Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment
"> Figure 1
<p>Dynamic greenness map products for Mauritania on two contrasted dates: (<b>a</b>) second decade of February 2011; and (<b>b</b>) first decade of September 2011; (<b>c</b>) the color code of the time meter. This illustrates the spatial-temporal variability of vegetation and the vegetation response to seasonal rainfall. The product with its time meter flags priority areas to be surveyed (warm colors) because of a recent greening of vegetation becoming suitable for locusts, as they prefer fresh vegetation. On the contrary, dark-colored areas present a lower interest for locusts.</p> "> Figure 2
<p>Mauritania and its six ecological domains. Two observations on the four study sites ensure a robust spatial-temporal sampling. Summer breeding areas cover the south domain below the 18th parallel. In the spring and the winter, locusts breed in favorable areas of the north and the center-west domains.</p> "> Figure 3
<p>Percentage of vegetation in the reference maps aggregated at 250 m: (<b>a</b>) center-west 20 February 2010; (<b>b</b>) center-west 19 November 2010; (<b>c</b>) south Tidjikja 21 January 2010; (<b>d</b>) south Tidjikja 29 July 2009; (<b>e</b>) Chemama 20 February 2010; (<b>f</b>) Chemama 19 November 2010; (<b>g</b>) south Nema 17 February 2010; (<b>h</b>) south Nema 12 October 2009.</p> "> Figure 4
<p>Flowchart of the accuracy assessment. The analysis of the ROC curve built with the greenness maps and <span class="html-italic">in situ</span> observation allowed defining an optimal vegetation threshold for detection. This threshold was then applied to continuous vegetation reference maps degraded at 250 m to derive confusion matrices for the greenness maps. The Pareto boundary was also computed thanks to the continuous vegetation reference maps, which permitted identifying the part of the error solely due to the resolution.</p> "> Figure 5
<p>ROC curve for the field vegetation density (<span class="html-italic">n</span> = 113). The best cut-off value (in red) corresponds to the optimal percentage of vegetation coverage for detection. The Youden index J identifies the threshold to be further used in the computation of the error matrices. The AUC of 84.9% indicates good performance compared to a random classifier.</p> "> Figure 6
<p>Pareto boundaries for the eight reference maps and the simulated boundaries for the SPOT-VEGETATION (1000 m), MODIS (250 m) and PROBA-V(100 m) sensors. In the current 250-m product, the unreachable region accounts for up to 60% of the errors. (<b>a</b>) Atar, dry season; (<b>b</b>) Atar, rainy season; (<b>c</b>) Tidjikja, dry season; (<b>d</b>) Tidjikja, rainy season; (<b>e</b>) Aleg, dry season; (<b>f</b>) Aleg, rainy season; (<b>g</b>) Nema, dry season; (<b>h</b>) Nema, rainy season.</p> "> Figure 7
<p>(<b>a</b>) Habitat fragmentation is an indicator of the achieved accuracy. The higher the fragmentation, the lower the accuracy rate. (<b>b</b>) Simulated reduction of the unreachable region for a spatial resolution of 100 m corresponding to that of PROBA-V. In a fragmented habitat, a product at 100 m would reduce the low -resolution bias by 20%.</p> "> Figure 8
<p>Results of the user survey. National information officers are generally satisfied about the operational provision of remote sensing products for desert locust monitoring in their countries (online questionnaire, April 2012).</p> ">
Abstract
:1. Introduction
2. Material
2.1. Study Area
2.2. Satellite Data and Reference Datasets
Zone | Row-Path | Date Landsat | Dekade DGM | Veg. Area (ha) | Veg. Area (%) |
---|---|---|---|---|---|
Atar | 204-046 | 2010/02/20 | 2010/02/11 | 4027 | 0.12 |
