A Comparison of Satellite Imagery Sources for Automated Detection of Retrogressive Thaw Slumps
"> Figure 1
<p>Map of the locations of RTS features used in model testing. The Arctic Circle is shown as a dashed line. Regions used only in model training are shown in gray, while all other regions, which were used in model training and testing, are coded by color.</p> "> Figure 2
<p>RGB imagery and prediction outlines for a subset of the 63 RTS testing features. The quality of the prediction relative to feature size is indicated by the color of the prediction outline. The RTS feature of interest is shown in light gray. In cases where there are multiple RTS features within a tile, the other RTS features are shown in a thinner light gray line, and the mask area is shown in a dashed light gray line. Columns show the different imagery sources, and rows show different RTS features, which were selected to display differences in the predictions and imagery. Rows labeled “Good Prediction” show predictions that had some of the highest IoU scores. Rows labeled “Bright RTS” show examples of how bright RTS on a dark background were predicted well in the PlanetScope imagery. The row labeled “Variable Performance” shows predictions that varied significantly among imagery types. The row labeled “Green RTS” shows an RTS with a high plant cover that was undetected in all models. The rows labeled “Small RTS” show some of the smaller RTS features, which were often undetected. The row labeled “Snow” shows one example of how snow in the WorldView image was inaccurately labeled as an RTS feature.</p> "> Figure 3
<p>Histograms of the IoU scores of the RTS class across the testing dataset. Mean and median IoU scores are shown as solid and dashed lines, respectively.</p> "> Figure 4
<p>The relationship between RTS Area and RTS IoU. Each point represents the prediction for a single RTS feature. The nonlinear relationship is shown as a solid line, and 50% confidence intervals are shown in light gray. RTS feature predictions that fell outside of the 50% confidence interval were considered of higher or lower prediction quality than expected, and this is indicated by point color.</p> "> Figure 5
<p>Prediction quality across all imagery types for each RTS feature in the testing dataset. RTS features tended to have the same or similar prediction qualities across imagery types, indicating that there were characteristics of RTS features that made them more or less detectable across imagery types.</p> "> Figure 6
<p>The difference in input data values between RTS and non-water background (BG) pixels (RTS—BG) across prediction quality classes. The points were calculated by first taking the difference in mean pixel values (z-score) between RTS and non-water background (BG) pixels on a tile-by-tile basis and then averaging this value across all 63 testing tiles. The error bars show the standard deviation across tiles. Z-scores were calculated using all pixel values, including water pixels. Relative elevation and shaded relief are not included, as there were no discernable patterns across classes. Statistically different groups are indicated with lines between the two classes and a label for the level of significance (<span class="html-italic">p</span> < 0.1: ‘.’, <span class="html-italic">p</span> < 0.05: ‘*’).</p> "> Figure 7
