Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m
"> Figure 1
<p>Cropland over Sahelian and Sudanian agrosystems on ten global products showing the high variability of cropland extent.</p> "> Figure 2
<p>Study site with the validation sample (blue points) and regional grid (in grey) with isohyets of 250-mm, 500-mm and 1000-mm. The background image corresponds to the surface reflectances in infrared, mid-infrared and red bands for the dates corresponding to the maximum of red reflectance (maximum red feature).</p> "> Figure 3
<p>Calendar of seasons and agricultural management. The study region contains two clearly distinct seasons with crop cultivation during the rainy season and land preparation at the end of the dry season.</p> "> Figure 4
<p>Percentage of PROBA-V valid cloud-free observation for the study area during the whole time series. False detection of clouds is systematically observed over the desert area. The valid cloud-free observation percentage decreases with latitude.</p> "> Figure 5
<p>Percentage of data available for each degree of latitude ranging from 9°to 18°. Low data availability is observed in low latitudes and during vegetation growth (from July to October).</p> "> Figure 6
<p>Three-step methodology for cropland classification: (i) extraction of the temporal features; (ii) local training based on trimmed data; (iii) classification using SVM.</p> "> Figure 7
<p>(<b>a</b>) Spectral response of the four bands (blue, red, NIR, SWIR) of the PROBA-Vegetation instrument; (<b>b</b>) Representation of the five temporal features (minimum NDVI, maximum NDVI, increasing slope, decreasing slope and maximum red).</p> "> Figure 8
<p>Crop proportion of each grid cell and randomly-sampled grid cells for SVM classification with the best selected features. A higher crop proportion is observed in lower latitudes.</p> "> Figure 9
<p>Respective contribution of each spectral-temporal feature for crop discrimination for the different cropland density classes. The dotted red line corresponds to the decision rule for selecting the best features.</p> "> Figure 10
<p>Comparison of the accuracy for SVM classification with all features (SVM) and selected features (SVM select). The whiskers represent the standard deviation of the five selected grid cells for each crop proportion class.</p> "> Figure 11
<p>Some examples of cropland in the <span class="html-italic">2014 Sudano-Sahelian Cropland map</span> (at 100-m) and the labeling layer (at 30-m). Background images are: (1) World View 2 of 26 June 2014; (2) GeoEye of 14 June 2014; (3–7) Spot 5 of the 2013 season; and (8) RapidEye of 29 January 2012.</p> "> Figure 12
<p>Three examples of Pareto boundary, commission and omission errors for GlobeLand 30 and <span class="html-italic">2014 Sudano-Sahelian Cropland map</span>. Pareto boundaries were also computed for a 10-m product and a 300-m product. (<b>a</b>) Site in center Mali ; (<b>b</b>) Site in Sikasso region (Mali South East); (<b>c</b>) Site in South Mali.</p> "> Figure 13
<p>Comparison of the <span class="html-italic">2014 Sudano-Sahelian Cropland map</span> with the ten previous global products showing high variability in the accuracy indices and better performance for the <span class="html-italic">2014 Sudano-Sahelian Cropland map</span> and GlobeLand 30 used as the labeling layer.</p> "> Figure 14
<p>The <span class="html-italic">2014 Sudano-Sahelian Cropland map</span> derived from PROBA-V at 100-m and the comparison with GlobeLand 30 derived from Landsat imagery acquired around 2010.</p> "> Figure 15
<p>OA and F-score predicted by the multiple regression compared to the OA and F-score observed.</p> "> Figure 16
<p>Prediction of OA over the study area based on a multiple regression using eight explanatory variables related to spatial localization, data availability and landscape characteristics.</p> "> Figure 17
<p>Evolution of OA and F-score with agreement computed on ten global products. The X axis corresponds to agreement between global products with 0 = all products classify pixels as non-crop and 10 = all products classify pixels as crop; N corresponds to the number of validation points corresponding to a given class of agreement.</p> ">
Abstract
:1. Introduction
2. Materials
2.1. Study Site
2.2. Data
3. Methodology
3.1. Cropland Classification
