Validation of the Calibration Coefficient of the GaoFen-1 PMS Sensor Using the Landsat 8 OLI
"> Figure 1
<p>Relative spectral response profiles of the GF-1/PMS and the OLI: (<b>a</b>) multispectral bands; (<b>b</b>) panchromatic bands. The thick lines represent the relative spectral response of the GF-1/PMS and the thin dash lines represent that of the OLI.</p> "> Figure 2
<p>Test sites of Landsat 8/OLI image. (<b>a</b>) The Dunhuang test site; (<b>b</b>) The Golmud test site.</p> "> Figure 3
<p>Image pairs after image registration and common area subset selection over the Dunhuang (first row) and Golmud (second row) test sites: (<b>a</b>) OLI image over the Dunhuang test site acquired on 12 August 2014; (<b>b</b>) GF-1/PMS image over the Dunhuang test site acquired on 7 August 2014; (<b>c</b>) OLI image over the Golmud test site acquired on 26 February 2014; (<b>d</b>) GF-1/PMS image over the Golmud test site acquired on 24 February 2014.</p> "> Figure 3 Cont.
<p>Image pairs after image registration and common area subset selection over the Dunhuang (first row) and Golmud (second row) test sites: (<b>a</b>) OLI image over the Dunhuang test site acquired on 12 August 2014; (<b>b</b>) GF-1/PMS image over the Dunhuang test site acquired on 7 August 2014; (<b>c</b>) OLI image over the Golmud test site acquired on 26 February 2014; (<b>d</b>) GF-1/PMS image over the Golmud test site acquired on 24 February 2014.</p> "> Figure 4
<p>Comparison results between the GF-1/PMS and OLI images obtained over the Dunhuang test site without SBAF correction for each band: (<b>a</b>) TOA radiance; (<b>b</b>) TOA reflectance.</p> "> Figure 5
<p>Comparison results between the GF-1/PMS and OLI images obtained over the Dunhuang test site after SBAF correction for each band: (<b>a</b>) TOA radiance; (<b>b</b>) TOA reflectance.</p> "> Figure 6
<p>OLI TOA reflectance and OLI ground reflectance spectrum and three new simulated ground spectra, where “Fitted1” is the fitted spectrum of OLI TOA reflectance, “Fitted2” is the fitted spectrum of OLI ground reflectance, “Dunhuang” is the ground spectrum of Dunhuang test site.</p> "> Figure 7
<p>TOA reflectance comparison between the GF-1/PMS image and Landsat 8/OLI images before and after SBAF correction. (<b>a</b>) TOA reflectance comparison before SBAF correction at the Dunhuang test site; (<b>b</b>) TOA reflectance comparison after SBAF correction with new SBAF coefficient in <a href="#remotesensing-08-00132-t006" class="html-table">Table 6</a> at the Dunhuang test site; (<b>c</b>) TOA reflectance comparison before SBAF correction at the Golmud test site; (<b>d</b>) TOA reflectance comparison after SBAF correction with fitted1 reflectance SBAF coefficient in <a href="#remotesensing-08-00132-t007" class="html-table">Table 7</a> at the Golmud test site.</p> ">
Abstract
:1. Introduction
2. Reference Sensor, Test Sites, and Data
2.1. Reference Sensor Overview
GF-1/PMS | OLI Sensor | |||||
---|---|---|---|---|---|---|
Band | Spectral Range (nm) | GSD (m) | Band | Spectral Range (nm) | GSD (m) | |
Blue | Band1 | 450–520 | 8 | Band2 | 450–515 | 30 |
Green | Band2 | 520–590 | 8 | Band3 | 525–600 | 30 |