<p>Prediction quality across geographic regions. The percentage of predictions that were high, expected, and low is shown on the Y-axis. The total count of RTS features within each region is indicated at the top of the bars. Banks Island and the Yamal/Gydan region had the highest percentage of low-quality predictions.</p> "> Figure 8
<p>Frequency distributions of RTS Area and RTS shape across regions. Region is indicated with the fill color. RTS Area is shown on a log scale. Smaller RTS shape values indicate less compact shapes, and larger values indicate more compact or circular shapes.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Regions
2.2. Data
2.2.1. WorldView
2.2.2. PlanetScope
2.2.3. Sentinel-2
2.2.4. Additional Data Sources
2.3. RTS Digitization
2.4. Deep Learning Model
2.5. Testing/Analyses
3. Results
3.1. General Metrics of Model Performance
3.2. RTS Area and Model Performance
3.3. Environmental Drivers of Model Performance
3.4. Regional Patterns of Model Performance
3.5. RTS Shape and Model Performance
4. Discussion
4.1. Trade-Offs between Imagery Sources
4.2. RTS Area and Shape
4.3. Characteristics Affecting RTS Detection
4.4. Regional Challenges to RTS Detection
4.5. Challenges Associated with RTS Delineation
4.6. Remaining Challenges and Future Improvements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic Has Warmed Nearly Four Times Faster than the Globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Abbott, B.W.; Commane, R.; Ernakovich, J.; Euskirchen, E.; Hugelius, G.; Grosse, G.; Jones, M.; Koven, C.; Leshyk, V.; et al. Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic. Annu. Rev. Environ. Resour. 2022, 47, 343–371. [Google Scholar] [CrossRef]
- Miner, K.R.; Turetsky, M.R.; Malina, E.; Bartsch, A.; Tamminen, J.; McGuire, A.D.; Fix, A.; Sweeney, C.; Elder, C.D.; Miller, C.E. Permafrost Carbon Emissions in a Changing Arctic. Nat. Rev. Earth Environ. 2022, 3, 55–67. [Google Scholar] [CrossRef]
- Brown, J.; Hinkel, K.M.; Nelson, F.E. The Circumpolar Active Layer Monitoring (Calm) Program: Research Designs and Initial Results. Polar Geogr. 2000, 24, 166–258. [Google Scholar] [CrossRef]
- Hinkel, K.M.; Nelson, F.E. Spatial and Temporal Patterns of Active Layer Thickness at Circumpolar Active Layer Monitoring (CALM) Sites in Northern Alaska, 1995–2000. J. Geophys. Res. 2003, 108, 8168. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Shiklomanov, N.I.; Nelson, F.E.; Klene, A.E. Thirteen Years of Observations at Alaskan CALM Sites: Long-Term Active Layer and Ground Surface Temperature Trends. In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 29 June–3 July 2008; Volume 2, pp. 1727–1732. [Google Scholar]
- Nyland, K.E.; Shiklomanov, N.I.; Streletskiy, D.A.; Nelson, F.E.; Klene, A.E.; Kholodov, A.L. Long-Term Circumpolar Active Layer Monitoring (CALM) Program Observations in Northern Alaskan Tundra. Polar Geogr. 2021, 43, 167–185. [Google Scholar] [CrossRef]
- Strand, S.M.; Christiansen, H.H.; Johansson, M.; Åkerman, J.; Humlum, O. Active Layer Thickening and Controls on Interannual Variability in the Nordic Arctic Compared to the circum-Arctic. Permafr. Periglac. Process. 2021, 32, 47–58. [Google Scholar] [CrossRef]
