One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues
<p>(a) Top 10 materials and (b) element forms of 1D metal oxide nanostructures used for gas sensor applications in publications since 2002. The publication search was performed using the Science Citation Index Expanded database of Web of Science provided by Thomson Reuters. For each material type, all possible keywords from combinations of gas sensor and 1D nanostructures (nanowire, nanorod, nanotube, nanobelt and nanoribbon) were used for the search.</p> ">
<p>(a) A schematic of the SCD based on a single ZnO nanowire at O<sub>2</sub> adsorption. (b) Sensitivity <span class="html-italic">versus</span> system temperature for CO sensing at a response time of 1 h as a function of the CO concentration at 275 °C. Results collected from the OCD and SCD at reverse bias (SCRD) are compared. (c–e) Schematics showing the response of Schottky barrier height in response to variations in (c) N<sub>2</sub>, (d) O<sub>2</sub>, and (e) CO atmospheres (Reprinted from reference [<a href="#b10-sensors-10-04083" class="html-bibr">10</a>] with permission from American Chemical Society).</p> ">
<p>(a) A schematic of a single In<sub>2</sub>O<sub>3</sub> nanowire sensor, where Ti/Au electrodes are deposited on nanowire-decorated Si/SiO<sub>2</sub> substrate. (b) Sensing response of a single nanowire device to NO<sub>2</sub> diluted in air. The normalized conductance change (ΔG/G<sub>0</sub>) is plotted as a function of time with the nanowire sensor exposed to NO<sub>2</sub> of various concentrations. Recovery was made by UV light (254 nm) desorption of NO<sub>2</sub>. At point A, the first cycle was taken with UV illumination. The nanowire conductance kept rising until the UV light was turned off at point B. 20 ppb NO<sub>2</sub> was introduced to the airflow at point C (Reprinted from reference [<a href="#b16-sensors-10-04083" class="html-bibr">16</a>] with permission from American Chemical Society).</p> ">
<p>(a) Scanning electron microscopy (SEM) image of an individual VO<sub>2</sub> nanowire device configured with appropriate Ohmic contacts for electrical measurements in a gaseous atmosphere. (b) SEM image of a Pd-decorated VO<sub>2</sub> nanowire. The Pd particles, 5–22 nm in diameter, are noncontinuous and cover the surface of the nanowire uniformly (scale bar, 200 nm). (c) <span class="html-italic">I–V</span> curves obtained at 50 °C for Pd-decorated VO<sub>2</sub> nanowire after various exposure times to hydrogen gas (5 sccm), added to the background argon stream (10 sccm). (d) The change in current for a Pd-decorated VO<sub>2</sub> nanowire biased at 10 V as a function of time of exposure to hydrogen gas. Initially the current increases gradually with hydrogen exposure time and then at ∼7 min increases dramatically by ∼3 orders of magnitude (5 × 10<sup>−6</sup> A → 6 × 10<sup>−3</sup> A) in the absence of the series resistor (Reprinted from reference [<a href="#b24-sensors-10-04083" class="html-bibr">24</a>] with permission from American Chemical Society).</p> ">
