Development of a Multispectral Albedometer and Deployment on an Unmanned Aircraft for Evaluating Satellite Retrieved Surface Reflectance over Nevada’s Black Rock Desert
<p>Albedometer design: (<b>a</b>) Top view of measuring device showing upward facing spectrometer and camera. Aluminum tape was added to maintain cool temperatures inside the box and an ultraviolet (UV)/infra-red (IR) filter was placed over the camera to capture more natural looking images; (<b>b</b>) Side view of measuring device showing the Global Positioning System (GPS) and 9 V battery which sit outside of the box; (<b>c</b>) Side view of measuring device showing the custom 3D-printed mount built-in to the box; (<b>d</b>) Ground control device showing radio for communicating to the measuring device, a button for initiating measurements, a screen for printing resulting albedo in real-time, and the Teensy 3.2 microcontroller.</p> "> Figure 2
<p>Albedometer components: (<b>a</b>) Top view of printed circuit board including components (from left to right, top to bottom): BME280 temperature sensor, BNO055 absolute orient, APC220 radio, Teensy 3.6 microcontroller, C12666MA micro-spectrometer, Back-up battery, VC0706 camera, UBX-G7020 GPS; (<b>b</b>) Bottom view of printed circuit board including the C12666MA spectrometer with diffuser and MLX90614 infra-red (IR) sensor.</p> "> Figure 3
<p>Transmissivity of polylactic acid (PLA) and Teflon diffusers using Ocean Optics HR2000 spectrometer. Both types of diffusers allowed very little light through (<1%). PLA was incorporated into the instrument design over polytetrafluoroethylene (PTFE) for ease of manufacture of the custom component by 3D printing and appropriate transmission for spectrometer integration time. The transmissivity decreases rapidly below 400 nm and for this reason we chose to limit the spectral range of our results to 400 nm.</p> "> Figure 4
<p>The cosine response of the instrument was measured to ensure proper use as an irradiance detector. Raw counts (no dark counts subtracted) from the spectrometer at 621 nm were recorded while tilting the detector every few degrees. The model curve includes an offset for the dark counts.</p> "> Figure 5
<p>The two spectrometers onboard the instrument were tested and corrected for their temperature dependence of the dark counts (<span class="html-italic">y</span>-axis). The hysteresis curve is a result of the temperature measurements and the spectrometer counts not changing at the same rate. A second-degree polynomial fit was taken from the resulting curve, and equations for modeling the dark counts of the spectrometer with respect to temperature were derived. This is done to provide the dark counts while the instrument is flying.</p> "> Figure 6
<p>A transfer function to account for the differences in the two micro-spectrometers was calculated. Multiple measurements were taken over the same surface (right) and the average was applied to one spectrometer in order to “equal” the other.</p> "> Figure 7
<p>Initial testing of the instrument was performed over various surfaces around the University of Nevada, Reno (UNR) campus. The observed spectral signatures (<b>a</b>) align with expected signatures for the examined surface types (<b>b</b>). The data collected here were obtained using the instrument in the handheld version.</p> "> Figure 8
<p>Configuration of instrument mounted to unmanned aircraft system (UAS). A long pole, approximately 2 m in length, was used to extend the instrument away from the body of the aircraft. This was done to limit the effects of the aircraft on albedo measurements, specifically those that would change the surrounding radiation field.</p> "> Figure 9
<p>Field site locations: (<b>a</b>) Overview of Black Rock Desert (BRD) located north of Reno. (<b>b</b>) Zoomed-in Google Earth image over the BRD showing proximity to annual Burning Man Festival (the half circle). (<b>c</b>) Zoomed in Google Earth image over the location where measurements were made. The blue circle (most north) represents “non-road” (40.749586, −119.261153), the red circle (most south) represents “road” (40.748192, −119.258969) and the black circle in the middle represents the location of the UAS pilot (40.748345, 119.263186).</p> "> Figure 9 Cont.