2010/11/19 | 2010/11/11 | 57,777 | 1.71 | ||
Tikjikja | 202-048 | 2010/01/21 | 2010/01/21 | 150,388 | 4.43 |
2009/07/29 | 2009/08/01 | 176,496 | 5.29 | ||
Aleg | 204-048 | 2010/02/20 | 2010/02/11 | 234,880 | 7.01 |
2010/11/19 | 2010/11/11 | 1,273,143 | 37.30 | ||
Nema | 199-049 | 2010/02/17 | 2010/02/21 | 63,278 | 1.91 |
2009/10/12 | 2009/10/11 | 1,780,856 | 53.99 |
3. Methods
3.1. Traditional Accuracy Assessment
3.2. Effect of the Spatial Resolution on the Accuracy
3.2.1. The Pareto Boundary
3.2.2. Habitat Structure
3.3. End-User Survey
4. Results
4.1. Accuracy Assessment
Zone | Season | ED (m/ha) | OE (%) | CE (%) | F-Score | OA (%) | Kappa |
---|---|---|---|---|---|---|---|
Atar | Dry | 273 | 67.8 | 75.3 | 0.280 | 99.8 | 0.278 |
Rainy | 308 | 72.3 | 71.8 | 0.279 | 97.4 | 0.267 | |
Tikjikja | Dry | 247 | 62.7 | 73.8 | 0.307 | 96.4 | 0.290 |
Rainy | 200 | 61.9 | 54.4 | 0.415 | 93.9 | 0.384 | |
Aleg | Dry | 224 | 63.7 | 49.3 | 0.423 | 92.6 | 0.384 |
Rainy | 167 | 41.5 | 29.0 | 0.641 | 74.2 | 0.443 | |
Nema | Dry | 261 | 68.1 | 73.1 | 0.291 | 96.9 | 0.276 |
Rainy | 86 | 9.7 | 16.5 | 0.867 | 82.7 | 0.620 |
4.2. End-User Assessment
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Collett, M.; Despland, E.; Simpson, S.J.; Krakauer, D.C. Spatial scales of desert locust gregarization. Proc. Natl. Acad. Sci. USA 1998, 95, 13052–13055. [Google Scholar] [CrossRef] [PubMed]
- Steedman, A. Locust Handbook; Institute, Overseas development Natural Resources: London, UK, 1988. [Google Scholar]
- Brader, L.; Djibo, H.; Faye, F.G.; Ould Babah, M.A.; Ghaout, S.; Lazar, P.M.; Nguala, M. Towards a More Effective Response to Desert Locusts and Their Impacts on Food Security, Livelihood and Poverty. Independent Multilateral Evaluation of the 2003–2005 Desert Locust Campaign; Food and Agriculture Organization (FAO): Rome, Italy, 2006. [Google Scholar]
- Belayneh, Y.T. Acridid pest management in the developing world: A challenge to the rural population, a dilemma to the international community. J. Orthoptera Res. 2005, 14, 187–195. [Google Scholar] [CrossRef]
- Uvarov, B.P. Grasshoppers and Locust; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Lecoq, M.; Mestre, J. La Surveillance des Sautériaux du Sahel; CIRAD/PRIFAS: Montpellier, France, 1988; Volume 2, p. 32. [Google Scholar]
- Roffey, J.; Popov, G. Environmental and behavioural processes in a desert locust outbreak. Nature 1968, 219, 446–450. [Google Scholar] [CrossRef]
- Hay, S. Remote-sensing and disease control: Past, present and future. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 105–106. [Google Scholar] [CrossRef]
- Duranton, J.F.; Lecoq, M. Le Criquet Pèlerin au Sahel; Ministère des Affaires Étrangères des Pays-Bas et CIRAD/PRIFAS: Montpellier, France, 1990; Volume 6, p. 84.
- Popov, G.B. Etude Écologique des Biotopes du Criquet pèlerin Schistocerca Gregaria (Forskål, 1775) en Afrique Nord Occidentale. Mise en Évidence et Description des Unités Territoriales Écologiquement Homogènes; CIRAD-PRIFAS: Montpellier, France, 1991; p. 744. [Google Scholar]
- Elliott, C.C.H. FAO’s Perspective on Migratory Pests; Plant Production and Protection Division (AGPP), Food and Agriculture Organization (FAO): Rome, Italy, 1999. [Google Scholar]
- Popov, G.B. Ecological Studies on Oviposition by Swarms of the Desert Locust (Schistocerca Gregaria Forskal) in Eastern Africa; Anti-Locust Research Center: London, UK, 1958. [Google Scholar]
- Uvarov, B.P. The aridity factor in the ecology of desert locust and grasshoppers of the old world. In Arid Zone Research; UNESCO: Paris, France, 1957; Volume 8, pp. 164–198. [Google Scholar]
- Noy-Meir, A. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst. 1973, 4, 25–51. [Google Scholar] [CrossRef]