<p>(a) Response of SnO<sub>2</sub> nanowires operated in self-heating mode and with external microheater. (b) Estimated temperature of the devices at different <span class="html-italic">I<sub>m</sub></span> (<span class="html-italic">r<sub>nw</sub></span> = 35 nm). The inset is a SEM image of a SnO<sub>2</sub> nanowire connected to two Pt microelectrodes fabricated with focused ion beam. The equivalent circuit of this structure corresponds to two back-to-back diodes (D<sub>FW</sub> and D<sub>RV</sub>) in series with the nanowire resistance (R<sub>NW</sub>). These three components dissipate electrical power and contribute to the self-heating of the device (Reprinted from reference [<a href="#b29-sensors-10-04083" class="html-bibr">29</a>] with permission from American Institute of Physics).</p> ">
<p>(a) Comparison of the response of a SnO<sub>2</sub> nanowire, operated at T = 175 °C in dark conditions and at room temperature (T = 25 °C) under UV illumination (<span class="html-italic">E<sub>ph</sub></span> = 3.67 ± 0.05 eV, <span class="html-italic">Φ<sub>ph</sub></span> = 30 × 10<sup>22</sup> ph/m<sup>2</sup>s) to a pulse of 5 ppm [<a href="#b30-sensors-10-04083" class="html-bibr">30</a>]. (b) Comparison of the sensor response when operated with conventional heating (<span class="html-italic">T</span> = 175 °C) and UV illumination. The selection of the appropriate photon flux leads to sensor performances comparable to those of conventional heated sensors (Reprinted from reference [<a href="#b31-sensors-10-04083" class="html-bibr">31</a>] with permission from American Institute of Physics).</p> ">
<p>(a) The schematic illustration of ZnO-nanowire air bridges over the SiO<sub>2</sub>/Si substrate. (b) Side- and (d) top-view SEM images clearly show selective growth of ZnO nanowires on Ti/Pt electrode. (c) The junction between ZnO nanowires grown on both electrodes (Reprinted from reference [<a href="#b49-sensors-10-04083" class="html-bibr">49</a>] with permission from Elsevier).</p> ">
<p>(a) KAMINA microarray chip with SnO<sub>2</sub> nanowire sensing elements; (b) IR image of the chip under application of temperature gradient, 520 K (green area) −600 K (red area) along the electrode array; (c) LDA analysis of the conductivity patterns obtained with SnO<sub>2</sub> nanowire-based gradient microarray at exposure to the sample gases (2–10 ppm concentration range). The classification spheres correspond to normal distribution of data at 0.9999 confidence level. The microarray operates under quasihomogeneous heating at 580 K (const T areas inside the ellipse with dimmed colors) and temperature gradient at 520–600 K (grad T areas with bright colors) (Reprinted from reference [<a href="#b59-sensors-10-04083" class="html-bibr">59</a>] with permission from American Chemical Society).</p> ">
Abstract
:1. Introduction
2. Types of Gas-Sensor Structure Based Upon 1D Oxide Nanostructures
2.1. Single 1D Nanostructure Gas Sensors
2.2. Multiple and Self-Assembled 1D Nanostructures
3. Critical Issues
3.1. Long-Term Stability
3.2. Gas Selectivity
3.3. Room-Temperature Operation
4. Summary
Acknowledgments
References and Notes
- Seiyama, T.; Kato, A.; Fulishi, K.; Nagatani, M. A new detector for gaseous components using semiconductive thin films. Anal. Chem 1962, 34, 1502–1503. [Google Scholar]
- Law, M.; Kind, H.; Messer, B.; Kim, F.; Yang, P.D. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed 2002, 41, 2405–2408. [Google Scholar]
- Arnold, M.S.; Avouris, P.; Pan, Z.W.; Wang, Z.L. Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 2003, 107, 659–663. [Google Scholar]
- Cheng, Y.; Xiong, P.; Fields, L.; Zheng, J.P.; Yang, R.S.; Wang, Z.L. Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors. Appl. Phys. Lett 2006, 89, 093114. [Google Scholar]