<p>Field site locations: (<b>a</b>) Overview of Black Rock Desert (BRD) located north of Reno. (<b>b</b>) Zoomed-in Google Earth image over the BRD showing proximity to annual Burning Man Festival (the half circle). (<b>c</b>) Zoomed in Google Earth image over the location where measurements were made. The blue circle (most north) represents “non-road” (40.749586, −119.261153), the red circle (most south) represents “road” (40.748192, −119.258969) and the black circle in the middle represents the location of the UAS pilot (40.748345, 119.263186).</p> "> Figure 10
<p>Albedometer measurements obtained over Nevada’s Black Rock Desert on 5 October 2017 at ~21:00 UTC and comparison to Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) retrieved surface reflectance. Plotted are the average of five measurements taken at each height above ground level (AGL) over road and non-road. Uncertainty in the albedometer measurements was calculated according to Equation (2) and displayed for only two heights to prevent overcrowding in the figure. The mean uncertainty was ~0.01 across all wavelengths for each measurement across all heights.</p> "> Figure 11
<p>Same caption as <a href="#sensors-18-03504-f010" class="html-fig">Figure 10</a> but for Terra MODIS.</p> "> Figure 12
<p>Same caption as <a href="#sensors-18-03504-f010" class="html-fig">Figure 10</a> and <a href="#sensors-18-03504-f011" class="html-fig">Figure 11</a> but for Land Satellite 7 (LANDSAT7) Enhanced Thematic Mapper Plus (ETM+).</p> "> Figure 13
<p>Histogram of neighboring LANDSAT7 ETM+ pixels over road location on 5 October 2017.</p> "> Figure 14
<p>Histogram of neighboring LANDSAT7 ETM+ pixels over non-road location on 5 October 2017.</p> "> Figure 15
<p>Histogram of all LANDSAT7 ETM+ pixels over Nevada’s Black Rock Desert on 5 October 2017. (<b>a</b>) Band 1 (450–520 nm). (<b>b</b>) Band 2 (520–600 nm). (<b>c</b>) Band 3 (630–690 nm). (<b>d</b>) Band 4 (770–900 nm).</p> "> Figure 16
<p>Monthly averages during October 2017 of MODIS collection 6.1 deep-blue (DB) aerosol optical depth (AOD) (550 nm) over California and Nevada, with the Black Rock Desert in the zoomed image: (<b>a</b>) Terra DB AOD. (<b>b</b>) Aqua DB AOD.</p> "> Figure A1
<p>Diagram of the detector field of view while flying. A change in height (<span class="html-italic">h</span>) above the ground level will affect the spatial area that the instrument senses at the surface (<span class="html-italic">D</span>).</p> ">
Abstract
:1. Introduction
2. Instrument Design and Testing
2.1. Sensor Components
2.1.1. C12666MA Micro-Spectrometer
2.1.2. Teensy 3.6/3.2 Microcontroller
2.1.3. BME 280 Pressure, Temperature, and Humidity Sensor
2.1.4. BNO055 Absolute Orientation
2.1.5. VC0706 TTL Serial Camera
2.1.6. UBX-G7020 GPS
2.1.7. APC220 Radio
2.1.8. Nokia Screen
2.1.9. MLX90614 Infra-Red (IR) Sensor
2.1.10. SD Card
2.1.11. Real-Time Clock
2.2. System Calibration and Testing
2.2.1. Diffuser Transmissivity
2.2.2. Angular Response
2.2.3. Temperature Compensation
2.2.4. Transfer Function
2.2.5. Preliminary Experiments
3. Methods
3.1. Nevada Black Rock Desert Experiment
3.2. Satellite Remote Sensing Products
4. Results
4.1. Albedo
4.2. Impact of Surface Albedo on Satellite AOD Retrievals
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGL | above ground level |
AOD | aerosol optical depth |
ARM | advanced reduced instruction set computer machine |
BRD | Black Rock Desert |
BRDF | Bidirectional Reflectance Distribution Function |
CMOS | complementary metal-oxide-semiconductor |
DB | deep-blue |
DOE | Department of Energy |
ETM+ | Enhanced Thematic Mapper Plus |
FAA | Federal Aviation Administration |
GIFOV | ground instantaneous field of view |
GPS | Global Positioning System |
I2C | inter-integrated circuit |
IDE | Integrated Development Environment |
IFOV | instantaneous field of view |
IR | infra-red |
LANDSAT7 | Land Satellite 7 |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NASA | National Aeronautics and Space Administration |
NOAA | National Oceanic and Atmospheric Administration |
PLA | polylactic acid |
PTFE | polytetrafluoroethylene |
SD | secure digital |
SSA | single scattering albedo |
UAS | unmanned aircraft systems |
UNR | University of Nevada, Reno |
U.S. | United States |
USGS | United States Geological Survey |
UV | ultraviolet |
VNIR | visible-near infrared |
Appendix A
Appendix B
References