3.1.1. Extracting Temporal Features from PROBA-V
3.1.2. Trimming and Local Training
3.1.3. SVM Classification
3.2. Handling the Spatial Gradient and the Landscape Diversity
3.3. Relative Importance of Spectral-Temporal Features
3.4. Validation
3.5. Error Analysis
4. Results
4.1. Spectral-Temporal Feature Importance
4.2. Qualitative Analysis of 2014 Sudano-Sahelian Cropland map
4.3. Accuracy of the Cropland Map and Comparison with Existing Global Products
4.4. Spatial Distribution of Errors
4.5. Multiple Linear Regression to Explain OA and F-Score
4.6. OA and F-Score in the Disagreement Region of Global Products
4.7. Fragmentation of the Landscape
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- CORAF/WECARD. Strategic Plan 2007–2016; CORAF/WECARD: Dakar, Senegal, 2007. [Google Scholar]
- Brevault, T.; Renou, A.; Vayssieres, J.; Amadji, G.; Assogba Komlan, F.; Dalanda Diallo, M.; De Bon, H.; Diarra, K.; Hamadoun, A.; Huat, J.; et al. DIVECOSYS: Bringing together researchers to design ecologically-based pest management for small-scale farming systems in West Africa. Crop Prot. 2014, 66, 53–60. [Google Scholar] [CrossRef]
- Lahmar, R.; Bationo, B.; Dan Lamso, N.; Guero, Y.; Tittonell, P. Tailoring conservation agriculture technologies to West Africa semi-arid zones: Building on traditional local practices for soil restoration. Field Crops Res. 2012, 132, 158–167. [Google Scholar] [CrossRef]
- Jalloh, A.; Roy-Macauley, H.; Sereme, P. Major agro-ecosystems of West and Central Africa: Brief description, species richness, management, environmental limitations and concerns. Agric. Ecosyst. Environ. 2012, 157, 5–16. [Google Scholar] [CrossRef]
- Akponikpe, P.; Minet, J.; Gerard, B.; Defourny, P.; Bielders, C. Spatial fields dispersion as a farmer strategy to reduce agro-climatic risk at the household level in pearl millet-based systems in the Sahel: A modeling perspective. Agric. For. Meteorol. 2011, 151, 215–227. [Google Scholar] [CrossRef]
- Dardel, C.; Kergoat, L.; Hiernaux, P.; Mougin, E.; Grippa, M.; Tucker, C. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens. Environ. 2014, 140, 350–364. [Google Scholar] [CrossRef]
- Genesio, L.; Bacci, M.; Baron, C.; Diarra, B.; Di Vecchia, A.; Alhassane, A.; Hassane, I.; Ndiaye, M.; Philippon, N.; Tarchiani, V.; et al. Early warning systems for food security in West Africa: Evolution, achievements and challenges. Atmos. Sci. Lett. 2011, 12, 142–148. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M. Remote sensing of vegetation in the Sudano-Sahelian zone: A literature review from 1975 to 2014. J. Arid Environ. 2015, 124, 257–269. [Google Scholar] [CrossRef]
- Potts, M.; Zulu, E.; Wehner, M.; Castillo, F.; Henderson, C. Crisis in the Sahel: Possible Solutions and the Consequences of Inaction; The OASIS Initiative: Berkeley, CA, USA, 2013. [Google Scholar]
- Bailis, R.; Ezzati, M.; Kammen, D.M. Mortality and greenhouse gas impacts of biomass and petroleum energy futures in Africa. Science 2005, 308, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Manning, A.D.; Gibbons, P.; Lindenmayer, D.B. Scattered trees: A complementary strategy for facilitating adaptive responses to climate change in modified landscapes? J. Appl. Ecol. 2009, 46, 915–919. [Google Scholar] [CrossRef]
- Mertz, O.; D’haen, S.; Maiga, A.; Moussa, I.B.; Barbier, B.; Diouf, A.; Diallo, D.; Da, E.D.; Dabi, D. Climate variability and environmental stress in the Sudan-Sahel zone of West Africa. Ambio 2012, 41, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China s cropland during 1990 2000: An analysis based on Landsat {TM} data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Delrue, J.; Bydekerke, L.; Eerens, H.; Gilliams, S.; Piccard, I.; Swinnen, E. Crop mapping in countries with small-scale farming: A case study for West Shewa, Ethiopia. Int. J. Remote Sens. 2013, 34, 2566–2582. [Google Scholar] [CrossRef]
- Vancutsem, C.; Marinho, E.; Kayitakire, F.; See, L.; Fritz, S. Harmonizing and combining existing Land Cover/Land Use datasets for cropland area monitoring at the African continental scale. Remote Sens. 2012, 5, 19–41. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; See, L.; Rembold, F. Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa. Int. J. Remote Sens. 2010, 31, 2237–2256. [Google Scholar] [CrossRef]
- Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27.
- Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year MODIS data. Remote Sens. 2010, 2, 1844–1863. [Google Scholar] [CrossRef]
- Defourny, P. Land Cover CCI: Product user Guide: Version 2; Technical Report; UCL, ESA: Louvain-la-Neuve, Belgium, 2014. [Google Scholar]
- Teluguntla, P.G.; Thenkabail, P.S.; Xiong, J.; Gumma, M.K.; Giri, C.; Milesi, C.; Ozdogan, M.; Congalton, R.; Tilton, J.; Sankey, T.T.; et al. Global Cropland Area Database (GCAD) Derived from Remote Sensing in Support of Food Security in the Twenty-First Century: Current Achievements and Future Possibilities; Taylor & Francis: Boca Raton, FL, USA, 2015; in press. [Google Scholar]
- Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Ryutaro, T.; Nguyen, T.H.; Toshiyuki, K.; Bayan, A.; Gegen, T.; Dong, X.P. Production of global land cover data GLCNMO2008. J. Geogr. Geol. 2014. [Google Scholar] [CrossRef]
- Bontemps, S.; Defourny, P.; Van Bogaert, E. GLOBCOVER 2009: Product Description and Dalidation Report; Technical Report; UCL, ESA: Louvain-la-Neuve, Belgium, 2011. [Google Scholar]
- Tchuente, A.T.K.; Roujean, J.L.; Faroux, S. ECOCLIMAP-II: An ecosystem classification and land surface parameters database of Western Africa at 1 km resolution for the African Monsoon Multidisciplinary Analysis (AMMA) project. Remote Sens. Environ. 2010, 114, 961–976. [Google Scholar] [CrossRef]
- Latham, J.; Cumani, R.; Rosati, I.; Bloise, M. FAO Global Land Cover (GLC-SHARE) Beta-Release 1.0 Database; FAO: Rome, Italy, 2014. [Google Scholar]
- Biradar, C.; Thenkabail, P.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; Gumma, M.; Gangalakunta, O.; Cai, X.; et al. A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 114–129. [Google Scholar] [CrossRef]
- Prasad, S.T.; Biradar, C.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.; Turral, H.; Cai, X.; et al. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Wu, W.; Shibasaki, R.; Yang, P.; Zhou, Q.; Tang, H. Remotely sensed estimation of cropland in China: A comparison of the maps derived from four global land cover datasets. Can. J. Remote Sens. 2008, 34, 467–479. [Google Scholar] [CrossRef]
- Waldner, F.; Fritz, S.; Di Gregorio, A.; Defourny, P. Mapping priorities to focus cropland mapping activities: Fitness assessment of existing global, regional and national cropland maps. Remote Sens. 2015, 7, 7959–7986. [Google Scholar] [CrossRef] [Green Version]
- Fritz, S.; See, L.; You, L.; Justice, C.; Becker-Reshef, I.; Bydekerke, L.; Cumani, R.; Defourny, P.; Erb, K.; Foley, J.; et al. The need for improved maps of global cropland. Eos Trans. Am. Geophys. Union 2013, 94, 31–32. [Google Scholar] [CrossRef]
- Bontemps, S.; Herold, M.; Kooistra, L.; Van Groenestijn, A.; Hartley, A.; Arino, O.; Moreau, I.; Defourny, P. Revisiting land cover observation to address the needs of the climate modeling community. Biogeosciences 2012, 9, 2145–2157. [Google Scholar] [CrossRef] [Green Version]
- Swain, P.; Davis, S. Remote Sensing: The Quantitative Approach; Advanced book program; McGraw-Hill International Book Co.: New York, NY, USA, 1978. [Google Scholar]
- Hansen, M.; Dubayah, R.; Defries, R. Classification trees: An alternative to traditional land cover classifiers. Int. J. Remote Sens. 1996, 17, 1075–1081. [Google Scholar] [CrossRef]
