Estimation of PM2.5 and PM10 Mass Concentrations in Beijing Using Gaofen-1 Data at 100 m Resolution
"> Figure 1
<p>Study areas with the land types and locations of the air quality monitoring stations. Please refer to the <a href="#remotesensing-16-00604-t001" class="html-table">Table 1</a> for the detailed information of land-use types.</p> "> Figure 2
<p>The workflow of proportional relationship formula (top box), improved geographically and temporally weighted regression (IGTWR) model (middle box), and model validation (bottom box).</p> "> Figure 3
<p>Flow chart for refined PM<sub>2.5/10</sub> monitoring stations using proportional relationship formula and other data.</p> "> Figure 4
<p>The distribution levels of seasonal mean PM<sub>2.5</sub> mass concentrations at 100 m resolution estimated by the model are shown for spring/summer/autumn/winter, (<b>a</b>), (<b>b</b>), (<b>c</b>), and (<b>d</b>), respectively. The monthly mean PM<sub>10</sub> mass concentration distribution levels for spring/summer/autumn/winter are shown at 100 m resolution for the model estimates, (<b>e</b>), (<b>f</b>), (<b>g</b>), and (<b>h</b>), respectively. Estimates of PM<sub>2.5/10</sub> are missing at the eastern margin component due to insufficient matching of GF data.</p> "> Figure 4 Cont.
<p>The distribution levels of seasonal mean PM<sub>2.5</sub> mass concentrations at 100 m resolution estimated by the model are shown for spring/summer/autumn/winter, (<b>a</b>), (<b>b</b>), (<b>c</b>), and (<b>d</b>), respectively. The monthly mean PM<sub>10</sub> mass concentration distribution levels for spring/summer/autumn/winter are shown at 100 m resolution for the model estimates, (<b>e</b>), (<b>f</b>), (<b>g</b>), and (<b>h</b>), respectively. Estimates of PM<sub>2.5/10</sub> are missing at the eastern margin component due to insufficient matching of GF data.</p> "> Figure 5
<p>Model-estimated distribution levels of annual PM<sub>2.5</sub> (<b>a</b>) and PM<sub>10</sub> (<b>b</b>) mass concentrations at 100 m resolution. Estimates of PM<sub>2.5/10</sub> are missing in the eastern margin component due to insufficient matching of GF data.</p> "> Figure 6
<p>Distribution of PM<sub>2.5</sub> and PM<sub>10</sub> mass concentrations (µm/m<sup>3</sup>) at hourly resolution for clear and high pollution dates. The first row is PM<sub>2.5</sub> and the second row is PM<sub>10</sub>, from left to right. Each column has the same time parameter, 14:00 on 12 April 2020 (<b>a</b>,<b>e</b>), 10:00 on 28 April 2020 (<b>b</b>,<b>f</b>), 14:00 on 28 April 2020 (<b>c</b>,<b>g</b>), and 10:00 on 5 June 2020 (<b>d</b>,<b>h</b>). The times are local standard time.</p> "> Figure 7
<p>Cross-validation results for spring (<b>a</b>) summer (<b>b</b>) autumn (<b>c</b>) winter (<b>d</b>) based on the GWC model for PM<sub>2.5</sub>. Cross-validation results for spring (<b>e</b>) summer (<b>f</b>) autumn (<b>g</b>) winter (<b>h</b>) based on the GWR model for PM<sub>2.5</sub>. The solid black line is the 1:1 reference line.</p> "> Figure 7 Cont.
<p>Cross-validation results for spring (<b>a</b>) summer (<b>b</b>) autumn (<b>c</b>) winter (<b>d</b>) based on the GWC model for PM<sub>2.5</sub>. Cross-validation results for spring (<b>e</b>) summer (<b>f</b>) autumn (<b>g</b>) winter (<b>h</b>) based on the GWR model for PM<sub>2.5</sub>. The solid black line is the 1:1 reference line.</p> "> Figure 8
<p>Cross-validation results for spring (<b>a</b>), summer (<b>b</b>), autumn (<b>c</b>), and winter (<b>d</b>) based on the GWC model for PM<sub>10</sub>. Cross-validation results for spring (<b>e</b>), summer (<b>f</b>), autumn (<b>g</b>), and winter (<b>h</b>) based on the GWR model for PM<sub>10</sub>.The solid black line is the 1:1 reference line.</p> "> Figure 8 Cont.