Red | Band3 | 630–690 | 8 | Band4 | 630–680 | 30 |
NIR | Band4 | 770–890 | 8 | Band5 | 845–885 | 30 |
PAN | PAN | 450–900 | 2 | Band8 | 500–680 | 15 |
2.2. Test Site
2.3. Data
Test Site | OLI Date | OLI Time (UTC) | PMS Date | PMS Time (UTC) | Day Separation |
---|---|---|---|---|---|
Dunhuang | 12 August 2014 | 4:26:16 | 7 August 2014 | 4:57:29 | 5 |
Golmud | 26 February 2014 | 4:21:56 | 24 February 2014 | 4:50:26 | 2 |
3. Methodologies
3.1. Image Registration and Region of Interest Selection
3.2. Extraction of Region of Interest Information
3.3. SBAF Correction between GF-1/PMS and OLI
Test Site | Dunhuang | Golmud | ||
---|---|---|---|---|
Sensor | PMS | OLI | PMS | OLI |
Solar zenith angle (°) | 25.9924 | 30.6794 | 48.7116 | 50.5442 |
Solar azimuth angle (°) | 150.631 | 138.285 | 158.023 | 149.144 |
Sensor zenith angle (°) | 2.4041 | 4.7351 | 1.0225 | 2.6322 |
Sensor azimuth angle (°) | 273.887 | 103.234 | 273.887 | 103.234 |
Date | 7 Auguat 2014 | 12 August 2014 | 24 February 2014 | 26 February 2014 |
Atmosphere model | Middle latitude summer | Middle latitude winter | ||
Aerosol extinction type | Desert extinction | Rural extinction | ||
Ground altitude (m) | 1260 | 2865 | ||
Ground spectrum | Dunhuang reflectance | Desert spectrum in Modtran |
4. Results
Blue | Green | Red | NIR | PAN | |
---|---|---|---|---|---|
Dunhuang radiance SBAF | 1.0428 | 1.0433 | 1.0149 | 1.1059 | 0.8432 |
Dunhuang reflectance SBAF | 1.0142 | 1.0012 | 0.9903 | 0.9471 | 1.0380 |
Golmud radiance SBAF | 1.0245 | 1.0493 | 1.0126 | 1.1292 | 0.8428 |
Golmud reflectance SBAF | 0.9998 | 1.0111 | 0.9928 | 0.9714 | 1.0431 |
Test Site | ARD (%) | |||||
---|---|---|---|---|---|---|
Blue | Green | Red | NIR | PAN | ||
Dunhuang | Before rad SBAF correction | 6.71 | 7.89 | 5.71 | 10.89 | −13.62 |
After rad SBAF correction | 2.72 | 3.90 | 4.30 | 1.45 | 4.20 | |
Before ref SBAF correction | 2.50 | 3.19 | 1.78 | −6.21 | 6.69 | |
After ref SBAF correction | 1.12 | 3.08 | 2.74 | −0.60 | 3.15 | |
Golmud | Before rad SBAF correction | −2.35 | −2.41 | −0.95 | 7.79 | −5.30 |
After rad SBAF correction | −4.86 | −7.46 | −2.22 | −4.12 | 11.26 | |
Before ref SBAF correction | −1.43 | −2.05 | 0.28 | −4.22 | 14.11 | |
After ref SBAF correction | −1.41 | −3.19 | 1.00 | −1.23 | 10.41 |
5. Discussion
5.1. Uncertainty in SBAFs Owing to Atmospheric Parameters
Atmospheric Parameters | Blue | Green | Red | NIR | PAN | |
---|---|---|---|---|---|---|
Rad SBAF | Original | 1.0428 | 1.0433 | 1.0149 | 1.1059 | 0.8432 |
New | 1.0963 | 1.0765 | 1.0245 | 1.0984 | 0.8453 | |
Relative difference | 4.88% | 3.08% | 0.93% | −0.68% | 0.24% | |
Ref SBAF | Original | 1.0142 | 1.0012 | 0.9903 | 0.9471 | 1.0380 |
New | 1.0659 | 1.0329 | 0.9991 | 0.9405 | 1.0365 | |
Relative difference | 4.85% | 3.07% | 0.88% | −0.70% | −0.15% |
5.2. Uncertainty in SBAFs Owing to an Uncertain Ground Spectrum
SBAF | Type | Blue | Green | Red | NIR | PAN |
---|---|---|---|---|---|---|
Radiance SBAF | Original | 1.0245 | 1.0493 | 1.0126 | 1.1292 | 0.8428 |
Fitted1 | 1.0371 | 1.0390 | 1.0211 | 1.1127 | 0.9328 | |
Fitted2 | 1.0590 | 1.0297 | 1.0219 | 1.1421 | 0.9504 | |
Dunhuang | 1.0321 | 1.0376 | 1.0141 | 1.1420 | 0.8682 | |