- Schmitt, C.G.; All, J.D.; Schwarz, J.P.; Arnott, W.P.; Cole, R.J.; Lapham, E.; Celestian, A. Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru. Cryosphere 2015, 9, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Brovkin, V.; Boysen, L.; Raddatz, T.; Gayler, V.; Loew, A.; Claussen, M. Evaluation of vegetation cover and land-surface albedo in MPI-ESM CMIP5 simulations. J. Adv. Model. Earth Syst. 2013, 5, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Kondragunta, S.; Laszlo, I.; Liu, H.; Remer, L.A.; Huang, J.; Superczynski, S.; Ciren, P. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database. J. Geophys. Res. Atmos. 2016, 121. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. Clim. Chang. 2013, 423, 658–740. [Google Scholar]
- Jonsell, U.; Hock, R.; Holmgren, B. Spatial and temporal variations in albedo on Storglaciären, Sweden. J. Glaciol. 2003, 49, 59–68. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Song, D.-X. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981–2010 from multiple satellite products. J. Geophys. Res. Atmos. 2014. [Google Scholar] [CrossRef]
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM + surface reflectance products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Sun, Q.; Erb, A.M.; Li, Z.; Schaaf, C.B.; Zhang, X.; Román, M.O.; Scott, R.L.; Zhang, Q.; et al. Evaluation of the VIIRS BRDF, Albedo and NBAR products suite and an assessment of continuity with the long term MODIS record. Remote Sens. Environ. 2017, 201, 256–274. [Google Scholar] [CrossRef]
- Pinty, B.; Taberner, M.; Haemmerle, V.R.; Paradise, S.R.; Vermote, E.; Verstraete, M.M.; Gobron, N.; Widlowski, J.-L. Global-Scale Comparison of MISR and MODIS Land Surface Albedos. J. Clim. 2011, 24, 732–749. [Google Scholar] [CrossRef] [Green Version]
- Heikkinen, P.; Pulliainen, J.; Kyro, E.; Sukuvaara, T.; Suokanerva, H.; Kontu, A. Comparison of MODIS surface reflectance with mast-based spectrometer observations using CORINE20001and cover database. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 4117–4119. [Google Scholar]
- Maiersperger, T.K.; Scaramuzza, P.L.; Leigh, L.; Shrestha, S.; Gallo, K.P.; Jenkerson, C.B.; Dwyer, J.L. Characterizing LEDAPS surface reflectance products by comparisons with AERONET, field spectrometer, and MODIS data. Remote Sens. Environ. 2013, 136, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mira, M.; Weiss, M.; Baret, F.; Courault, D.; Hagolle, O.; Gallego-Elvira, B.; Olioso, A. The MODIS (collection V006) BRDF/albedo product MCD43D: Temporal course evaluated over agricultural landscape. Remote Sens. Environ. 2015, 170, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhao, X.; Kahn, R.; Mishchenko, M.; Remer, L.; Lee, K.-H.; Wang, M.; Laszlo, I.; Nakajima, T.; Maring, H. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Ann. Geophys. 2009, 27, 2755–2770. [Google Scholar] [CrossRef]
- Loría-Salazar, S.M.; Holmes, H.A.; Patrick Arnott, W.; Barnard, J.C.; Moosmüller, H. Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012. Atmos. Environ. 2016, 144, 345–360. [Google Scholar] [CrossRef]
- Sorek-Hamer, M.; Kloog, I.; Koutrakis, P.; Strawa, A.W.; Chatfield, R.; Cohen, A.; Ridgway, W.L.; Broday, D.M. Assessment of PM2.5 concentrations over bright surfaces using MODIS satellite observations. Remote Sens. Environ. 2015, 163, 180–185. [Google Scholar] [CrossRef]
- Hsu, N.C. Changes to MODIS Deep Blue Aerosol Products between Collection 6 and Collection 6.1. 2017. Available online: https://modis-atmos.gsfc.nasa.gov/sites/default/files/ModAtmo/modis_deep_blue_c61_changes.pdf (accessed on 4 October 2018).
- Uto, K.; Seki, H.; Saito, G.; Kosugi, Y.; Komatsu, T. Development of a Low-Cost Hyperspectral Whiskbroom Imager Using an Optical Fiber Bundle, a Swing Mirror, and Compact Spectrometers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3909–3925. [Google Scholar] [CrossRef]
- Coddington, O.; Schmidt, K.S.; Pilewskie, P.; Gore, W.J.; Bergstrom, R.W.; Roman, M.; Redemann, J.; Russell, P.B.; Liu, J.; Schaaf, C.C. Aircraft measurements of spectral surface albedo and its consistency with ground-based and space-borne observations. J. Geophys. Res. Atmos. 2008, 113, D17209. [Google Scholar] [CrossRef]
- Wendisch, M.; Müller, D.; Schell, D.; Heintzenberg, J. An Airborne Spectral Albedometer with Active Horizontal Stabilization. J. Atmos. Ocean. Technol. 2001, 18, 1856–1866. [Google Scholar] [CrossRef]
- Van der Hage, J.C.H. Interpretation of Field Measurements Made with a Portable Albedometer. J. Atmos. Ocean. Technol. 1992, 9, 420–425. [Google Scholar] [CrossRef] [Green Version]
- Teensy USB Development Board. Available online: https://www.pjrc.com/teensy/ (accessed on 29 April 2018).