- Lippmann, R. An introduction to computing with neural nets. IEEE ASSP Mag. 1987, 4, 4–22. [Google Scholar] [CrossRef]
- Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Szuster, B.W.; Chen, Q.; Borger, M. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Appl. Geogr. 2011, 31, 525–532. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P. Assessment of the effectiveness of support vector machines for hyperspectral data. Future Gener. Comput. Syst. 2004, 20, 1215–1225. [Google Scholar] [CrossRef]
- Paneque-Gálvez, J.; Mas, J.F.; Moré, G.; Cristóbal, J.; Orta-Martínez, M.; Luz, A.C.; Guèze, M.; Macía, M.J.; Reyes-García, V. Enhanced land use/cover classification of heterogeneous tropical landscapes using support vector machines and textural homogeneity. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 372–383. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.; Townshend, J. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Sivakumar, M. Exploiting rainy season potential from the onset of rains in the Sahelian zone of West Africa. Agric. For. Meteorol. 1990, 51, 321–332. [Google Scholar] [CrossRef]
- Kang, B.T. Moist Savanas of Africa—Potentials and Constraints for Crop Production; ITA: Ibadan, Nigeria, 1995. [Google Scholar]
- Dierckx, W.; Sterckx, S.; Benhadj, I.; Livens, S.; Duhoux, G.; Van Achteren, T.; Francois, M.; Mellab, K.; Saint, G. PROBA-V mission for global vegetation monitoring: Standard products and image quality. Int. J. Remote Sens. 2014, 35, 2589–2614. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, P.; Yu, L.; Hu, L.; Li, X.; Li, C.; Zhang, H.; Zheng, Y.; Wang, J.; Zhao, Y.; et al. Towards a common validation sample set for global land-cover mapping. Int. J. Remote Sens. 2014, 35, 4795–4814. [Google Scholar] [CrossRef]
- Boschetti, L.; Flasse, S.P.; Brivio, P.A. Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary. Remote Sens. Environ. 2004, 91, 280–292. [Google Scholar] [CrossRef]
- Waldner, F.; Lambert, M.J.; Li, W.; Weiss, M.; Demarez, V.; Morin, D.; Marais-Sicre, C.; Hagolle, O.; Baret, F.; Defourny, P. Land cover and crop type classification along the season based on biophysical variables retrieved from multi-sensor high-resolution time series. Remote Sens. 2015, 7, 10400–10424. [Google Scholar] [CrossRef]
- Matton, N.; Canto, G.S.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An automated method for annual cropland mapping along the season for various globally-distributed agrosystems using high spatial and temporal resolution time series. Remote Sens. 2015, 7, 13208–13232. [Google Scholar] [CrossRef]
- Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1–13. [Google Scholar] [CrossRef]
- Akbari, M.; Mamanpoush, A.R.; Gieske, A.; Miranzadeh, M.; Torabi, M.; Salemi, H. Crop and land cover classification in Iran using Landsat 7 imagery. Int. J. Remote Sens. 2006, 27, 4117–4135. [Google Scholar] [CrossRef]
- Eilers, P. A perfect smoother. Anal. Chem. 2003, 75, 3631–3636. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Atzberger, C.; Eilers, P.H. Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements. Int. J. Remote Sens. 2011, 32, 3689–3709. [Google Scholar] [CrossRef]
- Foody, G.; Mathur, A. Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sens. Environ. 2004, 93, 107–117. [Google Scholar] [CrossRef]
