Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments
<p>Pipeline of both stages of the algorithm.</p> "> Figure 2
<p>Filtering bad features using known stereo geometry. (<b>a</b>) Whoopies box 640 × 480; (<b>b</b>) Gena box 640 × 480; (<b>c</b>) Drilling tool 640 × 480; (<b>d</b>) Coke 640 × 480; (<b>e</b>) Whoopies box 1280 × 720; (<b>f</b>) Gena box 1280 × 720; (<b>g</b>) Drilling tool 1280 × 720; (<b>h</b>) Coke 1280 × 720.</p> "> Figure 3
<p>Sequential association of features to compute their inter-frame visibility. (<b>a</b>) Whoopies box 640 × 480; (<b>b</b>) Gena box 640 × 480; (<b>c</b>) Drilling tool 640 × 480; (<b>d</b>) Coke 1280 × 720. Then, following Algorithm 1, the visibility between non-sequential frames is computed.</p> "> Figure 4
<p>Diagram of elements in the Bundle Adjustment problem. A, B, and C represent the position of the camera from where the observations were taken. <math display="inline"> <semantics> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>∀</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mn>6</mn> </mrow> </semantics> </math> are six features in the space and <math display="inline"> <semantics> <mrow> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <mi>and</mi> <mspace width="0.166667em"/> <msub> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">i</mi> </msub> </mrow> </semantics> </math> are the features observed by each of the positions.</p> "> Figure 5
<p>Different steps of the Bundle Adjustment optimization process. (<b>a</b>) Starting state; (<b>b</b>) First iteration; (<b>c</b>) Iteration 5; (<b>d</b>) Iteration 20.</p> "> Figure 6
<p>Examples of detection and position estimation of objects outdoors. White thin circles are candidate features in the scene. Green thick circles are the features assigned to the object, and the coordinate system is the representation of the position of the object. It depends on the coordinate system chosen at the modeling stage. (<b>a</b>) Drilling tool; (<b>b</b>) Whoopies box; (<b>c</b>) Gena box.</p> "> Figure 7
<p>Model of robotic arm designed for the aerial robot. (<b>a</b>) Simplified model of the arm; (<b>b</b>) CAD design; (<b>c</b>) Final built-in platform.</p> "> Figure 8
<p>Robot grasping an object. The camera’s view is given in the inset. The green rectangle is the tracked moved window.</p> "> Figure 9
<p>Result of pose estimation algorithm varying the reprojection error. Lines from top to bottom are: Z-coordinate (yellow), X-coordinate (blue), and Y-coordinate (red). Increasing the parameter decreases the quality of the results. However, as described in <a href="#sensors-17-00103-t002" class="html-table">Table 2</a>, it is slightly faster. (<b>a</b>) Reprojection error 3; (<b>b</b>) Reprojection error 5; (<b>c</b>) Reprojection error 7; (<b>d</b>) Reprojection error 8.</p> "> Figure 10
<p>Testing detection and position estimation with partial occlusions. (<b>a</b>) Non-occluded indoor; (<b>b</b>) Occluded indoor; (<b>c</b>) Non-occluded outdoor; (<b>d</b>) Occluded outdoor. The top figures show an indoor test, where the object is occluded by a human hand. In the bottom figures, the object is occluded by the arm of the UAV during the grasp process.</p> "> Figure 11
<p>Testing algorithm with different light conditions. (<b>a</b>) Without shadow; (<b>b</b>) Partial tree shadow; (<b>c</b>) Complete tree shadow; (<b>d</b>) Lamp light.</p> "> Figure 12
<p>Testing grasp with multiple objects. The algorithm is able to switch the targeted object according to any desired task if the model is learned. (<b>a</b>) Picking whoopies box; (<b>b</b>) Picking drilling tool.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Object Detection and Pose Estimation
3.1. Feature Extraction and Filtering Using Stereo Cameras
3.2. Object Modeling
- Image rectification from camera calibration.
- Detection of features on both images and matching them. Use of stereo geometry and RANSAC (Random sample consensus) to filter outliers.
- Matching of sequentially filtered features.
- Performance of bundle adjustment to create a 3D model of the object and store the corresponding descriptors.
- Scale model of the object to its real size using stereo information.
