearable gait analysis systems. IEEE Trans Biomed Eng 60:72–77. https://doi.org/10.1109/TBME.2012.2223465

    Article  PubMed  Google Scholar 

  26. Niazmand K, Tonn K, Zhao Y et al (2011) Freezing of gait detection in Parkinson’s disease using accelerometer based smart clothes. 2011 IEEE Biomed Circuits Syst Conf 201–204. https://doi.org/10.1109/BioCAS.2011.6107762

  27. Moore ST, Yungher DA, Morris TR, Dilda V, MacDougall HG, Shine JM, Naismith SL, Lewis SJG (2013) Autonomous identification of freezing of gait in Parkinson’s disease from lower-body segmental accelerometry. J Neuroeng Rehabil 10:19. https://doi.org/10.1186/1743-0003-10-19

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mazilu S, Hardegger M, Zhu Z et al (2012) Online detection of freezing of gait with smartphones and machine learning techniques. Proc 6th Int ICST Conf Pervasive Comput Technol Healthc 123–130. https://doi.org/10.4108/icst.pervasivehealth.2012.248680

  29. Coste CA, Sijobert B, Pissard-Gibollet R et al (2014) Detection of freezing of gait in Parkinson disease: preliminary results. Sensors 14:6819–6827. https://doi.org/10.3390/s140406819

    Article  PubMed  Google Scholar 

  30. Tay A, Yen SC, Lee PY et al (2015) Freezing of gait (FoG) detection for Parkinson disease. In: 2015 10th Asian control conference: emerging control techniques for a sustainable world, ASCC 2015

  31. Patel S, Lorincz K, Hughes R, Huggins N, Growdon J, Standaert D, Akay M, Dy J, Welsh M, Bonato P (2009) Monitoring motor fluctuations in patients with Parkinsons disease using wearable sensors. IEEE Trans Inf Technol Biomed 13:864–873. https://doi.org/10.1109/TITB.2009.2033471

    Article  PubMed  PubMed Central  Google Scholar 

  32. Roy SH, Cole BT, Gilmore LD, de Luca CJ, Thomas CA, Saint-Hilaire MM, Nawab SH (2013) High-resolution tracking of motor disorders in Parkinson’s disease during unconstrained activity. Mov Disord 28:1080–1087. https://doi.org/10.1002/mds.25391

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cole BT, Roy SH, De Luca CJ, Nawab SH (2014) Dynamical learning and tracking of tremor and dyskinesia from wearable sensors. IEEE Trans Neural Syst Rehabil Eng 22:982–991. https://doi.org/10.1109/TNSRE.2014.2310904

    Article  PubMed  Google Scholar 

  34. Giuffrida JP, Riley DE, Maddux BN, Heldmann DA (2009) Clinically deployable kinesia technology for automated tremor assessment. Mov Disord 24:723–730. https://doi.org/10.1002/mds.22445

    Article  PubMed  Google Scholar 

  35. Das S, Trutoiu L, Murai A et al (2011) Quantitative measurement of motor symptoms in Parkinson’s disease: a study with full-body motion capture data. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2011:6789–6792. https://doi.org/10.1109/IEMBS.2011.6091674

    Article  Google Scholar 

  36. Giuberti M, Ferrari G, Contin L, Cimolin V, Azzaro C, Albani G, Mauro A (2015) Assigning UPDRS scores in the leg agility task of Parkinsonians: can it be done through BSN-based kinematic variables? IEEE Internet Things J 2:41–51. https://doi.org/10.1109/JIOT.2015.2390075

    Article  Google Scholar 

  37. Heldman DA, Filipkowski DE, Riley DE et al (2012) Automated motion sensor quantification of gait and lower extremity bradykinesia. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS IEEE, pp 1956–1959

  38. Ornelas-Vences C, Sanchez-Fernandez LP, Sanchez-Perez LA, Garza-Rodriguez A, Villegas-Bastida A (2017) Fuzzy inference model evaluating turn for Parkinson’s disease patients. Comput Biol Med 89:379–388. https://doi.org/10.1016/j.compbiomed.2017.08.026

    Article  PubMed  Google Scholar 

  39. Garza-Rodriguez A, Sanchez-Fernandez LP, Sanchez-Perez LA, et al (2017) Pronation and supination analysiS based on biomechanical signals from Parkinson’s disease patients. Artif Intell Med In Press:1–16. https://doi.org/10.1016/j.artmed.2017.10.001

  40. Sanchez-Perez LA, Sanchez-Fernandez LP, Shaout A, Martinez-Hernandez JM, Alvarez-Noriega MJ (2018) Rest tremor quantification based on fuzzy inference systems and wearable sensors. Int J Med Inform 114:6–17. https://doi.org/10.1016/j.ijmedinf.2018.03.002

    Article  PubMed  Google Scholar 

  41. Madgwick SOH, Harrison AJL, Vaidyanathan R (2011) Estimation of IMU and MARG orientation using a gradient descent algorithm. In: IEEE International Conference on Rehabilitation Robotics, pp 1–7

  42. Madgwick SOH (2010) An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Rep x-io Univ… 32. https://doi.org/10.1109/ICORR.2011.5975346

  43. Salarian A, Russmann H, Wider C, Burkhard PR, Vingerhoets FJG, Aminian K (2007) Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans Biomed Eng 54:313–322. https://doi.org/10.1109/TBME.2006.886670

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and healthcare professionals that contributed with their participation, ideas, and suggestions to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Ornelas-Vences.

Ethics declarations

All procedures performed in this work were in accordance with The Code of Ethics of the World Medical Association and with Data Protection and Privacy Laws. The collected data was under explicit written patients consent.

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ornelas-Vences, C., Sánchez-Fernández, L.P., Sánchez-Pérez, L.A. et al. Computer model for leg agility quantification and assessment for Parkinson’s disease patients. Med Biol Eng Comput 57, 463–476 (2019). https://doi.org/10.1007/s11517-018-1894-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1894-0

Keywords