- Bennet, L. The development and termination of the 1968 plague of the Desert Locust Scistocerca gregaria (Forksal) (Orthoptera, Acrididae). Bull. Entomol. Res. 1976, 66, 511–552. [Google Scholar] [CrossRef]
- Cressman, K. Dynamic Greenness Maps, a Brief Report on Usage for Desert Losut Early Warning; Food and Agriculture Organization (FAO): Rome, Italy, 2012. [Google Scholar]
- Kibasa, R. Use of SPOT 5 Image to Identify Presence of Locusts; International Institute for Geoinformation Science and Earth Observation: Enschede, The Netherlands, 2006. [Google Scholar]
- Hielkema, J. Satellite environmental monitoring for migrant pest forecasting by FAO: The ARTEMIS system. Philos. Trans. R. Soc. B Biol. Sci. 1990, 328, 705–717. [Google Scholar] [CrossRef]
- Pedgley, D.E. Testing Feasibility of Detecting Locust Breeding Sites by Satellite. Final Report to NASA on ERTS-1, Experiment; COPR: London, UK, 1973. [Google Scholar]
- Hielkema, J. Application of Landsat Data in Desert Locust Survey and Control; Food and Agriculture Organization (FAO): Rome, Italy, 1977. [Google Scholar]
- Sinha, P.P.; Chandra, S. Visual analysis of land satellite imageries with reference to growthand decay of vegetation in Western Rajasthan. Plant Prot. Bull. 1987, 39, 29–31. [Google Scholar]
- Hielkema, J.U.; Roffey, J.; Tucker, C.J. Assessment of ecological conditions associated with the 1980/81 desert locust plague upsurge in West Africa using environmental satellite data. Int. J. Remote Sens. 1986, 7, 1609–1622. [Google Scholar] [CrossRef]
- Tappan, G.G.; Moore, D.G.; Knausenberger, W.I. Monitoring grasshopper an locust habitats in Sahelian Africa using GIS and remote sensing technology. Int. J. Geogr. Inf. Syst. 1991, 5, 123–135. [Google Scholar] [CrossRef]
- Despland, E.; Rosenberg, J.; Simpson, S.J. Landscape structure and locust swarming : A satellite’s eye view. Ecography 2004, 3, 381–391. [Google Scholar] [CrossRef]
- Cherlet, M.; Mathoux, P.; Bartholomé, E.; Defourny, P. SPOT-VEGETATION contribution to Desert Locust habitat monitoring. In Proceedings of the VEGETATION 2000 Conference, Lake Maggiore, Italy, 3–6 April 2000; pp. 247–257.
- Ceccato, P. Operational early warning system using SPOT-VGT and TERRA-MODIS to predict desert locust outbreaks. In Proceedings of the 2nd VEGETATION International Users Conference, Antwerp, Belgium, 24–26 March 2005; pp. 24–26.
- Huete, A.R. Soil influence in remotely sensed vegetation canopy spectra. In Introduction to the Physics and Techniques of Remote Sensing; Asrar, G., Ed.; Wiley-Interscience: New York, NY, USA, 1987; pp. 107–141. [Google Scholar]
- Gutman, G.G. On the use of long-term global data of land reflectance and vegetation indexes derived from the advanced very high resolution radiometer. J. Geophys. Res. 1999, 104, 6141–6255. [Google Scholar]
- Holben, B. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Pekel, J.F.; Ceccato, P.; Vancutsem, C.; Cressman, K.; Vanbogaert, E.; Defourny, P. Development and Application of Multi-Temporal Colorimetric Transformation to Monitor Vegetation in the Desert Locust Habitat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 318–326. [Google Scholar] [CrossRef]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data (Part 1: Theoretical approach). Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cressman, K.; Ceccato, P.; Vancutsem, C.; van Bogaert, E.; Defourny, P. Development and application of multi-temporal colorimetric transformation to monitor vegetation in the desert locust habitat. In Proceedings of the MultiTemp 2009—The fifth International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Mistic, CT, USA, 28–30 July 2009.