1-Min/Max | 3.26% | 1.87% | 0.91% | 2.57% | 11.32% | |
Reflectance SBAF | Original | 0.9998 | 1.0111 | 0.9928 | 0.9714 | 1.0431 |
Fitted1 | 1.0127 | 1.0011 | 1.0025 | 0.9590 | 1.1735 | |
Fitted2 | 1.0346 | 0.9921 | 1.0032 | 0.9825 | 1.1944 | |
Dunhuang | 1.0077 | 0.9997 | 0.9944 | 0.9819 | 1.0785 | |
1-Min/Max | 3.36% | 1.88% | 1.04% | 2.39% | 12.67% |
5.3. Comparison between the GF-1/PMS and OLI Images with New SBAF
Test Site | ARD (%) | |||||
---|---|---|---|---|---|---|
Blue | Green | Red | NIR | PAN | ||
Dunhuang | With original rad SBAF correction | 2.72 | 3.90 | 4.30 | 1.45 | 4.20 |
With new rad SBAF correction | −2.27 | 0.85 | 3.40 | 2.12 | 3.96 | |
With original ref SBAF correction | 2.50 | 3.19 | 1.78 | −6.21 | 6.69 | |
With new ref SBAF correction | −3.92 | 0.01 | 1.87 | 0.11 | 3.29 | |
Golmud | With original rad SBAF correction | −4.86 | −7.46 | −2.22 | −4.12 | 11.26 |
With fitted1 rad SBAF correction | −6.15 | −6.40 | −3.08 | −2.60 | 1.78 | |
With fitted2 rad SBAF correction | −8.39 | −5.45 | −3.16 | −5.31 | −0.07 | |
With Dunhuang rad SBAF correction | −5.63 | −6.26 | −2.37 | −5.30 | 8.58 | |
With original ref SBAF correction | −1.41 | −3.19 | 1.00 | −1.23 | 10.41 | |
With fitted1 ref SBAF correction | −2.72 | −2.17 | 0.03 | 0.06 | −0.79 | |
With fitted2 ref SBAF correction | −4.95 | −1.25 | −0.03 | −2.40 | −2.58 | |
With Dunhuang ref SBAF correction | −2.22 | −2.03 | 0.84 | −2.33 | 7.37 |
5.4. Validation with More Image Pairs
Test Site | ARD (%) | |||||
---|---|---|---|---|---|---|
Blue | Green | Red | NIR | PAN | ||
Dunhuang | With rad SBAF correction | −3.54 | −0.05 | 2.25 | −9.46 | −3.84 |
With ref SBAF correction | 0.95 | 4.99 | 6.41 | −5.24 | 0.73 | |
Golmud | With rad SBAF correction | −9.97 | −9.98 | −7.00 | −9.64 | −11.56 |
With ref SBAF correction | −5.84 | −4.60 | −2.74 | −7.10 | −8.95 |
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Han, Q.; Zhang, X.; Qiao, Z.; Yang, L.; Pan, Z.; Liu, L. Wide dynamic radiometric calibration of GF-1 PMS sensor using multi-test sites. Infrared Laser Eng. 2015, 44, 127–133. [Google Scholar]
- Teillet, P.M.; Slater, P.N.; Ding, Y.; Santer, R.P.; Jackson, R.D.; Moran, M.S. Three methods for the absolute calibration of the NOAA AVHRR sensors in-flight. Remote Sens. Environ. 1990, 31, 105–120. [Google Scholar] [CrossRef]
- Thome, K.J. Absolute radiometric calibration of Landsat-7 ETM+ using the reflectance-based method. Remote Sens. Environ. 2001, 78, 27–38. [Google Scholar] [CrossRef]
- Thome, K.J.; Helder, D.L.; Aaron, D.; Dewald, J.D. Landsat-5 TM and Landsat-7 ETM+ absolute radiometric calibration using the reflectance-based method. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2777–2785. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Kahn, R.; Xiong, J.; Ignatov, A.; Wolfe, R.; Wu, A.; Holben, B.; Bruegge, C. Analysis of MODIS-MISR calibration differences using surface albedo around AERONET sites and cloud reflectance. Remote Sens. Environ. 2007, 107, 194–205. [Google Scholar] [CrossRef]
- Teillet, P.M.; Barker, J.L.; Markham, B.L.; Irish, R.R.; Fedosejeves, G.; Storey, J.C. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ. 2001, 78, 39–54. [Google Scholar] [CrossRef]
