Indoor Air Quality Analysis Using Deep Learning with Sensor Data
<p>Module diagram for the periodic measurement and transfer of air quality data.</p> "> Figure 2
<p>Sensor meter case made using 3D printer (<b>a</b>) and sensor meter (<b>b</b>,<b>c</b>).</p> "> Figure 3
<p>CO<sub>2</sub> measurements of four sensor meters in <a href="#sensors-17-02476-f003" class="html-fig">Figure 3</a>.</p> "> Figure 4
<p>A visualization of six air quality indicators collected from 22 February to 22 April 2016 in 3D.</p> "> Figure 5
<p>Part of <a href="#sensors-17-02476-f004" class="html-fig">Figure 4</a> showing well-clustered data points.</p> "> Figure 6
<p>Part of <a href="#sensors-17-02476-f004" class="html-fig">Figure 4</a> showing interspersed data points.</p> "> Figure 7
<p>Two-dimensional (<b>a</b>) and three-dimensional tensor (<b>b</b>) representation of data.</p> "> Figure 8
<p>Gated recurrent units (GRU) network for air quality prediction.</p> "> Figure 9
<p>Analysis of dust data.</p> "> Figure 10
<p>Analysis of CO<sub>2</sub> data.</p> "> Figure 11
<p>Performance of the GRU model with different time-step sizes.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Air Quality Prediction Using Machine Learning
2.2. Time Series Data Learning
3. Indoor Air Quality Prediction System Using Deep Learning
3.1. Sensor Data
3.1.1. Sensor Instrument for Data Collection
3.1.2. Data Preparation
Algorithm 1. 3D tensor construction |
Input: CSV record , |
Fold rate , |
Time step |
Initialize Model parameter fold rate is used for K-fold cross validation1. |
1. Select_fecature() ← Select |
2. Set_feacutre_vector() ← Sort through time |
3. ← Pile with times in order |
4. ← Separate by fold rate |
Output: Training Dataset/Test Dataset, |
3.2. Machine Learning Models for Time Series Data
3.2.1. Linear Regression
3.2.2. Long Short-Term Memory Network
3.2.3. Gated Recurrent Unit Network
3.3. Indoor Air Quality Prediction Using GRU
3.3.1. System Construction
Algorithm 2. GRU Learning |
Input: Training Dataset , |
Input/Output values , |
Hidden layer nodes , |
Time step |
1. GRU_model() ← Train model with and parameters |
2. ← Predict output values based on GRU_model() with |
Output: Predicted values of test data |
3.3.2. Time Step Search
Algorithm 3. Time-step size search |
Input: Time-step size |
While () { |
Learn GRU_model() with by Algorithm 2 |
Get the accuracy of the model on test data |
Record |
Compute the maximum accuracy length l within period |
if () |
else |
} |
Output: Time-step size candidates |
4. Experiments and Results
4.1. Time Series Data Prediction
4.2. Optimal Timp Step Search
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [Google Scholar]
- Allen, R.; Larson, T.; Sheppard, L.; Wallace, L.; Liu, L.J.S. Use of Real-Time Light Scattering Data to Estimate the Contribution of Infiltrated and Indoor-Generated Particles to Indoor Air. Environ. Sci. Technol. 2003, 37, 3484–3492. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.K.; Bayer-Oglesby, L.; Colvile, R.; Götschi, T.; Jantunen, M.J.; Künzli, N.; Kulinskaya, E.; Schweizer, C.; Nieuwenhuijsen, M.J. Determinants of indoor air concentrations of PM2.5, black smoke and NO2 in six European cities (EXPOLIS study). Atmos. Environ. 2006, 40, 1299–1313. [Google Scholar] [CrossRef]
- Zhao, T.; Xue, H. Regression Analysis and Indoor Air Temperature Model of Greenhouse in Northern Dry and Cold Regions. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Nanchang, China, 22–25 October 2010; Springer: Berlin/Heidelberg, Germany, 2010; Volume 345, pp. 252–258. [Google Scholar]
- Temko, A.; Climent, N. Classification of acousticevents using SVM-based clustering schems. Pattern Recognit. 2006, 39, 682–694. [Google Scholar] [CrossRef]
- Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin, Germany, 2012; Volume 385. [Google Scholar]
- Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures. In Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML’15), Lille, France, 6–11 July 2015; Volume 37, pp. 2342–2350. [Google Scholar]
- Saad, S.M.; Andrew, A.M.; Shakaff, A.Y.M.; Saad, A.R.M.; Kamarudin, A.M.Y.; Zakaria, A. Classifying Sources Influencing Indoor Air Quality Using Artificial Neural Network. Sensors 2015, 15, 11665–11684. [Google Scholar] [CrossRef] [PubMed]
- Turk, M.; Pentland, A. Eigenfaces for Recognition. J. Cogn. Neurosci. 1991, 3, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Walpole, R.E.; Myers, R.H. Probability and Statistics for Engineers and Scientists; Macmillan Publisher: New York, NY, USA, 1985; ISBN 10: 0024241709, ISBN 13: 9780024241702. [Google Scholar]
- Chen, Y.Y.; Sung, F.C.; Chen, M.L.; Mao, I.; Lu, C.Y. Indoor Air Quality in the Metro System in North Taiwan. Int. J. Environ. Res. Public Health 2016, 13, 1200. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.; Ba, J. Adam: A method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
Device Type | Model | Interface | Measuring Range |
---|---|---|---|
CO2 sensor | SH-300-DS | UART | 0–3000/5000 ppm |
Fine dust detector | PMS3003 | UART | 0.3–10 µm |
Temperature/Humidity meter | SHT11 | I2C | −40–125 °C/0–100%RH |
Light sensor | GL5537 | UART | 5–200 kΩ (light resistance) |
VOC sensor | MICS-VZ-89 | UART | (100 ppm), I-butane (100 ppm) |
CPU | ATMEGA328P | - | Connect to breadboard |
Wi-Fi module | ESP8266 | - | Connect to breadboard |
Collection Site | SK Corporation Jongro Building (Seoul, Korea) |
---|---|
Number of records | 21,781,467 |
Size | 1.36 GB (1,426,063 Bytes) |
Collection period | 60,504 h (22 February 2016~20 September 2016) |
Value types | Six air quality variables (CO2, Dust, Temperature, Humidity, Light, VOC) |
Experiment Number | Learning Model | Basic Layers | Number of Basic Layers | Number of Hidden Nodes | Number of Hidden Layers | Total Number of Layers | Prediction Accuracy |
---|---|---|---|---|---|---|---|
1 | GRU | in/out | 2 | 128 | 1 | 3 | 79.26% |
2 | GRU | in/out | 2 | 32 | 3 | 5 | 77.40% |
3 | GRU | in/out | 2 | 32 | 2 | 4 | 67.55% |
4 | GRU | in/out | 2 | 32 | 4 | 6 | 73.32% |
5 | GRU | in/out | 2 | 32 | 4 | 6 | 72.13% |
6 | GRU | in/out | 2 | 256 | 2 | 4 | 81.96% |
7 | GRU | in/out | 2 | 256 | 1 | 3 | 81.34% |
8 | GRU | in/out | 2 | 384 | 1 | 3 | 80.03% |
9 | GRU | in/out | 2 | 16 | 4 | 6 | 70.39% |
10 | GRU | in/out | 2 | 6 | 4 | 6 | 60.31% |
11 | GRU | in/out | 2 | 384 | 3 | 5 | 81.58% |
12 | GRU | in/out | 2 | 1536 | 3 | 5 | 83.16% |
13 | GRU | in/out | 2 | 1270 | 2 | 4 | 84.69% |
14 | GRU | in/out | 2 | 512 | 2 | 4 | 83.80% |
15 | GRU | in/out | 2 | 1024 | 2 | 4 | 82.43% |
16 | GRU | in/out | 2 | 1024 | 3 | 5 | 82.43% |
17 | LSTM | in/out | 2 | 32 | 3 | 5 | 60.23% |
18 | LSTM | in/out | 2 | 32 | 4 | 6 | 61.22% |
19 | LSTM | in/out | 2 | 1024 | 3 | 5 | 70.13% |
Optimal Time Step Search Algorithm | Brute Force Method | |
---|---|---|
Number of time steps considered | 134 | 256 |
Learning time | 38 h | 73 h |
Maximum learning accuracy | 79.22 (with size 100) | 79.25 (with size 109) |
Average earning accuracy | 77.62% | 76.85% |
Time efficiency relative to the brute force method | 1.92 times | 1 times |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.; Shin, D.; Kim, K.; Yang, J. Indoor Air Quality Analysis Using Deep Learning with Sensor Data. Sensors 2017, 17, 2476. https://doi.org/10.3390/s17112476
Ahn J, Shin D, Kim K, Yang J. Indoor Air Quality Analysis Using Deep Learning with Sensor Data. Sensors. 2017; 17(11):2476. https://doi.org/10.3390/s17112476
Chicago/Turabian StyleAhn, Jaehyun, Dongil Shin, Kyuho Kim, and Jihoon Yang. 2017. "Indoor Air Quality Analysis Using Deep Learning with Sensor Data" Sensors 17, no. 11: 2476. https://doi.org/10.3390/s17112476