- Vancutsem, C.; Pekel, J.F.; Bogaert, P.; Defourny, P. Mean compositing, an alternative strategy for producing temporal syntheses. Concepts and performance assessment for SPOT VEGETATION time series. Int. J. Remote Sens. 2007, 28, 5123–5141. [Google Scholar] [CrossRef]
- Renier, C.; Waldner, F.; Jacques, D.C.; Babah Ebbe, M.A.; Cressman, K.; Defourny, P. A Dynamic Vegetation Senescence Indicator for Near-Real-Time Desert Locust Habitat Monitoring with MODIS. Remote Sens. 2015, 7, 7545–7570. [Google Scholar] [CrossRef]
- Ozer, P. Les lithomÉtÉores en rÉgion sahÉlienne: Un Indicateur Climatique de la dÉsertification. Ph.D. Thesis, Université de Liège, Liège, Belgium, 2000. [Google Scholar]
- Thys, E.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A. Age and sex composition of small ruminants at Nouakchott markets, Mauritania. Small Rumin. Res. 1996, 20, 1133–1135. [Google Scholar] [CrossRef]
- Thiam, A. The causes of spatial pattern of land degradation risk in southern Mauritania using multitemporal AVHRR-NDVI imagery and field data. Land Degrad. Dev. 2003, 14, 133–142. [Google Scholar] [CrossRef]
- Niang, A.J.; Ozer, A.; Ozer, P. Fifty years of landscape evolution in Southwestern Mauritania by means of aerial photos. J. Arid Environ. 2008, 72, 97–107. [Google Scholar] [CrossRef]
- Ould Ahmedou, C.A.; Yasuda, H.; Wang, K.; Hattori, K. Characteristics of precipitation in northern Mauritania and its links with sea surface temperature. J. Arid Environ. 2008, 72, 2243–2250. [Google Scholar] [CrossRef]
- Boschetti, L.; Flasse, S.; Brivio, P. Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary. Remote Sens. Environ. 2004, 91, 280–292. [Google Scholar] [CrossRef]
- Bauer, H.L. The statistical analysis of chaparral and other plant communities by means of transect samples. Ecology 1943, 24, 45–60. [Google Scholar] [CrossRef]
- McIntyre, G. Estimation of plant density using line transects. J. Ecol. 1953, 41, 319–330. [Google Scholar] [CrossRef]
- Buckner, D.L. Point-Intercept Sampling in Revegetation Studies: Maximizing Objectivity and Repeatability; American Society for Surface Mining and Reclamation: Denver, CO, USA, 1985. [Google Scholar]
- Babah Ebbe, M. Biogéographie du Criquet pèlerin, Schistocerca gregaria Forskål, 1775 : Identification, CaractÉrisation et Originalité d’un Foyer Grégarigène en Centrale, Mauritanie. Ph.D. Thesis, École Pratique des Hautes Études de Paris, EPHE, Paris, France, 2008. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 89, 77–89. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Lewis, D.D.; Gale, W.A. A Sequential Algorithm for Training Text Classifiers. ACM SIGIR Forum 1994, 29, 10. [Google Scholar]
- Labatut, V.; Cherifi, H. Accuracy measures for the comparison of classifiers. In Proceedings of The 5th International Conference on Information Technology, Las Vegas, NV, USA, 7–9 April 2008.
- Congalton, R.G.; Mead, R.A. A quantitative method to test for consistency and correctness in photointerpretation. Photogramm. Eng. Remote Sens. 1983, 49, 69–74. [Google Scholar]
- Rosenfield, G.H.; Fitzpatrick-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed.; Morgan Kaufmann: Burlington, MA, USA, 2005. [Google Scholar]
- Zweig, M.H.; Campbell, G. Receiver-Operating Clinical Medicine (ROC) Plots : A Fundamental Evaluation Tool in. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [PubMed]
- Fawcett, T. Introduction to Receiver Operator Curves. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Eva, H.; Lambin, E. Remote sensing of biomass burning in tropical regions: Sampling issues and multisensor approach. Remote Sens. Environ. 1998, 64, 292–315. [Google Scholar] [CrossRef]
- Mayaux, P.; Lambin, E. Estimation of tropical forest area from coarse spatial resolution data: A two-step correction function for proportional errors due to spatial aggregation. Remote Sens. Environ. 1995, 53, 1–15. [Google Scholar] [CrossRef]
- Mallinis, G.; Koutsias, N. Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data. Int. J. Remote Sens. 2012, 33, 4408–4433. [Google Scholar] [CrossRef]
- Pepe, M.; Boschetti, L.; Brivio, P.A.; Rampini, A. Comparing the performance of fuzzy and crisp classifiers on remotely sensed images: A case of snow classification. Int. J. Remote Sens. 2010, 31, 6189–6203. [Google Scholar]