- Teillet, P.M.; Markham, B.L.; Irish, R.R. Landsat cross-calibration based on near simultaneous imaging of common ground targets. Remote Sens. Environ. 2006, 102, 264–270. [Google Scholar] [CrossRef]
- Cao, C.; Weinreb, M.; Xu, H. Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Ocean. Technol. 2004, 21, 537–542. [Google Scholar] [CrossRef]
- Cao, C.; Xu, H.; Sullivan, J.; Mcmillin, L.; Ciren, P.; Hou, Y. Intersatellite radiance biases for the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from Simultaneous Nadir Observations. J. Atmos. Ocean. Technol. 2005, 22, 381–395. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, X.; Li, X.; Li, X. The cross calibration of CBERS-02B/CCD visible-near-infrared channels with Terra/MODIS channels. Int. J. Remote Sens. 2013, 34, 3688–3698. [Google Scholar] [CrossRef]
- Chander, G.; Meyer, D.J.; Helder, D.L. Cross calibration of the Landsat-7 ETM+ and EO-1 ALI sensor. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2821–2831. [Google Scholar] [CrossRef]
- Thome, K.J.; Biggar, S.F.; Wisniewski, W. Cross comparison of EO-1 sensors and other Earth resources sensors to Landsat-7 ETM+ using Railroad Valley Playa. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1180–1188. [Google Scholar] [CrossRef]
- Xiong, X.; Chiang, K.; Esposito, J.; Guenther, B.; Barnes, W. MODIS on-orbit calibration and characterization. Metrologia 2003, 40, 89–92. [Google Scholar] [CrossRef]
- Xiong, X.; Chiang, K.; Sun, J.; Barnes, W.L.; Guenther, B.; Salomonson, V.V. NASA EOS Terra and Aqua MODIS on-orbit performance. Adv. Space Res. 2009, 43, 413–422. [Google Scholar] [CrossRef]
- Chander, G.; Helder, D.L.; Malla, R.; Micijevic, E.; Mettler, C.J. Consistency of L4 TM absolute calibration with respect to the L5 TM sensor based on near-simultaneous image acquisition. Proc. SPIE 2007, 667. [Google Scholar] [CrossRef]
- Knight, E.J.; Kvaran, G. Landsat-8 operational land imager design, characterization and performance. Remote Sens. 2014, 6, 10286–10305. [Google Scholar] [CrossRef]
- Markham, B.; Storey, J.; Morfitt, R. Landsat-8 sensor characterization and calibration. Remote Sens. 2015, 7, 2279–2282. [Google Scholar] [CrossRef]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 Operational Land Imager Radiometric Calibration and Stability. Remote Sens. 2014, 6, 12619–12638. [Google Scholar] [CrossRef]
- Fu, Q.; Min, X.; Li, X.; Sha, C.; Li, X.; Ma, G.; Pan, Z.; Guo, Y.; Li, Q.; Liu, G. In-flight absolute calibration of the CBERS-02 CCD sensor at the Dunhuang test site. J. Remote Sens. 2006, 7, 433–439. [Google Scholar]
- Gao, H.; Gu, X.; Yu, T.; Li, X.; Cheng, T.; Gong, H.; Li, J. Radiometric calibration for HJ-1A Hyper-spectrum Imager and Uncertainty analysis. Acta Phtonica Sin. 2009, 38, 2826–2833. [Google Scholar]
- Gao, H.; Gu, X.; Yu, T.; Gong, H.; Li, J.; Li, Y. HJ-1A HSI on-orbit radiometric calibration and validation research. Sci. China Technol. Sci. 2010, 53, 3119–3128. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, B.; Zhang, X.; Zhang, H.; Li, J. Reflectance-based calibration of Beijing-1 micro-satellite. In Proceedings of the Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 25–30 July 2009.
