Inverse Piezoresistive Nanocomposite Sensors for Identifying Human Sitting Posture
<p>The structure of the proposed system.</p> "> Figure 2
<p>The piezoresistive response of the sensors was found to fit a modified log-normal response, increasing in resistance between 0 to the critical strain, followed by a decrease in resistance over the working strain range of the sensor.</p> "> Figure 3
<p>Optimized sensor (<b>a</b>) complete sensor package; (<b>b</b>) piezoresistive response; (<b>c</b>) cyclic piezoresistive response of the sensor.</p> "> Figure 4
<p>The hardware components of the mobile posture monitor.</p> "> Figure 5
<p>The Circuit diagram of the hardware part.</p> "> Figure 6
<p>Data output from a test session with a user who changed posture form normal to hunchbacked. The inverse piezoresistivity results in distinct patterns for different sitting postures.</p> "> Figure 7
<p>The 3D-printed electronics housing: (<b>a</b>) top view of the housing; (<b>b</b>) bottom view of the housing.</p> "> Figure 8
<p>Wearable device for identifying sitting postures.</p> "> Figure 9
<p>The sampling signal before and after filtering: (<b>a</b>) sampling signal before filtering; (<b>b</b>) sampling signal after filtering.</p> "> Figure 10
<p>The four time-domain features: (<b>a</b>) the mean of different sitting signals; (<b>b</b>) the standard deviation of different sitting signals; (<b>c</b>) the maximum of different sitting signals; (<b>d</b>) the minimum of different sitting signals. Units for times (<span class="html-italic">x</span>-axis) are in seconds.</p> "> Figure 11
<p>Three kinds of sitting postures: (<b>a</b>) normal sitting posture; (<b>b</b>) slight hunchback; (<b>c</b>) severe hunchback.</p> "> Figure 12
<p>The influence of different number of hidden neurons on the performance of the model.</p> "> Figure 13
<p>Structure of the BP neural network.</p> "> Figure 14
<p>The mean squared error decreases with the iterations of model training.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Structure
2.2. Data Acquisition
2.2.1. Sensor Manufacturing
2.2.2. Acquisition Device
2.2.3. Device Installation
2.3. Data Processing
2.3.1. Preprocessing
2.3.2. Feature Extraction
2.3.3. Classification
3. Results and Discussion
3.1. Data Set
3.2. Neuron Selection
3.3. Training Function Selection
3.4. Performance Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Uffelen, J.G.; Wong, J.; Chau, J.Y.; Riphagen, I.; Gilson, N.D.; Burton, N.W.; Healy, G.N.; Thorp, A.A.; Clark, B.K.; Gardiner, P.A.; et al. Occupational sitting and health risks: A systematic review. Am. J. Prev. Med. 2010, 39, 379–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelsey, J.; Hardy, R. Driving motor vehicles as risk factor for acute herniated lumbar intervertebral disc. Am. J. Epidemiol. 1975, 102, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, J. An epidemiological study of the relationship between occupations and acute herniated lumbar intervertebral discs. Int. J. Epidemiol. 1975, 4, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Weiner, C.; Kalichman, L.; Ribak, J.; Alperovitch-Najenson, D. Repositioning a Passive Patient in Bed: Choosing an Ergonomically Advantageous Assistive Device. Appl. Ergon. 2017, 60, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Parssinen, O.; Kauppinen, M. Associations of reading posture, gaze angle and reading distance with myopia and myopic progression. Acta Ophthalmol. 2016, 94, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Girish, N.; Ramachandra, K. Prevalence of Musculoskeletal Disorders among Cashew Factory Workers. Arch. Environ. Occup. Health 2012, 67, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Caneiro, J.P.; Burnett, A.; Barach, A.; Tveit, O.; Olafsdottir, K.; O’Sullivan, P.; O’Neil, D. The influence of different sitting posture on head/neck posture and muscle activity. Manu. Ther. 2010, 15, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Ariens, G.; Bongers, P.; Douwes, M.; Miedema, M.; Hoogendoorn, W.; van der Wal, G.; Bouter, L.; van Mechelen, W. Are neck flexion, neck rotation, and sitting at work risk factors for neck pain? Results