- Andrei, P.; Fields, L.L; Zheng, J.P.; Cheng, Y.; Xiong, P. Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure. Sens. Actuat. B 2007, 128, 226–234. [Google Scholar]
- Qian, L.H.; Wang, K.; Li., Y.; Fang, H.T.; Lu, Q.H.; Ma, X. L. CO sensor based on Au-decorated SnO2 nanobelt. Mater. Chem. Phys 2006, 10, 82–84. [Google Scholar]
- Kuang, Q.; Lao, C.S.; Wang, Z.L.; Xie, Z.X.; Zheng, L.S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc 2007, 129, 6070–6071. [Google Scholar]
- Kuang, Q.; Lao, C.S.; Li, Z.; Liu, Y.Z.; Xie, Z.X.; Zheng, L.S.; Wang, Z.L. Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J. Phys. Chem. C 2008, 112, 11539–11544. [Google Scholar]
- Kumar, V.; Sen, S.; Muthe, K.P.; Gaur, N.K.; Gupta, S.K.; Yakhmi, J.V. Copper doped SnO2 nanowires as highly sensitive H2S gas sensor. Sens. Actuat. B 2009, 138, 587–590. [Google Scholar]
- Wei, T.Y.; Yeh, P.H.; Lu, S.Y.; Wang, Z.L. Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. J. Am. Chem. Soc 2009, 131, 17690–17695. [Google Scholar]
- Zhou, J.; Gu, Y.; Hu, Y.; Mai, W.; Yeh, P. H.; Bao, G.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett 2009, 94, 191103. [Google Scholar]
- Yeh, P. H.; Li, Z.; Wang, Z. L. Schottky-gated probe-free ZnO nanowire biosensor. Adv. Mater 2009, 21, 4975–4978. [Google Scholar]
- Liao, L.; Lu, H.B.; Li, J.C.; Liu, C.; Fu, D.J.; Liu, Y.L. The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation. Appl. Phys. Lett 2007, 91, 173110. [Google Scholar]
- Choi, S.H.; Yee, S.M.; Ji, H.J.; Choi, J.W.; Cho, Y.S.; Kim, G.T. Smart gas sensor and noise properties of single ZnO nanowire. Jpn. J. Appl. Phys 2009, 48, 06FD13. [Google Scholar]
- Li, C.; Zhang, D.H.; Liu, X.L.; Han, S.; Tang, T.; Han, J.; Zhou, C.W. In2O3 nanowires as chemical sensors. Appl. Phys. Lett 2003, 82, 1613–1615. [Google Scholar]
- Zhang, D.H.; Liu, Z.Q.; Li, C.; Tang, Tao; Liu, X.L.; Han, S.; Lei, B.; Zhou, C.W. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett 2004, 4, 1919–1924. [Google Scholar]
- Zeng, Z.M.; Wang, K.; Zhang, Z.X.; Chen, J.J.; Zhou, W.L. The detection of H2S at room by using individual indium oxide nanowire transistors. Nanotechnology 2009, 20, 045503. [Google Scholar]
- Kolmakov, A.; Zhang, Y.; Cheng, G.; Moskovits, M. Detection of CO and O2 using Tin oxide nanowire sensors. Adv. Mater 2003, 15, 997–1000. [Google Scholar]
- Zhang, Y.; Kolmakov, A.; Chretien, S.; Metiu, H.; Moskovits, M. Control of catalystic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett 2004, 4, 403–407. [Google Scholar]
- Zhang, Y.; Kolmakov, A.; Lilach, Y.; Moskovits, M. Electronic control of chemistry and catalysis at the surface of an individual oxide nanowire. J. Phys. Chem. B 2005, 19, 1923–1929. [Google Scholar]
- Kolmakov, A.; Klenov, D.O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 2005, 5, 667–673. [Google Scholar]
- Chen, X.H.; Moskovits, M. Observing catalysis through the agency of the participating electrons: Surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver. Nano Lett 2007, 7, 807–812. [Google Scholar]
- Strelcov, E.; Lilach, Y.; Kolmakov, A. Gas sensor based on metal-insulator transition in VO2 nanowire thermistor. Nano Lett 2009, 9, 2322–2326. [Google Scholar]