- Vintrou, E.; Desbrosse, A.; Bégué, A.; Traoré, S.; Baron, C.; Lo Seen, D. Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 83–93. [Google Scholar] [CrossRef]
- Sword, G.; Lecoq, M.; Simpson, S.J. Phase polyphenism and preventative locust management. J. Insect Physiol. 2010, 56, 949–957. [Google Scholar] [CrossRef] [PubMed]
- McGarigal, K.; Tagil, S.; Cushman, S.A. Surface metrics: An alternative to patch metrics for the quantification of landscape structure. Landsc. Ecol. 2009, 24, 433–450. [Google Scholar]
- Monod, T. Modes “Contracté” et “Diffus” de la végÉtation Saharienne; Nabu Press: Charleston, WV, USA, 1954; Volume 3. [Google Scholar]
- Ould Babah, M.A. BiogÉographie du Criquet pÈlerin en Mauritanie. Fonctionnement D’une Aire GrégarigÈne et ConsÉquences Sur L’organisation de la Surveillance et de la Lutte Anti- Acridienne; Food and Agriculture Organization (FAO): Rome, Italy, 2003; p. 122. [Google Scholar]
- Tilman, D.; Kareiva, P. Spatial Ecology: The Role of Space in Population Dynamics And Interspecific Interactions; Monographs in Population Biology; Princeton University Press: Princeton, NJ, USA, 1997; Volume 30, p. 368. [Google Scholar]
- Hooper, D.U.; Vitousek, P.M. Ecosystem processes the effects of plant composition and diversity on ecosystem processes. Science 1997, 277, 1302–1305. [Google Scholar] [CrossRef]
- Culmsee, H. The habitat functions of vegetation in relation to the behaviour of the desert locust Schistocerca gregaria (Forskal) (Acrididae: Orthoptera)—A study in Mauritania (West Africa). Phytocoenologia 2002, 32, 645–664. [Google Scholar] [CrossRef]
- Despland, E.; Simpson, S.J. Small-scale vegetation patterns in the parental environment influence the phase state of hatchlings of the desert locust. Physiol. Entomol. 2000, 25, 74–81. [Google Scholar] [CrossRef]
- Ould Babah, M.A.; Sword, G.A. Linking locust gregarization to local resource distribution patterns. Environ. Entomol. 2004, 33, 1577–1583. [Google Scholar] [CrossRef]
- Despland, E.; Collett, M.; Simpson, S.J. Small-scale processes in desert locust swarm formation: How vegetation patterns influence gregarization. Oikos 2000, 88, 652–662. [Google Scholar]
- Despland, E. Fractal index captures the role of vegetation clumping in locust swarming. Funct. Ecol. 2003, 17, 315–322. [Google Scholar] [CrossRef]
- Popov, G. ATlas of Desert Locust Breeding Habitat; Food and Agriculture Organization of the United Nations: Rome, Italy, 1997. [Google Scholar]
- Pedgley, D.E. Desert Locust Forecasting Manual; Centre for Overseas Pest Research: London, UK, 1981; Volume 2. [Google Scholar]
- Kennedy, J.S. The behaviour of the desert locust (Schistocerca gregaria (Forsk.)) (Orthopt.) in an outbreak center. Trans. R. Entomol. Soc. Lond. 1939, 89, 385–542. [Google Scholar] [CrossRef]
- Bouaichi, A.; Simpson, S.J.; Roessingh, P. The influence of environmental microstructure on the behavioural phase state and distribution of the desert locust Schistocerca gregaria. Physiol. Entomol. 1996, 21, 247–256. [Google Scholar] [CrossRef]
- Despland, E.; Simpson, S.J. The role of food distribution and nutritional quality in behavioural phase change in the desert locust. Anim. Behav. 2000, 59, 643–652. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waldner, F.; Ebbe, M.A.B.; Cressman, K.; Defourny, P. Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment. ISPRS Int. J. Geo-Inf. 2015, 4, 2379-2400. https://doi.org/10.3390/ijgi4042379
Waldner F, Ebbe MAB, Cressman K, Defourny P. Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment. ISPRS International Journal of Geo-Information. 2015; 4(4):2379-2400. https://doi.org/10.3390/ijgi4042379
Chicago/Turabian StyleWaldner, François, Mohamed Abdallahi Babah Ebbe, Keith Cressman, and Pierre Defourny. 2015. "Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment" ISPRS International Journal of Geo-Information 4, no. 4: 2379-2400. https://doi.org/10.3390/ijgi4042379
APA StyleWaldner, F., Ebbe, M. A. B., Cressman, K., & Defourny, P. (2015). Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment. ISPRS International Journal of Geo-Information, 4(4), 2379-2400. https://doi.org/10.3390/ijgi4042379