Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning
<p>Types of sitting postures adopted for the experiment: (<b>a</b>) upright sitting with backrest (UPwB); (<b>b</b>) upright sitting without backrest (UPwoB); (<b>c</b>) front sitting with backrest (FRwB); (<b>d</b>) front sitting without backrest (FRwoB); (<b>e</b>) left sitting (LE); and (<b>f</b>) right sitting (RI).</p> "> Figure 2
<p>(<b>a</b>) Structure of the sitting posture monitoring system (SPMS); and (<b>b</b>) arrangement and structure of the pressure sensors in the SPMS.</p> "> Figure 3
<p>Sitting postures and areas by BWR: (<b>a</b>) medial-lateral direction; and (<b>b</b>) weight (<span class="html-italic">X</span>-axis) plus anterior-posterior direction (<span class="html-italic">Y</span>-axis).</p> "> Figure 4
<p>Hyperplane with maximum margins in the linear classifications of two classes (circles and squares).</p> "> Figure 5
<p>Average classification rate of the random forest classifier according to the number of trees.</p> "> Figure 6
<p>Confusion matrix of the classification results for each classifier in subject 8. (<b>a</b>) Support vector machine using the radial basis function kernel; (<b>b</b>) support vector machine using the linear kernel; (<b>c</b>) linear discriminant analysis; (<b>d</b>) quadratic discriminant analysis; (<b>e</b>) Naïve Bayes classifier; (<b>f</b>) random forest classifier; and (<b>g</b>) decision Tree.</p> "> Figure 7
<p>Classification value of the test data for each classifier in subject 8. (<b>a</b>) Support vector machine using the radial basis function kernel; (<b>b</b>) support vector machine using the linear kernel; (<b>c</b>) linear discriminant analysis; (<b>d</b>) quadratic discriminant analysis; (<b>e</b>) Naïve Bayes classifier; (<b>f</b>) random forest classifier; and (<b>g</b>) decision tree.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Definition of Sitting Posture
2.2. System
2.3. Procedures
2.4. Data Collection
2.5. Classifiers
2.5.1. Support Vector Machine
2.5.2. Other Classifiers
2.5.3. One-Against-All strategy
3. Results
4. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SPMS | Sitting posture monitoring system |
RBF | Radial basis function |
BWR | Body weight ratio |
UPwB | Upright sitting with backrest |
UPwoB | Upright sitting without backrest |
FRwB | Front sitting with backrest |
FRwoB | Front sitting without backrest |
LE | Left sitting |
RI | Right sitting |
PC | Personal computer |
RSUM | Ratio of SPMS to body weight |
RML | Ratio of distribution in the medial-lateral direction |
RAP | Ratio of distribution by the anterior-posterior direction |
SVM | Support vector machine |
LDA | Linear discriminant analysis |
QDA | Quadratic discriminant analysis |
NB | Naïve Bayes |
RF | Random forest |
DT | Decision tree |
References
- Robertson, M.; Amick, B.C.; DeRango, K.; Rooney, T.; Bazzani, L.; Harrist, R.; Moore, A. The effects of an office ergonomics training and chair intervention on worker knowledge, behavior and musculoskeletal risk. Appl. Ergon. 2009, 40, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Choobineh, A.; Motamedzade, M.; Kazemi, M.; Moghimbeigi, A.; Heidari Pahlavian, A. The impact of ergonomics intervention on psychosocial factors and musculoskeletal symptoms among office workers. Int. J. Ind. Ergon. 2011, 41, 671–676. [Google Scholar] [CrossRef]
- Goossens, R.H.M.; Netten, M.P.; Van Der Doelen, B. An office chair to influence the sitting behavior of office workers. Work 2012, 41, 2086–2088. [Google Scholar] [PubMed]