of a prospective cohort study. Occup. Environ. Med. 2001, 58, 200–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palazzo, C.; Ravaud, J.F.; Papelard, A.; Ravaud, P.; Poiraudeau, S. The Burden of Musculoskeletal Conditions. PLoS ONE 2014, 9, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.M.; Liu, M.F.; Cook, J. Sedentary lifestyle as a risk factor for low back pain: A systematic review. Int. Arch. Occup. Environ. Health 2009, 82, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Hartvigsen, J.; Leboeuf-Yde, C.; Lings, S. Is sitting-while-at work associated with low back pain? A systematic, critical literature review. Scand. J. Public Health 2000, 28, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Lis, A.M.; Black, K.M.; Korn, H.; Nordin, M. Association between sitting and occupational LBP. Eur. Spine J. 2007, 16, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Buckle, P. Current techniques for assessing physical exposure to worked-related musculoskeletal risks, with emphasis on posture-based methods. Ergonomics 1999, 42, 674–695. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, O.; Grahamslaw, K.M.; Kendell, M. The effect of different standing and sitting postures on trunk muscle activity in a pain-free population. Spine 2002, 27, 1238–1244. [Google Scholar] [CrossRef]
- Ehrlich, G.E. Back pain. J. Rheumatol. Suppl. 2003, 67, 26–31. [Google Scholar] [PubMed]
- Jaimes, A.; Liu, J.Y. Sit straight (and tell me what I did today): A human posture alarm and activity summarization system. In Proceedings of the 2nd ACM Workshop on Continuous Archival and Retrieval of Personal Experiences, Hilton, Singapore, 11 November 2005; pp. 23–24. [Google Scholar]
- Paliyawan, P.; Nukoolkit, C.; Mongkolnam, P. Prolonged sitting detection for office workers syndrome prevention using Kinect. In Proceedings of the 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Nakhon Ratchasima, Thailand, 14–17 May 2014; pp. 68–75. [Google Scholar]
- Aissaoui, R.; Lacoste, M.; Dansereau, J. Analysis of sliding and pressure distribution during a repositioning of persons in a simulator chair. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Li, W.; Gravina, R.; Fortino, G. Posture Detection on Smart Cushion for Wheelchair Users. Sensors 2017, 17, 719–737. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.; Roh, J.; Park, H.-J.; Lee, K.J.; Hyeong, J.; Kim, S.; Lee, B. Sitting posture monitoring system based on a low-cost load cell using machine learning. Sensors 2018, 18, 208. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, H.; Park, J.; Jee, K.-K.; Lim, J.A.; Park, M.-C. Real-time sitting posture correction system based on highly durable and washable electronic textile pressure sensors. Sens. Actuators A Phys. 2018, 269, 394–400. [Google Scholar] [CrossRef]
- Knite, M.; Ozols, K.; Zavickis, J.; Tupureina, V.; Klemenoks, I.; Orlovs, R. Elastomer-carbon nanotube composites as prospective multifunctional sensing materials. J. Nanosci. Nanotechnol. 2009, 9, 3587–3592. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.J.; Mitra, D.; Peterson, K.; Maharbiz, M. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 2012, 12, 1821–1825. [Google Scholar] [CrossRef] [PubMed]
- Johnson, O.K.; Kaschner, G.C.; Mason, T.A.; Fullwood, D.T.; Hansen, G. Optimization of nickel nanocomposite for large strain sensing applications. Sens. Actuators A Phys. 2011, 166, 40–47. [Google Scholar] [CrossRef]
- Yao, S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014, 6, 2345–2352. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Yoon, Y.J.; Park, I. Ultra-Stretchable and Skin-Mountable Strain Sensors using Carbon Nanotubes-Ecoflex Nanocomposites. Nanotechnology 2015, 26, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.; Lee, J.W.; Cha, J.Y.; Kim, Y.J.; Choi, Y.S.; Schulz, M.J.; Moon, C.K.; Lim, K.T.; Kim, S.Y.; Kang, I. A Spray-On Carbon Nanotube Artificial Neuron Strain Sensor for Composite Structural Health Monitoring. Sensors 2016, 16, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Kyung, K.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Bilodeau, R.A.; Fullwood, D.T.; Colton, J.S.; Yeager, J.D.; Bowden, A.E.; Park, T. Evolution of nano-junctions in piezoresistive nanostrand composites. Compos. Part B 2015, 72, 45–52. [Google Scholar] [CrossRef]