- Duchesne, C.; Smith, S.L.; Ednie, M.; Bonnaventure, P.P. Active Layer Variability and Change in the Mackenzie Valley, Northwest Territories. In Proceedings of the 68th Canadian Geotechnical Conference and Seventh Canadian Conference on Permafrost (GEOQuébec 2015), Quebec, QC, Canada, 20–23 September 2015. [Google Scholar]
- Burn, C.R.; Lewkowicz, A.G.; Wilson, M.A. Long-term Field Measurements of Climate-induced Thaw Subsidence above Ice Wedges on Hillslopes, Western Arctic Canada. Permafr. Periglac. Process. 2021, 32, 261–276. [Google Scholar] [CrossRef]
- Nixon, F.M.; Taylor, A.E. Regional Active Layer Monitoring across the Sporadic, Discontinuous and Continuous Permafrost Zones, Mackenzie Valley, Northwestern Canada. In Proceedings of the Seventh International Conference on Permafrost, Yellowknife, NT, Canada, 23–27 June 1998; Volume 55, pp. 815–820. [Google Scholar]
- Shiklomanov, N.I.; Streletskiy, D.A.; Nelson, F.E. Northern Hemisphere Component of the Global Circumpolar Active Layer Monitoring (CALM) Program. In Proceedings of the Tenth International Conference on Permafrost, Salekhard, Russia, 25–29 June 2012; Volume 1, pp. 377–382. [Google Scholar]
- Smith, S.L.; Wolfe, S.A.; Riseborough, D.W.; Nixon, F.M. Active-Layer Characteristics and Summer Climatic Indices, Mackenzie Valley, Northwest Territories, Canada. Permafr. Periglac. Process. 2009, 20, 201–220. [Google Scholar] [CrossRef]
- O’Neill, H.B.; Smith, S.L.; Duchesne, C. Long-Term Permafrost Degradation and Thermokarst Subsidence in the Mackenzie Delta Area Indicated by Thaw Tube Measurements. In Cold Regions Engineering 2019; American Society of Civil Engineers: Quebec City, QC, Canada, 2019; pp. 643–651. [Google Scholar]
- Schuur, E.A.G.; Bracho, R.; Celis, G.; Belshe, E.F.; Ebert, C.; Ledman, J.; Mauritz, M.; Pegoraro, E.F.; Plaza, C.; Rodenhizer, H.; et al. Tundra Underlain by Thawing Permafrost Persistently Emits Carbon to the Atmosphere over 15 Years of Measurements. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006044. [Google Scholar] [CrossRef]
- Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; McGuire, A.D.; Romanovsky, V.E.; Sannel, A.B.K.; Schuur, E.A.G.; et al. Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nat. Commun. 2016, 7, 13043. [Google Scholar] [CrossRef] [PubMed]
- Rodenhizer, H.; Belshe, F.; Celis, G.; Ledman, J.; Mauritz, M.; Goetz, S.; Sankey, T.; Schuur, E.A.G. Abrupt Permafrost Thaw Accelerates Carbon Dioxide and Methane Release at a Tussock Tundra Site. Arct. Antarct. Alp. Res. 2022, 54, 443–464. [Google Scholar] [CrossRef]
- Philipp, M.; Dietz, A.; Buchelt, S.; Kuenzer, C. Trends in Satellite Earth Observation for Permafrost Related Analyses—A Review. Remote Sens. 2021, 13, 1217. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Abbott, B.W.; Jones, M.C.; Anthony, K.W.; Olefeldt, D.; Schuur, E.A.G.; Grosse, G.; Kuhry, P.; Hugelius, G.; Koven, C.; et al. Carbon Release through Abrupt Permafrost Thaw. Nat. Geosci. 2020, 13, 138–143. [Google Scholar] [CrossRef]
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Subsidence Risk from Thawing Permafrost. Nature 2001, 410, 889–890. [Google Scholar] [CrossRef] [PubMed]