<p>Cross-validation results for spring (<b>a</b>), summer (<b>b</b>), autumn (<b>c</b>), and winter (<b>d</b>) based on the GWC model for PM<sub>10</sub>. Cross-validation results for spring (<b>e</b>), summer (<b>f</b>), autumn (<b>g</b>), and winter (<b>h</b>) based on the GWR model for PM<sub>10</sub>.The solid black line is the 1:1 reference line.</p> "> Figure 9
<p>Validation of PM<sub>2.5</sub> mass concentrations calculated using the RPF against ground stations (<b>a</b>). Validation of PM<sub>10</sub> mass concentrations calculated using the RPF against ground stations (<b>b</b>). The solid black line is the 1:1 reference line.</p> "> Figure 10
<p>Distribution of monthly PM<sub>2.5</sub> mass concentrations at 100 m resolution (<b>a</b>,<b>b</b>) compared to the monthly PM<sub>2.5</sub> product (<b>c</b>,<b>d</b>) published by Aaron van Donkelaar et al. [<a href="#B76-remotesensing-16-00604" class="html-bibr">76</a>]. The left column is for January and the right is for April.</p> "> Figure 10 Cont.
<p>Distribution of monthly PM<sub>2.5</sub> mass concentrations at 100 m resolution (<b>a</b>,<b>b</b>) compared to the monthly PM<sub>2.5</sub> product (<b>c</b>,<b>d</b>) published by Aaron van Donkelaar et al. [<a href="#B76-remotesensing-16-00604" class="html-bibr">76</a>]. The left column is for January and the right is for April.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Region
2.2. PM2.5/10 Measurement Data
2.3. AOD Data
2.4. Meteorological Data
2.5. Land-Use Variables
2.6. Simulation Data Fields
2.7. Data Integration
3. Methods
3.1. Proportional Relationship Formula
3.2. IGTWR
4. Results and Validation
4.1. Results of the Model Fitting and Validation
4.2. PM Estimation Using Satellite Remotely Sensed Data
5. Discussion
5.1. Effects of the Refined PM2.5/10 Measurement Stations
5.2. Comparisons with Other Studies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z.J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; et al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 2014, 383, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Crouse, D.L.; Peters, P.A.; van Donkelaar, A.; Goldberg, M.S.; Villeneuve, P.J.; Brion, O.; Khan, S.; Atari, D.O.; Jerrett, M.; Pope, C.A.; et al. Risk of Non accidental and Cardiovascular Mortality in Relation to Long-term Exposure to Low Concentrations of Fine Particulate Matter: A Canadian National-Level Cohort Study. Environ. Health Perspect. 2012, 120, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, R.; Lurponglukana, N.; Fernando, H.J.S.; Runger, G.C.; Hyde, P.; Hedquist, B.C.; Anderson, J.; Bannister, W.; Johnson, W. Relationship between particulate matter and childhood asthma – basis of a future warning system for central Phoenix. Atmos. Chem. Phys. 2012, 12, 2479–2490. [Google Scholar]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Pascal, M.; Falq, G.; Wagner, V.; Chatignoux, E.; Corso, M.; Blanchard, M.; Host, S.; Pascal, L.; Larrieu, S. Short-term impacts of particulate matter (PM10, PM10–2.5, PM2.5) on mortality in nine French cities. Atmos. Environ. 2014, 95, 175–184. [Google Scholar] [CrossRef]
- Ballester, F.; Estarlich, M.; Iniguez, C.; Llop, S.; Ramon, R.; Esplugues, A.; Lacasana, M.; Rebagliato, M. Air pollution exposure during pregnancy and reduced birth size: A prospective birth cohort study in Valencia, Spain. Environ. Health 2010, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [PubMed]
- Rohde, R.A.; Muller, R.A. Air Pollution in China: Mapping of Concentrations and Sources. PLoS ONE 2015, 10, e0135749. [Google Scholar] [CrossRef]
- Geng, G.; Zhang, Q.; Martin, R.V.; van Donkelaar, A.; Huo, H.; Che, H.; Lin, J.; He, K. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sens. Environ. 2015, 166, 262–270. [Google Scholar] [CrossRef]
- Peng, J.; Chen, S.; Lu, H.; Liu, Y.; Wu, J. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011. Remote Sens. Environ. 2016, 174, 109–121. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Ying, Q.; Zhang, H. Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos. Environ. 2014, 95, 598–609. [Google Scholar] [CrossRef]