- Micro-Spectrometer C12666MA, Photonics. 2017. Available online: https://www.hamamatsu.com/us/en/product/type/C12666MA/index.html (accessed on 10 October 2018).
- Arduino—Software. Available online: https://www.arduino.cc/en/Main/Software (accessed on 2 October 2018).
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112, D13211. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.F.; Roger, J.C.; Ray, J.P. MODIS Surface Reflectance User’s Guide Version 1.4. Available online: http://modis-sr.ltdri.org/guide/MOD09_UserGuide_v1.4.pdf (accessed on 29 August 2018).
- Barsi, J.; Lee, K.; Kvaran, G.; Markham, B.; Pedelty, J. The Spectral Response of the Landsat-8 Operational Land Imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.-C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Tsay, S.-C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, J.; Reid, J.S.; Hyer, E.J.; Hsu, N.C. Critical evaluation of the MODIS Deep Blue aerosol optical depth product for data assimilation over North Africa. Atmos. Meas. Tech. 2013, 6, 949–969. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.-J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Loría-Salazar, S.M.; University of Nevada, Reno, NV, USA; Sayer, A.M.; NASA Goddard Space Flight Center, Greenbelt, MD, USA. Personal communication, 2017.
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Schmid, B.; Shinozuka, Y. Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies. J. Geophys. Res. Atmos. 2016, 121, 4830–4854. [Google Scholar] [CrossRef]
- Crowley, J. Visible and Near-Infrared (0.4-2.5 Mu-M) Reflectance Spectra of Playa Evaporite Minerals. J. Geophys. Res.-Solid Earth 1991, 96, 16231–16240. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Nazeer, M. Validation of Aqua-MODIS C051 and C006 Operational Aerosol Products Using AERONET Measurements Over Pakistan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2074–2080. [Google Scholar] [CrossRef]
- Sioris, C.E.; McLinden, C.A.; Shephard, M.W.; Fioletov, V.E.; Abboud, I. Assessment of the aerosol optical depths measured by satellite-based passive remote sensors in the Alberta oil sands region. Atmos. Chem. Phys. 2017, 17, 1931–1943. [Google Scholar] [CrossRef] [Green Version]
- Arras, K.O. An Introduction to Error Propagation: Derivation, Meaning and Examples of Equation Cy = Fx Cx FxT; Technical Report: EPFL-ASL-TR-98-01 R3; École Polytechnique Fédérale de Lausanne (EPFL): Lausanne, Switzerland, 1998. [Google Scholar]
- Seidel, F.C.; Popp, C. Critical surface albedo and its implications to aerosol remote sensing. Atmos. Meas. Tech. 2012, 5, 1653–1665. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boehmler, J.M.; Loría-Salazar, S.M.; Stevens, C.; Long, J.D.; Watts, A.C.; Holmes, H.A.; Barnard, J.C.; Arnott, W.P. Development of a Multispectral Albedometer and Deployment on an Unmanned Aircraft for Evaluating Satellite Retrieved Surface Reflectance over Nevada’s Black Rock Desert. Sensors 2018, 18, 3504. https://doi.org/10.3390/s18103504
Boehmler JM, Loría-Salazar SM, Stevens C, Long JD, Watts AC, Holmes HA, Barnard JC, Arnott WP. Development of a Multispectral Albedometer and Deployment on an Unmanned Aircraft for Evaluating Satellite Retrieved Surface Reflectance over Nevada’s Black Rock Desert. Sensors. 2018; 18(10):3504. https://doi.org/10.3390/s18103504
Chicago/Turabian StyleBoehmler, Jayne M., S. Marcela Loría-Salazar, Chris Stevens, James D. Long, Adam C. Watts, Heather A. Holmes, James C. Barnard, and W. Patrick Arnott. 2018. "Development of a Multispectral Albedometer and Deployment on an Unmanned Aircraft for Evaluating Satellite Retrieved Surface Reflectance over Nevada’s Black Rock Desert" Sensors 18, no. 10: 3504. https://doi.org/10.3390/s18103504