- Jorgenson, M.T.; Shur, Y.L.; Pullman, E.R. Abrupt Increase in Permafrost Degradation in Arctic Alaska. Geophys. Res. Lett. 2006, 33, L02503. [Google Scholar] [CrossRef]
- Abbott, B.W.; Jones, J.B. Permafrost Collapse Alters Soil Carbon Stocks, Respiration, CH4, and N2O in Upland Tundra. Glob. Change Biol. 2015, 21, 4570–4587. [Google Scholar] [CrossRef]
- Cassidy, A.E.; Christen, A.; Henry, G.H.R. Impacts of Active Retrogressive Thaw Slumps on Vegetation, Soil, and Net Ecosystem Exchange of Carbon Dioxide in the Canadian High Arctic. Arct. Sci. 2017, 3, 179–202. [Google Scholar] [CrossRef]
- Cassidy, A.E.; Christen, A.; Henry, G.H.R. The Effect of a Permafrost Disturbance on Growing-Season Carbon-Dioxide Fluxes in a High Arctic Tundra Ecosystem. Biogeosciences 2016, 13, 2291–2303. [Google Scholar] [CrossRef]
- Hughes-Allen, L.; Bouchard, F.; Laurion, I.; Séjourné, A.; Marlin, C.; Hatté, C.; Costard, F.; Fedorov, A.; Desyatkin, A. Seasonal Patterns in Greenhouse Gas Emissions from Thermokarst Lakes in Central Yakutia (Eastern Siberia). Limnol. Oceanogr. 2021, 66, S98–S116. [Google Scholar] [CrossRef]
- Jensen, A.E.; Lohse, K.A.; Crosby, B.T.; Mora, C.I. Variations in Soil Carbon Dioxide Efflux across a Thaw Slump Chronosequence in Northwestern Alaska. Environ. Res. Lett. 2014, 9, 025001. [Google Scholar] [CrossRef]
- Rodenhizer, H.; Natali, S.M.; Mauritz, M.; Taylor, M.A.; Celis, G.; Kadej, S.; Kelley, A.K.; Lathrop, E.R.; Ledman, J.; Pegoraro, E.F.; et al. Abrupt Permafrost Thaw Drives Spatially Heterogeneous Soil Moisture and Carbon Dioxide Fluxes in Upland Tundra. Glob. Change Biol. 2023, 29, 6286–6302. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.W.; Jones, J.B.; Godsey, S.E.; Larouche, J.R.; Bowden, W.B. Patterns and Persistence of Hydrologic Carbon and Nutrient Export from Collapsing Upland Permafrost. Biogeosciences 2015, 12, 3725–3740. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Kokoszka, J.; van der Sluijs, J.; Rudy, A.C.A.; Tunnicliffe, J.; Shakil, S.; Tank, S.E.; Zolkos, S. Thaw-Driven Mass Wasting Couples Slopes with Downstream Systems, and Effects Propagate through Arctic Drainage Networks. Cryosphere 2021, 15, 3059–3081. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Mack, M.C. Ecological Response to Permafrost Thaw and Consequences for Local and Global Ecosystem Services. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 279–301. [Google Scholar] [CrossRef]
- Farquharson, L.M.; Romanovsky, V.E.; Cable, W.L.; Walker, D.A.; Kokelj, S.V.; Nicolsky, D. Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic. Geophys. Res. Lett. 2019, 46, 6681–6689. [Google Scholar] [CrossRef]
- Farquharson, L.M.; Mann, D.H.; Grosse, G.; Jones, B.M.; Romanovsky, V.E. Spatial Distribution of Thermokarst Terrain in Arctic Alaska. Geomorphology 2016, 273, 116–133. [Google Scholar] [CrossRef]
- Bernhard, P.; Zwieback, S.; Bergner, N.; Hajnsek, I. Assessing Volumetric Change Distributions and Scaling Relations of Retrogressive Thaw Slumps across the Arctic. Cryosphere 2022, 16, 1–15. [Google Scholar] [CrossRef]