Algorithm 1 Correlate back matches |
|
3.3. Finding Object in a Scene
Algorithm 2 Online stage for finding learned objects. |
|
4. Experimental Validation
4.1. Hardware Setup
4.2. Validation Tests
5. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pajares, G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–329. [Google Scholar] [CrossRef]
- Roa, M.A.; Suárez, R. Grasp quality measures: Review and performance. Auton. Robot. 2015, 38, 65–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, I.; Lowe, D.G. What and Where: 3D Object Recognition with Accurate Pose. In Toward Category-Level Object Recognition; Ponce, J., Hebert, M., Schmid, C., Zisserman, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 67–82. [Google Scholar]
- Collet, A.; Berenson, D.; Srinivasa, S.S.; Ferguson, D. Object Recognition and Full Pose Registration from a Single Image for Robotic Manipulation. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3534–3541.
- Lenz, I.; Lee, H.; Saxena, A. Deep Learning for Detecting Robotic Grasps. Int. J. Robot. Res. 2015, 34, 705–724. [Google Scholar] [CrossRef]
- Malisiewicz, T.; Gupta, A.; Efros, A.A. Ensemble of Exemplar-SVMs for Object Detection and Beyond. In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011.
- Rai, A.; Patchaikani, P.K.; Agarwal, M.; Gupta, R.; Behera, L. Grasping Region Identification in Novel Objects Using Microsoft Kinect. In Neural Information Processing; Huang, T., Zeng, Z., Li, C., Leung, C.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 172–179. [Google Scholar]
- Roy, N.; Newman, P.; Srinivasa, S. Recognition and Pose Estimation of Rigid Transparent Objects with a Kinect Sensor. In Robotics: Science and Systems VIII; MIT Press: Los Angeles, CA, USA, 2013. [Google Scholar]
- Zhu, M.; Derpanis, K.G.; Yang, Y.; Brahmbhatt, S.; Zhang, M.; Phillips, C.; Lecce, M.; Daniilidis, K. Single image 3D object detection and pose estimation for grasping. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3936–3943.
- Marchand, E.; Bouthemy, P.; Chaumette, F.; Moreau, V. Robust real-time visual tracking using a 2D-3D model-based approach. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 1, pp. 262–268.
- Klingbeil, E.; Rao, D.; Carpenter, B.; Ganapathi, V.; Ng, A.Y.; Khatib, O. Grasping with application to an autonomous checkout robot. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 2837–2844.
- Saxena, A.; Driemeyer, J.; Ng, A.Y. Robotic Grasping of Novel Objects Using Vision. Int. J. Robot. Res. 2008, 27, 157–173. [Google Scholar] [CrossRef]
- Dragiev, S.; Toussaint, M.; Gienger, M. Uncertainty aware grasping and tactile exploration. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 113–119.
- Pelossof, R.; Miller, A.; Allen, P.; Jebara, T. An SVM learning approach to robotic grasping. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April–1 May 2004; Volume 4, pp. 3512–3518.
- Pounds, P.E.I.; Bersak, D.R.; Dollar, A.M. Grasping from the air: Hovering capture and load stability. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 2491–2498.
- Spica, R.; Franchi, A.; Oriolo, G.; Bülthoff, H.H.; Giordano, P.R. Aerial grasping of a moving target with a quadrotor UAV. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Piscataway, NJ, USA, 7–12 October 2012; pp. 4985–4992.
- Orsag, M.; Korpela, C.; Pekala, M.; Oh, P. Stability control in aerial manipulation. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2011; pp. 5581–5586.
- Danko, T.W.; Chaney, K.P.; Oh, P.Y. A parallel manipulator for mobile manipulating UAVs. In Proceedings of the 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA), Woburn, MA, USA, 11–12 May 2015; pp. 1–6.
- Fabresse, F.R.; Caballero, F.; Maza, I.; Ollero, A. Localization and mapping for aerial manipulation based on range-only measurements and visual markers. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 2100–2106.
- Buonocore, L.R.; Cacace, J.; Lippiello, V. Hybrid visual servoing for aerial grasping with hierarchical task-priority control. In Proceedings of the 23th Mediterranean Conference on Control and Automation (MED), Torremolinos, Spain, 16–19 June 2015; pp. 617–623.
- Laiacker, M.; Schwarzbach, M.; Kondak, K. Automatic aerial retrieval of a mobile robot using optical target tracking and localization. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–7.
- Thomas, J.; Loianno, G.; Sreenath, K.; Kumar, V. Toward Image Based Visual Servoing for Aerial Grasping and Perching. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014.