- Wang, L. Support Vector Machines: Theory and Applications; Springer Science & Business Media: Singapore, 2005; Volume 177. [Google Scholar]
- Vapnik, V.N.; Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998; Volume 1. [Google Scholar]
- Hiernaux, P.; Mougin, E.; Diarra, L.; Soumaguel, N.; Lavenu, F.; Tracol, Y.; Diawara, M. Sahelian rangeland response to changes in rainfall over two decades in the Gourma region, Mali. J. Hydrol. 2009, 375, 114–127. [Google Scholar] [CrossRef]
- Bégué, A.; Vintrou, E.; Saad, A.; Hiernaux, P. Differences between cropland and rangeland MODIS phenology (start-of-season) in Mali. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 167–170. [Google Scholar] [CrossRef]
- Bégué, A.; Vintrou, E.; Ruelland, D.; Claden, M.; Dessay, N. Can a 25-year trend in Soudano-Sahelian vegetation dynamics be interpreted in terms of land use change? A remote sensing approach. Glob. Environ. Chang. 2011, 21, 413–420. [Google Scholar] [CrossRef]
- Renier, C.; Waldner, F.; Jacques, D.C.; Babah Ebbe, M.A.; Cressman, K.; Defourny, P. A dynamic vegetation senescence indicator for near-real-time desert locust habitat monitoring with MODIS. Remote Sens. 2015, 7, 7545–7570. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wagner, J.E.; Stehman, S.V. Optimizing sample size allocation to strata for estimating area and map accuracy. Remote Sens. Environ. 2015, 168, 126–133. [Google Scholar] [CrossRef]
- Foody, G.M. Local characterization of thematic classification accuracy through spatially constrained confusion matrices. Int. J. Remote Sens. 2005, 26, 1217–1228. [Google Scholar] [CrossRef]
- Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote Sens. Environ. 2007, 107, 606–616. [Google Scholar] [CrossRef]
- Leroux, L.; Jolivot, A.; Bégué, A.; Seen, D.L.; Zoungrana, B. How reliable is the MODIS land cover product for crop mapping Sub-Saharan agricultural landscapes? Remote Sens. 2014, 6, 8541–8564. [Google Scholar] [CrossRef] [Green Version]
- Foody, G. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Waldner, F.; Ebbe, M.A.B.; Cressman, K.; Defourny, P. Operational monitoring of the desert locust habitat with earth observation: An assessment. ISPRS Int. J. Geo-Inf. 2015, 4, 2379–2400. [Google Scholar] [CrossRef]
- Turner, M.G.; O’Neill, R.V.; Gardner, R.H.; Milne, B.T. Effects of changing spatial scale on the analysis of landscape pattern. Landsc. Ecol. 1989, 3, 153–162. [Google Scholar] [CrossRef]
- Mayaux, P.; Lambin, E.F. Estimation of tropical forest area from coarse spatial resolution data: A two-step correction function for proportional errors due to spatial aggregation. Remote Sens. Environ. 1995, 53, 1–15. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Su, Y.; Jiang, B.; Wang, X. Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data. Remote Sens. 2014, 6, 11518–11532. [Google Scholar] [CrossRef]
- Smith, J.H.; Stehman, S.V.; Wickham, J.D.; Yang, L. Effects of landscape characteristics on land-cover class accuracy. Remote Sens. Environ. 2003, 84, 342–349. [Google Scholar] [CrossRef]
- Latifovic, R.; Olthof, I. Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data. Remote Sens. Environ. 2004, 90, 153–165. [Google Scholar] [CrossRef]
- Moody, A.; Woodcock, C.E. The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing. Landsc. Ecol. 1995, 10, 363–379. [Google Scholar] [CrossRef]