- Jones, B.M.; Grosse, G.; Arp, C.D.; Miller, E.; Liu, L.; Hayes, D.J.; Larsen, C.F. Recent Arctic Tundra Fire Initiates Widespread Thermokarst Development. Sci. Rep. 2015, 5, 15865. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Douglas, T.A.; Liljedahl, A.K.; Roth, J.E.; Cater, T.C.; Davis, W.A.; Frost, G.V.; Miller, P.F.; Racine, C.H. The Roles of Climate Extremes, Ecological Succession, and Hydrology in Repeated Permafrost Aggradation and Degradation in Fens on the Tanana Flats, Alaska. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005824. [Google Scholar] [CrossRef]
- Nitze, I.; Cooley, S.W.; Duguay, C.R.; Jones, B.M.; Grosse, G. The Catastrophic Thermokarst Lake Drainage Events of 2018 in Northwestern Alaska: Fast-Forward into the Future. Cryosphere 2020, 14, 4279–4297. [Google Scholar] [CrossRef]
- Rowland, J.C.; Coon, E.T. From Documentation to Prediction: Raising the Bar for Thermokarst Research. Hydrogeol. J. 2016, 24, 645–648. [Google Scholar] [CrossRef]
- Treharne, R.; Rogers, B.M.; Gasser, T.; MacDonald, E.; Natali, S. Identifying Barriers to Estimating Carbon Release From Interacting Feedbacks in a Warming Arctic. Front. Clim. 2022, 3, 716464. [Google Scholar] [CrossRef]
- Nitze, I.; Heidler, K.; Barth, S.; Grosse, G. Developing and Testing a Deep Learning Approach for Mapping Retrogressive Thaw Slumps. Remote Sens. 2021, 13, 4294. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Jorgenson, M.T. Advances in Thermokarst Research: Recent Advances in Research Investigating Thermokarst Processes. Permafr. Periglac. Process. 2013, 24, 108–119. [Google Scholar] [CrossRef]
- Lantuit, H.; Pollard, W.H. Fifty Years of Coastal Erosion and Retrogressive Thaw Slump Activity on Herschel Island, Southern Beaufort Sea, Yukon Territory, Canada. Geomorphology 2008, 95, 84–102. [Google Scholar] [CrossRef]
- Lantuit, H.; Pollard, W.H. Temporal Stereophotogrammetric Analysis of Retrogressive Thaw Slumps on Herschel Island, Yukon Territory. Nat. Hazards Earth Syst. Sci. 2005, 5, 413–423. [Google Scholar] [CrossRef]
- Swanson, D.; Nolan, M. Growth of Retrogressive Thaw Slumps in the Noatak Valley, Alaska, 2010–2016, Measured by Airborne Photogrammetry. Remote Sens. 2018, 10, 983. [Google Scholar] [CrossRef]
- French, H.M. Active Thermokarst Processes, Eastern Banks Island, Western Canadian Arctic. Can. J. Earth Sci. 1974, 11, 785–794. [Google Scholar] [CrossRef]
- Lantz, T.C.; Kokelj, S.V. Increasing Rates of Retrogressive Thaw Slump Activity in the Mackenzie Delta Region, N.W.T., Canada. Geophys. Res. Lett. 2008, 35, L06502. [Google Scholar] [CrossRef]
- Lewkowicz, A.G. Headwall Retreat of Ground-Ice Slumps, Banks Island, Northwest Territories. Can. J. Earth Sci. 1987, 24, 1077–1085. [Google Scholar] [CrossRef]
- Burn, C.R. The Thermal Regime of a Retrogressive Thaw Slump near Mayo, Yukon Territory. Can. J. Earth Sci. 2000, 37, 967–981. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, H.; Kamp, U.; Wang, N.; Wang, J.; Huang, C.; Tang, B. Higher Temperature Sensitivity of Retrogressive Thaw Slump Activity in the Arctic Compared to the Third Pole. Sci. Total Environ. 2024, 914, 170007. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Qiu, H.; Ye, B.; Liu, Y.; Zhang, J.; Zhu, Y. Distribution and Recurrence of Warming-Induced Retrogressive Thaw Slumps on the Central Qinghai-Tibet Plateau. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF007047. [Google Scholar] [CrossRef]