- Baik, J.M.; Kim, M.H.; Larson, C.; Yavuz, C.T.; Stucky, G.D; Wodtke, A.M.; Moskovits, M. Pd-sensitized single vanadium oxide nanowires: Highly responsive hydrogen sensing based on the metal-insulator transition. Nano Lett 2009, 9, 3980–3984. [Google Scholar]
- Li, Q.H.; Laing, Y.X.; Wan, Q.; Wang, T.H. Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett 2004, 85, 6389–6391. [Google Scholar]
- Feng, P.; Xue, Y.X.; Liu, Y.G.; Wan, Q.; Wang, T.H. Achieving fast oxygen response in individual β-Ga2O3 nanowires by ultraviolet illumination. Appl. Phys. Lett 2006, 89, 112114. [Google Scholar]
- Xue, Y.X.; Feng, P.; Wang, Y.G.; Wang, T.H. Extremely high oxygen sensing of individual ZnSnO3 nanowires arising from grain boundary barrier modulation. Appl. Phys. Lett 2007, 91, 022111. [Google Scholar]
- Hernandez-Ramirez, F.; Tarancon, A.; Casals, O.; Arbiol, J.; Romano-Rodriguez, A.; Morante, J.R. High response and stability in CO and humidity measures using a single SnO2 nanowire. Sens. Actuat. B 2009, 121, 3–17. [Google Scholar]
- Prades, J.D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Barth, S.; Cirera, A.; Romano-Rodriguez, A.; Mathur, S.; Morante, J.R. Ultralow power consumption gas sensors based on self-heated individual nanowires. Appl. Phys. Lett 2008, 93, 123110. [Google Scholar]
- Prades, J.D.; Jimenez-Diaz, R.; Manzanares, M.; Hernandez-Ramirez, F.; Cirera, A.; Romano-Rodriguez, A.; Mathur, S.; Morante, J.R. A model for the response towards oxidizing gases of photoactivated sensors based on individual SnO2 nanowires. Phys. Chem. Chem. Phys 2009, 11, 10881–10889. [Google Scholar]
- Prades, J.D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Barth, S; Cirera, A.; Romano-Rodriguez, A.; Mathur, S.; Morante, J.R. Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sens. Actuat. B 2009, 140, 337–342. [Google Scholar]
- Heo, Y.W.; Tien, L.C.; Norton, D.P.; Kang, B.S.; Ren, F.; Gila, B.P.; Pearton, S.J. Electrical transport properties of single ZnO nanorods. Appl. Phys. Lett 2004, 85, 2002–2004. [Google Scholar]
- Wang, H.T.; Kang, B.S.; Ren, F.; Tien, L.C.; Sadik, P.W.; Norton, D.P.; Pearton, S.J.; Lin, J.S. Hydrogen-selective sensing at room temperature with ZnO nanorods. Appl. Phys. Lett 2005, 86, 243503. [Google Scholar]
- Zhang, N.; Yu, K.; Li, L.J.; Zhu, Z.Q. Investigation of electrical and ammonia sensing characteristics of Schottky barrier diode based on a single ultra-long ZnO nanorod. Appl. Surf. Sci 2008, 254, 5736–5740. [Google Scholar]
- Lupan, O.; Chai, G; Chow, L. Novel hydrogen gas sensor based on single ZnO nanorod. Microelectr. Eng 2008, 85, 2220–2225. [Google Scholar]
- Liu, Y.; Liu, M. Growth of aligned square-shaped SnO2 tube arrays. Adv. Mater 2005, 15, 57–62. [Google Scholar]
- Rout, C.S.; Kulkarni, G.U.; Rao, C.N.R. Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides. J. Phys. D 2007, 40, 2777–2782. [Google Scholar]
- Tresback, J.S.; Padture, N.P. Low-temperature gas sensing in individual metal-oxide-metal heterojunction nanowires. J. Mater. Res 2008, 23, 2047–2052. [Google Scholar]
- Liao, L.; Mai, H.X.; Yuan, Q.; Lu, H.B.; Li, J.C.; Liu, C.; Yan, C.H.; Shen, Z.X.; Yu, T. Single CeO2 nanowire gas sensor supported with Pt nanocrystals: Gas sensitivity, surface bond states, and chemical mechanism. J. Phys. Chem. C 2008, 112, 9061–9065. [Google Scholar]
- Lee, J.S.; Kim, Y.J.; Kuk, B.; Geyer, A.; Platt, U. Simultaneous measurements of atmospheric pollutants and visibility with a long-path DOAS system in urban areas. Environ. Monit. Assess 2005, 104, 281–293. [Google Scholar]