- Roumenina, E.; Atzberger, C.; Vassilev, V.; Dimitrov, P.; Kamenova, I.; Banov, M.; Filchev, L.; Jelev, G. Single-and multi-date crop identification using PROBA-V 100 and 300 m S1 products on Zlatia test site, Bulgaria. Remote Sens. 2015, 7, 13843–13862. [Google Scholar] [CrossRef]
- Sterckx, S.; Benhadj, I.; Duhoux, G.; Livens, S.; Dierckx, W.; Goor, E.; Adriaensen, S.; Heyns, W.; Van Hoof, K.; Strackx, G.; et al. The PROBA-V mission: Image processing and calibration. Int. J. Remote Sens. 2014, 35, 2565–2588. [Google Scholar] [CrossRef]
- Erwin, W.; Wouter, D.; Jan, D.; Else, S. PROBA-V Products User Manual v1.1; VITO: Mol, Belgium, 2014. [Google Scholar]
Product | Cropland | Product | Cropland |
---|---|---|---|
GlobeLand30 | Cultivated land | MODIS | Cropland |
GFSAD | Cropland, irrigation major | Mosaic cropland/natural vegetation | |
Cropland, irrigation minor | IIASA | >25% of probability of crop | |
Cropland, rainfed | CCI | Cropland rainfed | |
Cropland rainfed minor fragments | Cropland irrigated or post flooding | ||
Cropland rainfed very minor fragments | Mosaic cropland (>50%)/natural vegetation | ||
GLCnmo | Cropland: herbaceous crop | Mosaic natural vegetation (>50%) / cropland | |
Cropland/other vegetation mosaic | GLC2000 | Cultivated and managed areas | |
Paddy field: graminoid crops/non graminoid crop | Mosaic cropland/shrubland or grass cover | ||
GlobCover | Rainfed cropland | Mosaic cropland/tree cover/natural vegetation | |
Mosaic cropland (50%–70%)/vegetation (20%–50%) | JRC MARS | // GlobCover | |
Mosaic vegetation (50%–70%)/cropland (20%–50%) | |||
Cultivated and managed areas | |||
Post-flooding or irrigated croplands | |||
GLC Share | Cropland |
Non Crop | Crop | UA [%] | |
---|---|---|---|
Non crop | 1431 | 180 | 89 |
Crop | 185 | 519 | 74 |
PA [%] | 89 | 74 | OA[%] = 84 |
OA | F-score | |||
---|---|---|---|---|
Correlation | Ranking | Correlation | Ranking | |
Location | ||||
Latitude | 0.44 | 2 | 0.33 | 3 |
Longitude | –0.28 | 5 | –0.09 | 7 |
Time-series | ||||
Data availability | 0.25 | 3 | 0.22 | 1 |
Landscape characteristics | ||||
Fragmentation | –0.39 | 1 | –0.2 | 6 |
Entropy | –0.13 | 6 | –0.1 | 8 |
Matheron Index | –0.29 | 4 | –0.05 | 5 |
Crop proportion | –0.05 | 8 | 0.09 | 2 |
Crop fragmentation | –0.24 | 7 | 0.01 | 4 |
Total variance explained [%] | 41.24 | 21.05 |
Crop Proportion | Very Low | Low | Medium | High |
---|---|---|---|---|
Proportion error (30 m–90 m) (%) | NA | −5.2 | −5.2 | −0.6 |
Proportion error (30 m–300 m) (%) | NA | −29.8 | −27.0 | −5.7 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lambert, M.-J.; Waldner, F.; Defourny, P. Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m. Remote Sens. 2016, 8, 232. https://doi.org/10.3390/rs8030232
Lambert M-J, Waldner F, Defourny P. Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m. Remote Sensing. 2016; 8(3):232. https://doi.org/10.3390/rs8030232
Chicago/Turabian StyleLambert, Marie-Julie, François Waldner, and Pierre Defourny. 2016. "Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m" Remote Sensing 8, no. 3: 232. https://doi.org/10.3390/rs8030232
APA StyleLambert, M.-J., Waldner, F., & Defourny, P. (2016). Cropland Mapping over Sahelian and Sudanian Agrosystems: A Knowledge-Based Approach Using PROBA-V Time Series at 100-m. Remote Sensing, 8(3), 232. https://doi.org/10.3390/rs8030232