- Hu, X.; Waller, L.A.; Lyapustin, A.; Wang, Y.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G.; Estes, S.M.; Quattrochi, D.A.; Puttaswamy, S.J.; et al. Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model. Remote Sens. Environ. 2014, 140, 220–232. [Google Scholar] [CrossRef]
- Qian, Z.; He, Q.; Lin, H.M.; Kong, L.; Bentley, C.M.; Liu, W.; Zhou, D. High Temperatures Enhanced Acute Mortality Effects of Ambient Particle Pollution in the “Oven” City of Wuhan, China. Environ. Health Perspect. 2008, 116, 1172–1178. [Google Scholar] [CrossRef]
- Hu, X.; Waller, L.A.; Lyapustin, A.; Wang, Y.; Liu, Y. 10-year spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data. Atmos. Chem. Phys. 2014, 14, 6301–6314. [Google Scholar] [CrossRef]
- Lee, M.C.; Huang, N. Changes in self-perceived economic satisfaction and mortality at old ages: Evidence from a survey of middle-aged and elderly adults in Taiwan. Soc. Sci. Med. 2015, 130, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing. Environ. Sci. Technol. 2014, 48, 7436–7444. [Google Scholar] [CrossRef]
- Zou, B.; Pu, Q.; Bilal, M.; Weng, Q.; Zhai, L.; Nichol, J.E. High-Resolution Satellite Mapping of Fine Particulates Based on Geographically Weighted Regression. IEEE Geosci. Remote Sens. Lett. 2016, 13, 495–499. [Google Scholar] [CrossRef]
- Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Schaap, M.; Apituley, A.; Timmermans, R.M.A.; Koelemeijer, R.B.A.; de Leeuw, G. Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmos. Chem. Phys. 2009, 9, 909–925. [Google Scholar] [CrossRef]
- Hutchison, K.D.; Smith, S.; Faruqui, S.J. Correlating MODIS aerosol optical thickness data with ground-based PM2.5 observations across Texas for use in a real-time air quality prediction system. Atmos. Environ. 2005, 39, 7190–7203. [Google Scholar] [CrossRef]
- Liu, Y.; Sarnat, J.A.; Kilaru, V.; Jacob, D.J.; Koutrakis, P. Estimating Ground-Level PM2.5 in the Eastern United States Using Satellite Remote Sensing. Environ. Sci. Technol. 2005, 39, 3269–3278. [Google Scholar] [CrossRef]
- Kim, G.; Lee, S.; Im, J.; Song, C.K.; Kim, J.; Lee, M. Aerosol data assimilation and forecast using Geostationary Ocean Color Imager aerosol optical depth and in-situ observations during the KORUS-AQ observing period. Giscience Remote Sens. 2021, 58, 1175–1194. [Google Scholar] [CrossRef]
- Li, Y.; Xue, Y.; Guang, J.; She, L.; Fan, C.; Chen, G. Ground-Level PM2.5 Concentration Estimation from Satellite Data in the Beijing Area Using a Specific Particle Swarm Extinction Mass Conversion Algorithm. Remote Sens. 2018, 10, 1906. [Google Scholar] [CrossRef]
- Lin, C.; Li, Y.; Yuan, Z.; Lau, A.K.H.; Li, C.; Fung, J.C.H. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 2015, 156, 117–128. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter. Environ. Health Perspect. 2015, 123, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chu, Y.; Wang, Y.; Zhang, K. Predicting daily PM2.5 concentrations in Texas using high-resolution satellite aerosol optical depth. Sci. Total Environ. 2018, 631–632, 904–911. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A. Seven year particulate matter air quality assessment from surface and satellite measurements. Atmos. Chem. Phys. 2008, 8, 3311–3324. [Google Scholar] [CrossRef]
- Kloog, I.; Nordio, F.; Coull, B.A.; Schwartz, J. Incorporating Local Land Use Regression and Satellite Aerosol Optical Depth In A Hybrid Model Of Spatiotemporal PM2.5 Exposures In The Mid-Atlantic States. Environ. Sci. Technol. 2012, 46, 11913–11921. [Google Scholar] [CrossRef] [PubMed]
- Unnithan, S.L.K.; Gnanappazham, L. Spatiotemporal mixed effects modeling for the estimation of PM2.5 from MODIS AOD over the Indian subcontinent. Giscience Remote Sens. 2020, 57, 159–173. [Google Scholar] [CrossRef]