- Li, Y.; Rong, Z.; Zheng, Z.; Liu, J.; Zhang, L.; Zhang, L.; Hu, X.; Zhang, Y.; Sun, L. Post launch site calibration of visible and near-infrared channels of FY-3A visible and inferred radiometers. Opt. Precis. Eng. 2009, 17, 2926–2974. [Google Scholar]
- Han, Q.; Fu, Q.; Zhang, X; Liu, L. High-frequency radiometric calibration for wide field-of-view sensor of GF-1 satellite. Opt. Precis. Eng. 2014, 22, 1707–1714. [Google Scholar]
- Hu, X.; Zhang, Y.; Liu, Z.; Zhang, G.; Huang, Y.; Qiu, Q.; Wang, Y.; Zhang, L.; Zhu, X.; Rong, Z. Optical characteristics of China Radiometric Calibration Site for Remote Sensing Satellite Sensors(CRCSRSSS). Proc. SPIE 2001, 4151. [Google Scholar] [CrossRef]
- Teillet, P.M.; Fedosejevs, G.; Thome, K.J.; Barker, J.L. Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ. 2007, 110, 393–409. [Google Scholar] [CrossRef]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Angal, A.; Choi, T.; Xiong, X.; Doelling, D.R. Applications of spectral band adjustment factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1267–1281. [Google Scholar] [CrossRef]
- Gao, H.; Jupp, D.; Qin, Y.; Gu, X.; Yu, T. Cross calibration of the HSI sensor Reflective solar bands using Hyperion Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4127–4137. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Chetwynd, J.H.; Bernstein, L.S.; Shettle, E.P.; Matthew, M.W.; Adler-Golden, S.M. MODTAN 4 User’s Manual; Spectral Sciences Inc.: Burlington, MA, USA, 1999. [Google Scholar]
- Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Cooley, T.W. MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes). Proc. SPIE 2002, 4725. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Gu, X.; Yu, T.; Liu, L.; Sun, Y.; Xie, Y.; Liu, Q. Validation of the Calibration Coefficient of the GaoFen-1 PMS Sensor Using the Landsat 8 OLI. Remote Sens. 2016, 8, 132. https://doi.org/10.3390/rs8020132
Gao H, Gu X, Yu T, Liu L, Sun Y, Xie Y, Liu Q. Validation of the Calibration Coefficient of the GaoFen-1 PMS Sensor Using the Landsat 8 OLI. Remote Sensing. 2016; 8(2):132. https://doi.org/10.3390/rs8020132
Chicago/Turabian StyleGao, Hailiang, Xingfa Gu, Tao Yu, Li Liu, Yuan Sun, Yong Xie, and Qiyue Liu. 2016. "Validation of the Calibration Coefficient of the GaoFen-1 PMS Sensor Using the Landsat 8 OLI" Remote Sensing 8, no. 2: 132. https://doi.org/10.3390/rs8020132
APA StyleGao, H., Gu, X., Yu, T., Liu, L., Sun, Y., Xie, Y., & Liu, Q. (2016). Validation of the Calibration Coefficient of the GaoFen-1 PMS Sensor Using the Landsat 8 OLI. Remote Sensing, 8(2), 132. https://doi.org/10.3390/rs8020132