- Ramon Soria, P.; Bevec, R.; Arrue, B.C.; Ude, A.; Ollero, A. Extracting Objects for Aerial Manipulation on UAVs Using Low Cost Stereo Sensors. Sensors 2016, 16, 700. [Google Scholar] [CrossRef] [PubMed]
- Small Mini PC. Available online: http://www.intel.com/content/www/us/en/nuc/overview.html (accessed on 5 January 2017).
- The World’s First 3D Camera for Depth Sensing and Motion Tracking. Available online: https://www.stereolabs.com/ (accessed on 5 January 2017).
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Alhwarin, F.; Ristić-Durrant, D.; Gräser, A. VF-SIFT: Very Fast SIFT Feature Matching. In Pattern Recognition; Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 222–231. [Google Scholar]
- Grabner, M.; Grabner, H.; Bischof, H. Fast Approximated SIFT. In Computer Vision – ACCV 2006; Narayanan, P.J., Nayar, S.K., Shum, H.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 918–927. [Google Scholar]
- Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded up Robust Features. In Computer Vision – ECCV 2006; Leonardis, A., Bischof, H., Pinz, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An Efficient Alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571.
- Tola, E.; Lepetit, V.; Fua, P. A Fast Local Descriptor for Dense Matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008.
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary Robust Independent Elementary Features. In Computer Vision—ECCV 2010; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 778–792. [Google Scholar]
- Rosten, E.; Porter, R.; Drummond, T. Faster and Better: A Machine Learning Approach to Corner Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Muja, M.; Lowe, D.G. Fast Matching of Binary Features. In Proceedings of the 2012 Ninth Conference on Computer and Robot Vision (CRV), Toronto, ON, Canada, 28–30 May 2012; pp. 404–410.
- Collet Romea, A.; Berenson, D.; Srinivasa, S.; Ferguson, D. Object Recognition and Full Pose Registration from a Single Image for Robotic Manipulation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ’09), Kobe, Japan, 12–17 May 2009.
- Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle Adjustment—A Modern Synthesis. In Vision Algorithms: Theory and Practice; Springer: London, UK, 2000; pp. 298–372. [Google Scholar]
- Lourakis, M.A.; Argyros, A. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans. Math. Softw. 2009, 36, 1–30. [Google Scholar] [CrossRef]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Open-Hardware Autopilot. Available online: https://pixhawk.org/ (accessed on 5 January 2017).
- Arduino. Available online: https://www.arduino.cc (accessed on 5 January 2017).
FAST Detector | SIFT Detector | SURF Detector | ||||
---|---|---|---|---|---|---|
640 × 480 | 1280 × 720 | 640 × 480 | 1280 × 720 | 640 × 480 | 1280 × 720 | |
SIFT descriptor | 0.318 s | 0.739 s | 0.510 s | 1.299 s | 1.532 s | 2.412 s |
BRIEF descriptor | 0.042 s | 0.214 s | 0.250 s | 0.660 s | 0.235 s | 1.012 s |
rBRIEF descriptor | 0.045 s | 0.229 s | 0.237 s | 0.715 s | 0.256 s | 1.100 s |
SURF descriptor | 0.074 s | 0.215 s | 0.380 s | 0.986 s | 0.368 s | 1.098 s |
DAISY descriptor | 0.319 s | 0.876 s | 0.523 s | 1.516 s | 0.489 s | 1.421 s |
Reprojection Error | ||||
---|---|---|---|---|
3 pxs. | 5 pxs. | 7 pxs. | 8 pxs. | |
0.031 s | 0.028 s | 0.025 s | 0.024 s | |
0.036 s | 0.031 s | 0.027 s | 0.026 s | |
0.039 s | 0.034 s | 0.028 s | 0.028 s |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramon Soria, P.; Arrue, B.C.; Ollero, A. Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments. Sensors 2017, 17, 103. https://doi.org/10.3390/s17010103
Ramon Soria P, Arrue BC, Ollero A. Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments. Sensors. 2017; 17(1):103. https://doi.org/10.3390/s17010103
Chicago/Turabian StyleRamon Soria, Pablo, Begoña C. Arrue, and Anibal Ollero. 2017. "Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments" Sensors 17, no. 1: 103. https://doi.org/10.3390/s17010103
APA StyleRamon Soria, P., Arrue, B. C., & Ollero, A. (2017). Detection, Location and Grasping Objects Using a Stereo Sensor on UAV in Outdoor Environments. Sensors, 17(1), 103. https://doi.org/10.3390/s17010103