- He, Q.; Zhang, M.; Song, Y.; Huang, B. Spatiotemporal assessment of PM2.5 concentrations and exposure in China from 2013 to 2017 using satellite-derived data. J. Clean. Prod. 2021, 286, 124965. [Google Scholar] [CrossRef]
- Li, S.X.; Zou, B.; Fang, X.; Lin, Y. Time series modeling of PM2.5 concentrations with residual variance constraint in eastern mainland China during 2013–2017. Sci. Total Environ. 2020, 710, 135755. [Google Scholar] [CrossRef]
- Xue, W.H.; Zhang, J.; Zhong, C.; Ji, D.Y.; Huang, W. Satellite-derived spatiotemporal PM2.5 concentrations and variations from 2006 to 2017 in China. Sci. Total Environ. 2020, 712, 134577. [Google Scholar] [CrossRef]
- You, W.; Zang, Z.; Zhang, L.; Li, Y.; Wang, W. Estimating national-scale ground-level PM25 concentration in China using geographically weighted regression based on MODIS and MISR AOD. Environ. Sci. Pollut. Res. 2016, 23, 8327–8338. [Google Scholar] [CrossRef]
- Chen, G.; Knibbs, L.D.; Zhang, W.; Li, S.; Cao, W.; Guo, J.; Ren, H.; Wang, B.; Wang, H.; Williams, G.; et al. Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information. Environ. Pollut. 2018, 233, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Hua, Z.; Sun, W.; Yang, G.; Du, Q. A Full-Coverage Daily Average PM2.5 Retrieval Method with Two-Stage IVW Fused MODIS C6 AOD and Two-Stage GAM Model. Remote Sens. 2019, 11, 1558. [Google Scholar] [CrossRef]
- She, Q.; Choi, M.; Belle, J.H.; Xiao, Q.; Bi, J.; Huang, K.; Meng, X.; Geng, G.; Kim, J.; He, K.; et al. Satellite-based estimation of hourly PM2.5 levels during heavy winter pollution episodes in the Yangtze River Delta, China. Chemosphere 2020, 239, 124678. [Google Scholar] [CrossRef]
- Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; de Hoogh, K.; de’Donato, F.; Gariazzo, C.; Lyapustin, A.; Michelozzi, P.; Renzi, M.; et al. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ. Int. 2019, 124, 170–179. [Google Scholar] [CrossRef]
- Chen, W. Estimating PM2.5 with high-resolution 1-km AOD data and an improved machine learning model over Shenzhen, China. Sci. Total Environ. 2020, 746, 141093. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Zhang, D.; Pei, L.; Su, Y.; Wang, X.; Bian, Y.; Zhang, D.; Yao, W.; Zhou, Z.; Guo, L. Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017. Sci. Total Environ. 2021, 778, 146288. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Xue, W.; Sun, L.; Fan, T.; Liu, L.; Su, T.; Cribb, M. The ChinaHighPM10 dataset: Generation, validation, and spatiotemporal variations from 2015 to 2019 across China. Environ. Int. 2021, 146, 106290. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.R.; Hwang, B.F.; Chen, W.T. Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015. Environ. Pollut. 2018, 237, 1000–1010. [Google Scholar] [CrossRef]
- Xu, Y.; Ho, H.C.; Wong, M.S.; Deng, C.; Shi, Y.; Chan, T.C.; Knudby, A. Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5. Environ. Pollut. 2018, 242, 1417–1426. [Google Scholar] [CrossRef]
- Chen, B.; You, S.; Ye, Y.; Fu, Y.; Ye, Z.; Deng, J.; Wang, K.; Hong, Y. An interpretable self-adaptive deep neural network for estimating daily spatially-continuous PM2.5 concentrations across China. Sci. Total Environ. 2021, 768, 144724. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Shen, H.; Zeng, C.; Yuan, Q.; Zhang, L. Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment. Atmos. Environ. 2017, 152, 477–489. [Google Scholar] [CrossRef]
- Zang, L.; Mao, F.; Guo, J.; Wang, W.; Pan, Z.; Shen, H.; Zhu, B.; Wang, Z. Estimation of spatiotemporal PM1.0 distributions in China by combining PM2.5 observations with satellite aerosol optical depth. Sci. Total Environ. 2019, 658, 1256–1264. [Google Scholar] [CrossRef]
- Song, W.; Jia, H.; Huang, J.; Zhang, Y. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sens. Environ. 2014, 154, 1–7. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. Environ. Pollut. 2018, 236, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wu, Y.; Wang, X.; Wang, C. Impact of the spatial structure of urban agglomerations on air pollution in China. China Popul.·Resour. Environ. 2020, 30, 28–35. [Google Scholar]