- Courtillot, I; Morville, J.; Motto-Ros, V.; Romanini, D. Sub-ppb NO2 detection by optical feedback cavity-enhanced absorption spectroscopy with a blue diode laser. Appl. Phys. B-Lasers Opt 2006, 85, 407–412. [Google Scholar]
- Wang, L.M.; Zhang, J.S. Detection of nitrous acid by cavity ring down spectroscopy. Environ. Sci. Tech 2000, 34, 4221–4227. [Google Scholar]
- Simeonsson, J.B.; Elwood, S.A.; Niebes, M.; Carter, R.; Peck, A. Trace detection of NO and NO2 by photoionization and laser induced fluorescence techniques. Anal. Chim. Acta 1999, 397, 33–41. [Google Scholar]
- Pandey, S.K.; Kim, K.H. Review of Methods for the Determination of Reduced Sulfur Compounds (RSCs) in Air. Environ. Sci. Tech 2009, 43, 3020–3029. [Google Scholar]
- Cruz, L.P.S.; Campos, V.P. Sampling and analytical methods for atmospheric reduced sulphur compounds. Quim. Nova 2008, 31, 1180–1189. [Google Scholar]
- Kim, K.H. Performance characterization of the GC/PFPD for H2S, CH3SH, DMS, and DMDS in air. Atmos. Environ 2005, 39, 2235–2242. [Google Scholar]
- Besson, J.P.; Schilt, S.; Rochat, E.; Thevenaz, L. Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy. Appl. Phys. B-Lasers Opt 2006, 85, 323–328. [Google Scholar]
- Li, Y.Q.; Schwab, J.J.; Demerjian, K.L. Measurements of ambient ammonia using a tunable diode laser absorption spectrometer: Characteristics of ambient ammonia emissions in an urban area of New York City. J. Geophys. Res 2006, 111, D10S02. [Google Scholar]
- Ahn, M.-W.; Park, K.-S.; Heo, J.-H.; Kim, D.-W.; Choi, K. J.; Park, J.-G. On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens. Actuat. B 2009, 138, 168–173. [Google Scholar]
- Choi, Y.-J.; Hwang, I.-S.; Park, J.-G.; Choi, K. J.; Park, J.-H.; Lee, J.-H. Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 2008, 19, 095508. [Google Scholar]
- Ahn, M.-W.; Park, K.-S.; Heo, J.-H.; Park, J.-G.; Kim, D.-W.; Choi, K. J.; Lee, J.-H.; Hong, S.-H. Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett 2008, 93, 263103. [Google Scholar]
- Peng, K.-Q.; Wang, X.; Lee, S.-T. Gas sensing properties of single crystalline porous silicon nanowires. Appl. Phys. Lett 2009, 95, 243112. [Google Scholar]
- Hernandez-Ramirez, F.; Prades, J.D.; Jimenez-Diaz, R.; Fischer, T.; Romano-Rodriguez, A.; Mathur, S.; Morante, J.R. On the role of individual metal oxide nanowires in the scaling down of chemical sensors. Phys. Chem. Chem. Phys 2009, 11, 7105–7110. [Google Scholar]
- Sysoev, V.V.; Schneider, T.; Goschnick, J.; Kiselev, I.; Habicht, W.; Hahn, H.; Strelcov, E.; Kolmakov, A. Percolating SnO2 nanowire network as a stable gas sensor: Direct comparison of long-term performance versus SnO2 nanoparticle films. Sens. Actuat. B 2009, 139, 699–703. [Google Scholar]
- Zeng, W.; Liu, T.; Wang, Z.; Tsukimoto, S.; Saito, M.; Ikuhara, Y. Selective detection of Formaldehyde gas using a Cd-doped TiO2-SnO2 sensor. Sensors 2009, 9, 9029–9038. [Google Scholar]
- Vander Wal, R.L.; Berger, G.M.; Kulis, M.J.; Hunter, G.W.; Xu, J.C.; Evans, L. Synthesis methods, microscopy characterization and device integration of nanoscale metal oxide semiconductors for gas sensing. Sensors 2009, 9, 7866–7902. [Google Scholar]
- Flueckiger, J.; Ko, F.K.; Cheung, K.C. Microfabricated formaldehyde gas sensors. Sensors 2009, 9, 9196–9215. [Google Scholar]