- Menéndez, C.C.; Amick, B.C.; Robertson, M.; Bazzani, L.; DeRango, K.; Rooney, T.; Moore, A. A replicated field intervention study evaluating the impact of a highly adjustable chair and office ergonomics training on visual symptoms. Appl. Ergon. 2012, 43, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Taieb-Maimon, M.; Cwikel, J.; Shapira, B.; Orenstein, I. The effectiveness of a training method using self-modeling webcam photos for reducing musculoskeletal risk among office workers using computers. Appl. Ergon. 2012, 43, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Vergara, M.; Page, Á. System to measure the use of the backrest in sitting-posture office tasks. Appl. Ergon. 2000, 31, 247–254. [Google Scholar] [CrossRef]
- Tan, H.Z.; Slivovsky, L.A.; Pentland, A. A sensing chair using pressure distribution sensors. IEEE/ASME Trans. Mechatron. 2001, 6, 261–268. [Google Scholar] [CrossRef]
- Labeodan, T.; Aduda, K.; Zeiler, W.; Hoving, F. Experimental evaluation of the performance of chair sensors in an office space for occupancy detection and occupancy-driven control. Energy Build. 2016, 111, 195–206. [Google Scholar] [CrossRef]
- Zemp, R.; Fliesser, M.; Wippert, P.M.; Taylor, W.R.; Lorenzetti, S. Occupational sitting behaviour and its relationship with back pain—A pilot study. Appl. Ergon. 2016, 56, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Rhuma, A.; Naqvi, S.; Wang, L.; Chambers, J. Posture Recognition Based Fall Detection System for Monitoring an Elderly Person in a Smart Home Environment. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 1. [Google Scholar]
- Kim, K.S.; Choi, H.H.; Moon, C.S.; Mun, C.W. Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 2011, 11, 740–745. [Google Scholar] [CrossRef]
- Zhu, M.; Martínez, A.M.; Tan, H.Z. Template-based Recognition of Static Sitting Postures. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshop 2003, 5, 1–6. [Google Scholar]
- Meyer, J.; Arnrich, B.; Schumm, J.; Troster, G. Design and modeling of a textile pressure sensor for sitting posture classification. IEEE Sens. J. 2010, 10, 1391–1398. [Google Scholar] [CrossRef]
- Zemp, R.; Tanadini, M.; Plüss, S.; Schnüriger, K.; Singh, N.B.; Taylor, W.R.; Lorenzetti, S. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors. Biomed Res. Int. 2016. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Li, W.; Gravina, R.; Fortino, G. Posture detection based on smart cushion for wheelchair users. Sensors 2017, 17, 719. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, E.; Hünting, W. Ergonomics of posture-Review of various problems of standing and sitting posture. Appl. Ergon. 1977, 8, 135–140. [Google Scholar] [CrossRef]
- Hyeong, J.H.; Roh, J.R.; Park, S.B.; Kim, S.Y.; Chung, K.R. A trend analysis of dynamic chair and applied technology. Ergon. Soc. Korea 2014, 33, 267–279. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Xiong, J.; Cai, L.; Wang, F.; He, X. SVM-based spectral analysis for heart rate from multi-channel WPPG sensor signals. Sensors 2017, 17, 506. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Foody, G.M. Multiclass and binary SVM classification: Implications for training and classification users. IEEE Geosci. Remote Sens. Lett. 2008, 5, 241–245. [Google Scholar] [CrossRef]
- AlOmari, F.; Liu, G. Analysis of Extracted Forearm sEMG Signal Using LDA, QDA, K-NN Classification Algorithms. Open Autom. Control Syst. J. 2014, 6, 108–116. [Google Scholar] [CrossRef]
- Bolin, J.H.; Finch, W.H. Supervised classification in the presence of misclassified training data: A Monte Carlo simulation study in the three group case. Front. Psychol. 2014, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jin, K.; Kim, J.; Heo, G. Development of a data-mining methodology for spent nuclear fuel forensics. J. Radioanal. Nucl. Chem. 2017, 312, 495–505. [Google Scholar] [CrossRef]
- Bermejo, P.; Gámez, J.A.; Puerta, J.M. Knowledge-Based Systems Speeding up incremental wrapper feature subset selection with Naive Bayes classifier. Knowl. Based Syst. 2014, 55, 140–147. [Google Scholar] [CrossRef]