- Huo, F.; Xu, L.; Li, Y.; Famiglietti, J.S.; Li, Z.; Kajikawa, Y.; Chen, F. Using big data analytics to synthesize research domains and identify emerging fields in urban climatology. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e688. [Google Scholar] [CrossRef]
- Sun, K.; Chen, X.; Zhu, Z.; Zhang, T. High Resolution Aerosol Optical Depth Retrieval Using Gaofen-1 WFV Camera Data. Remote Sens. 2017, 9, 89. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, Z.; Gong, W.; Zhu, Z.; Sun, K.; Wang, L.; Huang, Y.; Mao, F.; Shen, H.; Li, Z.; et al. Estimation of ultrahigh resolution PM2.5 concentrations in urban areas using 160 m Gaofen-1 AOD retrievals. Remote Sens. Environ. 2018, 216, 91–104. [Google Scholar] [CrossRef]
- Bai, R.; Xue, Y.; Jiang, X.; Jin, C.; Sun, Y. Retrieval of High-Resolution Aerosol Optical Depth for Urban Air Pollution Monitoring. Atmosphere 2022, 13, 756. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Li, W.; Li, L. Impact of urbanization level on urban air quality: A case of fine particles (PM2.5) in Chinese cities. Environ. Pollut. 2014, 194, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhuang, D. Remote sensing Monitoring methods of land use/cover changes in national scale. Anhui Agric. Sci. 2012, 40, 2365–2369. [Google Scholar]
- Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [Google Scholar] [CrossRef]
- Johnson, K.; Cole-Rhodes, A.; Zavorin, I.; Le Moigne, J. Mutual information as a similarity measure for remote sensing image registration. Geo-Spat. Image Data Exploit. II 2001, 4383, 51–61. [Google Scholar]
- Li, Y.; Xue, Y.; He, X.; Guang, J. High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data. Atmos. Environ. 2012, 46, 173–180. [Google Scholar] [CrossRef]
- Xue, Y.; He, X.W.; Xu, H.; Guang, J.; Guo, J.P.; Mei, L.L. China Collection 2.0: The aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm. Atmos. Environ. 2014, 95, 45–58. [Google Scholar] [CrossRef]
- Xue, Y.; Cracknell, A.P. Operational bi-angle approach to retrieve the Earth surface albedo from AVHRR data in the visible band. Remote Sens. 1995, 16, 417–429. [Google Scholar] [CrossRef]
- Xue, Y.; Li, Y.; Guang, J.; Tugui, A.; She, L.; Qin, K.; Fan, C.; Che, Y.; Xie, Y.; Wen, Y.; et al. Hourly PM2.5 Estimation over Central and Eastern China Based on Himawari-8 Data. Remote Sens. 2020, 12, 855. [Google Scholar] [CrossRef]
- Shin, M.; Kang, Y.; Park, S.; Im, J.; Yoo, C.; Quackenbush, L.J. Estimating ground-level particulate matter concentrations using satellite-based data: A review. Giscience Remote Sens. 2020, 57, 174–189. [Google Scholar] [CrossRef]
- Liu, Y.; Park, R.J.; Jacob, D.J.; Li, Q.B.; Kilaru, V.; Sarnat, J.A. Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States. J. Geophys. Res.-Atmos. 2004, 109, 10. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of Green Infrastructure for Improvement of Air Quality in Urban Street Canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xue, Y.; Jiang, X.; Jin, C.; Wu, S.; Zhou, X. Estimation of the PM2.5 and PM10 Mass Concentration over Land from FY-4A Aerosol Optical Depth Data. Remote Sens. 2021, 13, 4276. [Google Scholar] [CrossRef]
- Wu, J.; Yao, F.; Li, W.; Si, M. VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing–Tianjin–Hebei: A spatiotemporal statistical model. Remote Sens. Environ. 2016, 184, 316–328. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S.; Guo, J.; Huang, S.; Yan, Y.; Lou, M. Unraveling the relationships between boundary layer height and PM2.5 pollution in China based on four-year radiosonde measurements. Environ. Pollut. 2018, 243, 1186–1195. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, Q.; Gong, D.Y.; Zhang, Z. Estimating ground-level PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model. Remote Sens. Environ. 2017, 198, 140–149. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ. 2015, 160, 252–262. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, N.; Christopher, S.A.; Kang, P.; Zhan, F.B.; Hong, S. Satellite remote sensing of fine particulate matter (PM2.5) air quality over Beijing using MODIS. Int. J. Remote Sens. 2014, 35, 6522–6544. [Google Scholar] [CrossRef]