- Lewkowicz, A.G.; Way, R.G. Extremes of Summer Climate Trigger Thousands of Thermokarst Landslides in a High Arctic Environment. Nat. Commun. 2019, 10, 1329. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Howat, I.M.; van der Sluijs, J.; Liljedahl, A.K.; Higman, B.; Freymueller, J.T.; Ward Jones, M.K.; Kokelj, S.V.; Boike, J.; Walker, B.; et al. Applications of ArcticDEM for Measuring Volcanic Dynamics, Landslides, Retrogressive Thaw Slumps, Snowdrifts, and Vegetation Heights. Sci. Remote Sens. 2024, 9, 100130. [Google Scholar] [CrossRef]
- Niu, F.; Luo, J.; Lin, Z.; Fang, J.; Liu, M. Thaw-Induced Slope Failures and Stability Analyses in Permafrost Regions of the Qinghai-Tibet Plateau, China. Landslides 2016, 13, 55–65. [Google Scholar] [CrossRef]
- Balser, A.W.; Jones, J.B.; Gens, R. Timing of Retrogressive Thaw Slump Initiation in the Noatak Basin, Northwest Alaska, USA. J. Geophys. Res. Earth Surf. 2014, 119, 1106–1120. [Google Scholar] [CrossRef]
- Kokelj, S.V.; Tunnicliffe, J.; Lacelle, D.; Lantz, T.C.; Chin, K.S.; Fraser, R. Increased Precipitation Drives Mega Slump Development and Destabilization of Ice-Rich Permafrost Terrain, Northwestern Canada. Glob. Planet. Change 2015, 129, 56–68. [Google Scholar] [CrossRef]
- Luo, J.; Niu, F.; Lin, Z.; Liu, M.; Yin, G.; Gao, Z. Inventory and Frequency of Retrogressive Thaw Slumps in Permafrost Region of the Qinghai–Tibet Plateau. Geophys. Res. Lett. 2022, 49, e2022GL099829. [Google Scholar] [CrossRef]
- Segal, R.A.; Lantz, T.C.; Kokelj, S.V. Acceleration of Thaw Slump Activity in Glaciated Landscapes of the Western Canadian Arctic. Environ. Res. Lett. 2016, 11, 034025. [Google Scholar] [CrossRef]
- Swanson, D.K. Permafrost Thaw-related Slope Failures in Alaska’s Arctic National Parks, c. 1980–2019. Permafr. Periglac. Process. 2021, 32, 392–406. [Google Scholar] [CrossRef]
- Ward Jones, M.K.; Pollard, W.H.; Jones, B.M. Rapid Initialization of Retrogressive Thaw Slumps in the Canadian High Arctic and Their Response to Climate and Terrain Factors. Environ. Res. Lett. 2019, 14, 055006. [Google Scholar] [CrossRef]
- Yin, G.; Luo, J.; Niu, F.; Liu, M.; Gao, Z.; Dong, T.; Ni, W. High-Resolution Assessment of Retrogressive Thaw Slump Susceptibility in the Qinghai-Tibet Engineering Corridor. Res. Cold Arid Reg. 2023, 15, 288–294. [Google Scholar] [CrossRef]
- Huang, L.; Lantz, T.C.; Fraser, R.H.; Tiampo, K.F.; Willis, M.J.; Schaefer, K. Accuracy, Efficiency, and Transferability of a Deep Learning Model for Mapping Retrogressive Thaw Slumps across the Canadian Arctic. Remote Sens. 2022, 14, 2747. [Google Scholar] [CrossRef]
- Huang, L.; Luo, J.; Lin, Z.; Niu, F.; Liu, L. Using Deep Learning to Map Retrogressive Thaw Slumps in the Beiluhe Region (Tibetan Plateau) from CubeSat Images. Remote Sens. Environ. 2020, 237, 111534. [Google Scholar] [CrossRef]
- Witharana, C.; Udawalpola, M.R.; Liljedahl, A.K.; Jones, M.K.W.; Jones, B.M.; Hasan, A.; Joshi, D.; Manos, E. Automated Detection of Retrogressive Thaw Slumps in the High Arctic Using High-Resolution Satellite Imagery. Remote Sens. 2022, 14, 4132. [Google Scholar] [CrossRef]
- Yang, Y.; Rogers, B.M.; Fiske, G.; Watts, J.; Potter, S.; Windholz, T.; Mullen, A.; Nitze, I.; Natali, S.M. Mapping Retrogressive Thaw Slumps Using Deep Neural Networks. Remote Sens. Environ. 2023, 288, 113495. [Google Scholar] [CrossRef]