- Hagleitner, C.; Hierlemann, A.; Lange, D.; Kummer, A.; Kerness, N.; Brand, O.; Baltes, H. Smart single-chip gas sensor microsystem. Nature 2001, 414, 293–296. [Google Scholar]
- Sysoev, V.V.; Goschnick, J.; Schneider, T.; Strelcov, E.; Kolmakov, A. A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 2007, 7, 3182–3188. [Google Scholar]
- Sysoev, V.V.; Button, B.K.; Wepsiec, K.; Dmitriev, S.; Kolmakov, A. Toward the nanoscopic “electronic nose”: hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. Nano Lett 2006, 6, 1584–1588. [Google Scholar]
- McAlpine, M.C.; Ahmad, H.; Wang, D.; Heath, J.R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater 2007, 6, 379–384. [Google Scholar]
- Peng, L.; Zhao, Q.; Wang, D.; Zhai, J.; Wang, P.; Pang, S.; Xie, T. Ultraviolet-assisted gas sensing: A potential formaldehyde detection approach at room temperature based on zinc oxide nanorods. Sens. Actuat. B 2009, 139, 80–85. [Google Scholar]
- Fan, Z.; Lu, J.G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett 2005, 86, 123510. [Google Scholar]
Target gas | Material | Sensor type | Detection limit (Temp.) | Sensitivity (Conc.) | Response time | Ref. |
---|---|---|---|---|---|---|
NO2 | SnO2 nanoribbon | Resistor | 2 ppm (25 °C) | 7 (100 ppm) | ∼1 min | [2] |
NO2 | SnO2 nanowire | Resistor | <0.1 ppm (25 °C) | 1 (10 ppm) | ∼ 1 min | [31] |
NO2 | In2O3 nanowire | FET | 0.5 ppm (25 °C) | 106 (100 ppm) | 5 s | [15] |
NO2 | In2O3 nanowire | FET | 0.02 ppm (25 °C) | 0.8 (1 ppm) | 15 min | [16] |
H2 | SnO2 nanobelt | FET | 0.2% (25 °C) | 0.17 (0.2%) | N/A | [4] |
H2 | SnO2 nanowire | FET | <1 ppm (200 °C) | 4 (1 ppm) | ∼50 s | [21] |
H2 | ZnO nanorod | Resistor | 200 ppm (25 °C) | 0.04 (200 ppm) | 30−40 s | [35] |
H2 | VO2 nanowire | Resistor | N/A (50 °C) | 1000 (100%) | ∼10 min | [24] |
H2 | WO2.72 nanowire | Resistor | < 100 ppm (25 °C) | 22 (1,000 ppm) | 40 s | [37] |
CO | SnO2 nanobelt | Resistor | 5 ppm (400 °C) | 7 (250 ppm) | 30 s | [6] |
CO | SnO2 nanowire | FET | 100 ppm (25 °C) | 15 (500 ppm) | ∼10 min | [8] |
CO | ZnO nanowire | Resistor | <50 ppm (275 °C) | 3200 (400 ppm) | ∼50 min | [10] |
CO | NiO nanowire | Resistor | N/A (150 °C) | 0.25 (800 ppm) | ∼2 h | [38] |
CO | CeO2 nanowire | Resistor | <10 ppm (25 °C) | 2 (200 ppm) | ∼10 s | [39] |
H2S | SnO2 nanowire | Resistor | <1 ppm (150 °C) | 6 × 106 (50 ppm) | N/A | [9] |
H2S | ZnO nanowire | Resistor | N/A (25 °C) | 8 (300 ppm) | ∼50 s | [13] |
H2S | In2O3 nanowire | FET | 1 ppm (25 °C) | 1 (20 ppm) | 48 s | [17] |
Ethanol | SnO2 nanotube | Resistor | N/A (400 °C) | 20 (7.8%) | ∼80 s | [36] |
O2 | β-Ga2O3 nanowire | Resistor | <50 ppm (25 °C) | 20 (50 ppm) | 1 s | [26] |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Choi, K.J.; Jang, H.W. One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues. Sensors 2010, 10, 4083-4099. https://doi.org/10.3390/s100404083
Choi KJ, Jang HW. One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues. Sensors. 2010; 10(4):4083-4099. https://doi.org/10.3390/s100404083
Chicago/Turabian StyleChoi, Kyoung Jin, and Ho Won Jang. 2010. "One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues" Sensors 10, no. 4: 4083-4099. https://doi.org/10.3390/s100404083
APA StyleChoi, K. J., & Jang, H. W. (2010). One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues. Sensors, 10(4), 4083-4099. https://doi.org/10.3390/s100404083