- Ellis, K.; Kerr, J.; Godbole, S.; Lanckriet, G.; Wing, D.; Marshall, S. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Physiol. Meas. 2014, 35, 2191–2203. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Q.; He, L.; Guo, T. The one-against-all partition based binary tree support vector machine algorithms for multi-class classification. Neurocomputing 2013, 113, 1–7. [Google Scholar] [CrossRef]
Subject | LDA | QDA | NB | RF | DT | ||
---|---|---|---|---|---|---|---|
1 | 0.9736 | 0.7850 | 0.8197 | 0.8502 | 0.7642 | 0.9182 | 0.6089 |
2 | 0.9777 | 0.8579 | 0.8830 | 0.8774 | 0.7618 | 0.9443 | 0.7145 |
3 | 0.9678 | 0.8860 | 0.9020 | 0.9035 | 0.9006 | 0.9327 | 0.8728 |
4 | 0.9722 | 0.8944 | 0.9042 | 0.9042 | 0.8806 | 0.9361 | 0.8125 |
5 | 0.9721 | 0.8830 | 0.9164 | 0.9206 | 0.8733 | 0.9415 | 0.7604 |
6 | 0.9624 | 0.8790 | 0.8887 | 0.8915 | 0.7928 | 0.9263 | 0.6787 |
7 | 0.9721 | 0.8607 | 0.9011 | 0.9248 | 0.8482 | 0.9248 | 0.8301 |
8 | 0.9794 | 0.8971 | 0.9000 | 0.9191 | 0.9235 | 0.9515 | 0.9176 |
9 | 0.9705 | 0.8215 | 0.8555 | 0.8687 | 0.8451 | 0.9100 | 0.7153 |
Average | 0.9720 | 0.8627 | 0.8856 | 0.8956 | 0.8433 | 0.9317 | 0.7679 |
p-value |
Included Sensor | LDA | QDA | NB | RF | ||
---|---|---|---|---|---|---|
S1, S2, S3, S4 | 0.9720 | 0.8627 | 0.8856 * | 0.8956 | 0.8433 | 0.9317 |
S1, S2, S3 | 0.9621 ** | 0.8367 | 0.8693 * | 0.8858 | 0.8306 | 0.9250 * |
S1, S2, S4 | 0.9655 | 0.8193 * | 0.8463 * | 0.8720 | 0.8235 | 0.9250 * |
S1, S3, S4 | 0.9684 | 0.7844 * | 0.8031 * | 0.8594 * | 0.8120 * | 0.9232 ** |
S2, S3, S4 | 0.9632 * | 0.8174 | 0.8440 ** | 0.8744 | 0.8272 | 0.9219 * |
S1, S2 | 0.9280 ** | 0.6528 ** | 0.6897 ** | 0.7514 ** | 0.7525 ** | 0.8943 ** |
S1, S3 | 0.9388 ** | 0.6754 ** | 0.7165 ** | 0.8020 ** | 0.8037 * | 0.9048 ** |
S1, S4 | 0.9413 ** | 0.6333 ** | 0.7315 ** | 0.8021 * | 0.7226 ** | 0.9060 ** |
S2, S3 | 0.9417 ** | 0.6780 * | 0.7199 ** | 0.8105 * | 0.7594 * | 0.8973 * |
S2, S4 | 0.9452 ** | 0.6733 ** | 0.7649 ** | 0.8305 * | 0.8130 * | 0.9114 * |
S3, S4 | 0.9372 ** | 0.6105 * | 0.6886 ** | 0.7352 ** | 0.7058 * | 0.8851 ** |
S1 | 0.8435 ** | 0.3795 ** | 0.5104 ** | 0.6420 ** | 0.6420 ** | 0.7864 ** |
S2 | 0.8467 ** | 0.4281 ** | 0.5285 ** | 0.6540 ** | 0.6540 ** | 0.7922 ** |
S3 | 0.8090 ** | 0.2495 ** | 0.4710 ** | 0.5547 ** | 0.5547 ** | 0.7174 ** |
S4 | 0.8177 ** | 0.2778 ** | 0.4837 ** | 0.5462 ** | 0.5462 ** | 0.7265 ** |
Author | Number of Sensors | Location of Sensors | Number of Subjects | Classification Algorithm | Number of Posture | Classification Accuracy |
---|---|---|---|---|---|---|
Manli Zhu et al. [12] | Two pressure sensor sheets (42 × 48 pressure sensor) | Seat plate and backrest | 50 | Slide inverse Regression | 10 | 86% |
Zemp et al. [14] | 16 pressure sensors | Seat plate, backrest, and armrest | 41 | Random Forest | 7 | 90.9% |
Jan Meyer et al. [13] | 96 pressure sensors | Seat plate | 9 | Naïve Bayes | 16 | 82% |
Congcong Ma et al. [15] | 12~5 pressure sensors | Seat plate and backrest | 11 | j48 decision tree | 5 | 99.51% |
Proposed method | 4 load cells | Seat plate | 9 | SVM using RBF kernel | 6 | 97.20% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roh, J.; Park, H.-j.; Lee, K.J.; Hyeong, J.; Kim, S.; Lee, B. Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning. Sensors 2018, 18, 208. https://doi.org/10.3390/s18010208
Roh J, Park H-j, Lee KJ, Hyeong J, Kim S, Lee B. Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning. Sensors. 2018; 18(1):208. https://doi.org/10.3390/s18010208
Chicago/Turabian StyleRoh, Jongryun, Hyeong-jun Park, Kwang Jin Lee, Joonho Hyeong, Sayup Kim, and Boreom Lee. 2018. "Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning" Sensors 18, no. 1: 208. https://doi.org/10.3390/s18010208