- Runge, A.; Nitze, I.; Grosse, G. Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr. Remote Sens. Environ. 2022, 268, 112752. [Google Scholar] [CrossRef]
- Lin, Y.; Knudby, A.J. A Transfer Learning Approach for Automatic Mapping of Retrogressive Thaw Slumps (RTSs) in the Western Canadian Arctic. Int. J. Remote Sens. 2023, 44, 2039–2063. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Planet Team. Planet Application Program Interface. In Space for Life on Earth; Planet Team: San Francisco, CA, USA, 2017. [Google Scholar]
- Kim, M.; Park, S.; Anderson, C.; Stensaas, G.L. System Characterization Report on Planet’s SuperDove; System Characterization of Earth Observation Sensors; U.S. Department of the Interior and U.S. Geological Survey: Renton, VA, USA, 2022. [Google Scholar]
- Scheffler, D.; Hollstein, A.; Diedrich, H.; Segl, K.; Hostert, P. AROSICS: An Automated and Robust Open-Source Image Co-Registration Software for Multi-Sensor Satellite Data. Remote Sens. 2017, 9, 676. [Google Scholar] [CrossRef]
- Nielsen, A.A. The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data. IEEE Trans. Image Process. 2007, 16, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.A.; Conradsen, K.; Simpson, J.J. Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies. Remote Sens. Environ. 1998, 64, 1–19. [Google Scholar] [CrossRef]
- Porter, C.; Morin, P.; Howat, I.; Noh, M.-J.; Bates, B.; Peterman, K.; Keesey, S.; Schlenk, M.; Gardiner, J.; Tomko, K.; et al. ArcticDEM 2018, Version 3; Harvard Dataverse, V1. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OHHUKH (accessed on 15 June 2024).
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing 2023. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 15 June 2024).
- Hijmans, R.J. Terra: Spatial Data Analysis; Version: 1.7-29. 2023; Available online: https://CRAN.R-project.org/package=terra (accessed on 15 June 2024).
- Pebesma, E.; Bivand, R. Spatial Data Science: With Applications in R, 1st ed.; Chapman and Hall: London, UK; CRC: Boca Raton, FL, USA, 2023. [Google Scholar]
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Polsby, D.D.; Popper, R.D. The Third Criterion: Compactness as a Procedural Safeguard against Partisan Gerrymandering. Yale Law Policy Rev. 1991, 9, 301. [Google Scholar] [CrossRef]
- Huang, C.; Townshend, J.R.G.; Liang, S.; Kalluri, S.N.V.; DeFries, R.S. Impact of Sensor’s Point Spread Function on Land Cover Characterization: Assessment and Deconvolution. Remote Sens. Environ. 2002, 80, 203–212. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L. Artificial Intelligence for Remote Sensing Data Analysis: A Review of Challenges and Opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 270–294. [Google Scholar] [CrossRef]
- Burn, C.R.; Lewkowicz, A.G. Retrogressive Thaw Slumps. Can. Geogr. Géographies Can. 1990, 34, 273–276. [Google Scholar] [CrossRef]
- Porter, C.; Howat, I.; Noh, M.-J.; Husby, E.; Khuvis, S.; Danish, E.; Tomko, K.; Gardiner, J.; Negrete, A.; Yadav, B.; et al. ArcticDEM, Version 4.1; Harvard Dataverse, V1. 2023. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/3VDC4W(accessed on 15 June 2024).