- Li, R.; Gong, J.; Chen, L.; Wang, Z. Estimating Ground-Level PM2.5 Using Fine-Resolution Satellite Data in the Megacity of Beijing, China. Aerosol Air Qual. Res. 2015, 15, 1347–1356. [Google Scholar] [CrossRef]
- Liu, Y.; Servant, A.; Guy, O.J.; Al-Jamal, K.T.; Williams, P.R.; Hawkins, K.M.; Kostarelos, K. An electric-field responsive microsystem for controllable miniaturised drug delivery applications. Sens. Actuators B Chem. 2012, 175, 100–105. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Y.; Zhang, K.; Dong, W.; Lv, B.; Bai, Y. Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD. Environ. Sci. Technol. 2015, 49, 12280–12288. [Google Scholar] [CrossRef]
- Xin, J.; Zhang, Q.; Wang, L.; Gong, C.; Wang, Y.; Liu, Z.; Gao, W. The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmos. Res. 2014, 138, 179–188. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Hammer, M.S.; Bindle, L.; Brauer, M.; Brook, J.R.; Garay, M.J.; Hsu, N.C.; Kalashnikova, O.V.; Kahn, R.A.; Lee, C.; et al. Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. Environ. Sci. Technol. 2021, 55, 15287–15300. [Google Scholar] [CrossRef]
Number | Designation | Number | Designation | Number | Designation |
---|---|---|---|---|---|
11 | Paddy field | 41 | Channel | 61 | Sand |
12 | Dry land | 42 | Lake | 62 | Gobi |
21 | Woodland | 43 | Reservoir pond | 63 | Saline alkali soil |
22 | Shrub wood | 44 | Permanent glacier and snow | 64 | Swamp land |
23 | Sparse woodland | 45 | Tidal flat | 65 | Bare land |
24 | Other woodlands | 46 | Beach land | 66 | Bare rock texture |
31 | High-coverage grassland | 51 | Urban land use | 67 | Other |
32 | Medium-coverage grassland | 52 | Rural settlements | 99 | Undefined |
33 | Low-coverage grassland | 53 | Other construction land |
Term | Unit | Definition |
---|---|---|
Simulated PM2.5 concentration | mg/m3 | PM2.5 or PM10 provided by CAMS, verification results with the 12 monitoring stations of the Ministry of Environmental Protection (MEP) within Beijing in 2020 show that the average R values are 0.59 and 0.43, respectively (https://cams2-82.aeroval.met.no/, accessed on 27 January 2024). |
Simulated AOD | unitless | AOD provided by CAMS, verification results with the AeronetL1.5-d of Beijing station in 2020 show that the R and R2 values are 0.80 and 0.89, respectively (https://cams2-82.aeroval.met.no/, accessed on 27 January 2024). |
GF AOD | unitless | The TERRA and AQUA satellite MODIS data were first downscaled by GF-1 WFV data, then calculated the AOD by the SRAP algorithm. |
GF PRF PM2.5/10 concentration | µg/m3 | PM2.5 or PM10 concentrations at 10:00 or 14:00 local time. |
Method | R2/RMSE | Coverage |
---|---|---|
PM2.5 GWC | 0.778/34.702 µg/m3 | 92.91% |
PM2.5 GWR | 0.660/25.434 µg/m3 | 40.73% |
PM10 GWC | 0.741/49.757 µg/m3 | 92.95% |
PM10 GWR | 0.550/38.052 µg/m3 | 40.93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Sun, Y.; Bai, R.; Jiang, X.; Jin, C.; Xue, Y. Estimation of PM2.5 and PM10 Mass Concentrations in Beijing Using Gaofen-1 Data at 100 m Resolution. Remote Sens. 2024, 16, 604. https://doi.org/10.3390/rs16040604
Wu S, Sun Y, Bai R, Jiang X, Jin C, Xue Y. Estimation of PM2.5 and PM10 Mass Concentrations in Beijing Using Gaofen-1 Data at 100 m Resolution. Remote Sensing. 2024; 16(4):604. https://doi.org/10.3390/rs16040604
Chicago/Turabian StyleWu, Shuhui, Yuxin Sun, Rui Bai, Xingxing Jiang, Chunlin Jin, and Yong Xue. 2024. "Estimation of PM2.5 and PM10 Mass Concentrations in Beijing Using Gaofen-1 Data at 100 m Resolution" Remote Sensing 16, no. 4: 604. https://doi.org/10.3390/rs16040604