- Koecher, M.C.; Pande, J.H.; Fullwood, D.T.; Merkley, S.; Bowden, A.E.; Henderson, S. Piezoresistive in-situ strain sensing of composite laminate structures. Compos. Part B 2015, 69, 534–541. [Google Scholar] [CrossRef]
- Baradoy, D.A. Composite Based Modeling of Nickel Nano-Composite Strain Sensors with Applications in Fetal Monitoring. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2015. [Google Scholar]
- Johnson, T.M.; Fullwood, D.T.; Hansen, G. Strain monitoring of carbon fiber composite via embedded nickel nano-particles. Compos. Part B 2012, 43, 1155–1163. [Google Scholar] [CrossRef]
- Panjabi, M.M.; Oxland, T.R.; Yamamoto, I. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J. Bone Joint Surg. Am. 1994, 76, 413–1163. [Google Scholar] [CrossRef] [PubMed]
- Floyd, W.F.; Silver, P.H. The function of the erectores spinae muscles in certain movements and postures in man. J. Physiol. 1995, 129, 184–203. [Google Scholar] [CrossRef]
- Nachemson, A. Towards a better understanding of low-back-pain: A review of the mechanics of the lumbar disc. Rheumatol. Rehabil. 1975, 14, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural. Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Yoshua, B.; Yann, L.; Geoffrey, H. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar]
- Dariouchy, A.; Aassif, E.; Lekouch, K.; Bouirden, L.; Maze, G. Prediction of the intern parameters tomato greenhouse in a semi-arid area using a time-series model of artificial neural networks. Measurement 2009, 42, 456–463. [Google Scholar] [CrossRef]
- Chudzik, S. The idea of using artificial neural network in measurement system with hot probe for testing parnmeters of heat-insulating materials. Measurement 2009, 42, 764–770. [Google Scholar] [CrossRef]
3% NiNs | 5% NiNs | 6% NiNs | 7% NiNs | 11% NiNs | |
---|---|---|---|---|---|
0.5% NCCF | NC | NC | NC | NC | NC |
0.75% NCCF | NC | NC | 8.56/0.23 | 9.35/0.23 | MF |
1.0% NCCF | NC | NC | 8.61/0.097 | 8.5/0.20 | MF |
1.5% NCCF | NC | NC | 3.79/0.036 | 7.63/0.037 | MF |
2.0% NCCF | NC | 5.49/0.12 | 4.55/0.054 | 3.08/0.049 | 13.5/0.006 |
No. | Parameters | Setting |
---|---|---|
1 | Total number of network layers | 3 layers |
2 | Number of hidden layer | 1 hidden layer |
3 | Number of neurons in hidden layer | 4 neurons |
4 | Training function | trainlm |
5 | Learning rate | 0.001 |
Gender | Number | Age | Height | Weight |
---|---|---|---|---|
Female | 17 | 20∼32 years old | 158 cm∼168 cm | 45 kg∼51 kg |
Male | 18 | 21∼45 years old | 167 cm∼182 cm | 55 kg∼92 kg |
Training Functions | Algorithm | Accuracy | Iterations | Mean Square Error |
---|---|---|---|---|
traingd | Gradient Descent | 96.63% | 14145 | 0.0268 |
traingdm | Gradient Descent with Momentum | 97.67% | 9453 | 0.0211 |
traingda | Gradient Descent with Adaptive Learning Rate | 97.79% | 3040 | 0.0184 |
trainrp | Resilient Backpropagation | 98.29% | 231 | 0.0094 |
trainlm | Levenberg-Marquardt | 98.76% | 43 | 0.0042 |
Normal Posture | Slight Hunchback | Severe Hunchback | Sensitivity | |
---|---|---|---|---|
Normal Posture | 246 | 0 | 0 | 100% |
Slight Hunchback | 0 | 403 | 7 | 98.29% |
Severe Hunchback | 0 | 6 | 388 | 98.48% |
Precision | 100% | 98.53% | 98.23% | 98.76% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Z.; Bowden, A.E.; Zhang, D.; Wan, J.; Liu, W.; Li, X.; Baradoy, D.; Fullwood, D.T. Inverse Piezoresistive Nanocomposite Sensors for Identifying Human Sitting Posture. Sensors 2018, 18, 1745. https://doi.org/10.3390/s18061745
Qian Z, Bowden AE, Zhang D, Wan J, Liu W, Li X, Baradoy D, Fullwood DT. Inverse Piezoresistive Nanocomposite Sensors for Identifying Human Sitting Posture. Sensors. 2018; 18(6):1745. https://doi.org/10.3390/s18061745
Chicago/Turabian StyleQian, Zhe, Anton E. Bowden, Dong Zhang, Jia Wan, Wei Liu, Xiao Li, Daniel Baradoy, and David T. Fullwood. 2018. "Inverse Piezoresistive Nanocomposite Sensors for Identifying Human Sitting Posture" Sensors 18, no. 6: 1745. https://doi.org/10.3390/s18061745