- Nitze, I.; Nesterova, N.; Runge, A.; Veremeeva, A.; Jones, M.W.; Witharana, C.; Xia, Z.; Liljedahl, A.K. A Labeling Intercomparison Experiment of Retrogressive Thaw Slumps by a Diverse Group of Domain Experts. J-STARS, 2024; submitted. [Google Scholar]
- Yang, Y.; Rodenhizer, H.; Rogers, B.M.; Dean, J.; Singh, R.; Windholz, T.; Poston, A.; Zolkos, S.; Fiske, G.; Mullen, A.; et al. ARTS: A Scalable Data Set for Arctic Retrogressive Thaw Slumps. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- Huang, L.; Willis, M.J.; Li, G.; Lantz, T.C.; Schaefer, K.; Wig, E.; Cao, G.; Tiampo, K.F. Identifying Active Retrogressive Thaw Slumps from ArcticDEM. ISPRS J. Photogramm. Remote Sens. 2023, 205, 301–316. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr—Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Benecki, P.; Kawulok, M.; Kostrzewa, D.; Skonieczny, L. Evaluating Super-Resolution Reconstruction of Satellite Images. Acta Astronaut. 2018, 153, 15–25. [Google Scholar] [CrossRef]
- Lv, Z.; Jia, Y.; Zhang, Q. Joint Image Registration and Point Spread Function Estimation for the Super-Resolution of Satellite Images. Signal Process. Image Commun. 2017, 58, 199–211. [Google Scholar] [CrossRef]
Validation | Testing | |||||||
---|---|---|---|---|---|---|---|---|
Imagery | Mean IoU | Mean IoU | RTS IoU | Median RTS IoU | Undetected RTS | Undetected RTS Max Area | Detection Threshold | Model Convergence Threshold |
(Count (%)) | (ha) | (ha) | (ha) | |||||
WorldView | 0.75 | 0.76 | 0.37 | 0.36 | 15 (24%) | 0.46 | 0.7 | 4.69 |
PlanetScope | 0.71 | 0.75 | 0.30 | 0.25 | 23 (37%) | 0.38 | 1.01 | 5.09 |
Sentinel-2 | 0.68 | 0.70 | 0.28 | 0.23 | 17 (27%) | 0.29 | 1.51 | 4.62 |
Imagery | Term | Estimate | SE | t-Statistic | p-Value |
---|---|---|---|---|---|
WorldView | Km | 3883.292 | 1022.569 | 3.798 | <0.001 |
Vmax | 0.833 | 0.077 | 10.795 | <0.001 | |
PlanetScope | Km | 4671.998 | 1299.752 | 3.595 | 0.001 |
Vmax | 0.775 | 0.079 | 9.799 | <0.001 | |
Sentinel-2 | Km | 4689.771 | 1377.305 | 3.405 | 0.001 |
Vmax | 0.694 | 0.075 | 9.275 | <0.001 |
Imagery | Model | AIC | r2 |
---|---|---|---|
WorldView | IoU ~ 1 | 26.52 | - |
IoU ~ Area | −32.752 | 0.622 | |
IoU ~ Area + Shape | −30.754 | 0.622 | |
IoU ~ Area × Shape | −31.256 | 0.637 | |
PlanetScope | IoU ~ 1 | 25.699 | - |
IoU ~ Area | −34.658 | 0.628 | |
IoU ~ Area + Shape | −34.192 | 0.637 | |
IoU ~ Area × Shape | −32.349 | 0.638 | |
Sentinel-2 | IoU ~ 1 | 10.222 | - |
IoU ~ Area | −43.671 | 0.588 | |
IoU ~ Area + Shape | −42.324 | 0.592 | |
IoU ~ Area × Shape | −41.063 | 0.597 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodenhizer, H.; Yang, Y.; Fiske, G.; Potter, S.; Windholz, T.; Mullen, A.; Watts, J.D.; Rogers, B.M. A Comparison of Satellite Imagery Sources for Automated Detection of Retrogressive Thaw Slumps. Remote Sens. 2024, 16, 2361. https://doi.org/10.3390/rs16132361
Rodenhizer H, Yang Y, Fiske G, Potter S, Windholz T, Mullen A, Watts JD, Rogers BM. A Comparison of Satellite Imagery Sources for Automated Detection of Retrogressive Thaw Slumps. Remote Sensing. 2024; 16(13):2361. https://doi.org/10.3390/rs16132361
Chicago/Turabian StyleRodenhizer, Heidi, Yili Yang, Greg Fiske, Stefano Potter, Tiffany Windholz, Andrew Mullen, Jennifer D. Watts, and Brendan M. Rogers. 2024. "A Comparison of Satellite Imagery Sources for Automated Detection of Retrogressive Thaw Slumps" Remote Sensing 16, no. 13: 2361. https://doi.org/10.3390/rs16132361