High Resolution Aerosol Optical Depth Retrieval Using Gaofen-1 WFV Camera Data
"> Figure 1
<p>Geolocation of Wuhan city shown by Gaofen-1 Wide-Field-of-View (GF-1 WFV) image (RGB composited).</p> "> Figure 2
<p>Flowchart of AOD retrieval algorithm for GF-1 WFV data. Ave, std and cov represent average value, standard deviation and spatial coverage of MODIS AOD, respectively.</p> "> Figure 3
<p>The change of simulated TOA reflectance in GF-1 WFV blue band with different AOD and surface reflectance.</p> "> Figure 4
<p>The origin maps (<b>a</b>–<b>c</b>) and corresponding cloud mask results (<b>d</b>–<b>f</b>) for three selected GF-1 WFV images. The white regions in (<b>d</b>–<b>f)</b> represent cloud covering areas.</p> "> Figure 5
<p>(<b>a</b>) Frequency distribution of ground-measured daily AOD at 550 nm over Wuhan from 2008 to 2013; (<b>b</b>) Scatter map of SSA at 440 nm and FMF of AOD at 670 nm (SSA: Single Scattering Albedo; FMF: Fine Mode Fraction).</p> "> Figure 6
<p>The average volume size distribution for each season under different AOD ranges. Spring (MAM: March, April and May); summer (JJA: June, July and August); autumn (SON: September, October and November); and winter (DJF: December, January and February).</p> "> Figure 7
<p>Seasonal surface reflectance images (red, green, blue (RGB) composited) derived from GF-1 WFV data over Wuhan during 2014. MAM (March, April and May), JJA (June, July and August), SON (September, October and November) and DJF (December, January and February) represent the season of Spring, Summer, Autumn and Winter respectively.</p> "> Figure 8
<p>Seasonal surface reflectance variation of typical land cover types.</p> "> Figure 9
<p>The AOD retrieval results from GF-1 WFV data during a haze period in summer. (<b>a</b>–<b>c</b>) are the RGB composited GF-1 WFV images on 3 June, 6 June and 11 June of 2014 respectively; (<b>d</b>–<b>f</b>) are the corresponding retrieved AOD at 550 nm. Water bodies were masked in the algorithm.</p> "> Figure 10
<p>The AOD retrieval results from GF-1 WFV data during a haze period in winter. (<b>a</b>–<b>e</b>) are the RGB composited GF-1 WFV images on 15 January, 19 January, 23 January, 27 January and 31 January of 2014 respectively; (<b>f</b>–<b>j</b>) are the corresponding retrieved AOD at 550 nm.</p> "> Figure 11
<p>The spatial distribution yearly average AOD over Wuhan derived from GF-1 WFV data in 2014 (<b>a</b>) and 2015 (<b>b</b>).</p> "> Figure 12
<p>Comparison between GF-1 WFV AOD at 160 m, MODIS DB AOD at 10 km and MODIS DT AOD at 3 km. (<b>a</b>–<b>c</b>) are the GF-1 WFV AOD, MODIS DB AOD and MODIS DT AOD respectively on 8 July 2013; (<b>d</b>–<b>f</b>) are the GF-1 WFV AOD, MODIS DB AOD and MODIS DT AOD respectively on 7 June 2014.</p> "> Figure 13
<p>Relationship between GF-1 WFV AOD and MODIS DB AOD at 550 nm. RMSE and N represent Root Mean Square Error and total number of matched pixels respectively.</p> "> Figure 14
<p>A comparison between GF-1 WFV AOD, MODIS DB AOD and ground-measured AOD at 550nm. (<b>a</b>) Scatter plot between GF-1 WFV AOD and ground-measured AOD; (<b>b</b>) Scatter plot between MODIS DB AOD and ground-measured AOD.</p> "> Figure 15
<p>The relative error distribution of GF-1 WFV AOD. (<b>a</b>) Relative error distribution classified by WFV sensors; (<b>b</b>) relative error distribution classified by seasons; (<b>c</b>) relative error distribution classified by scattering angles (°).</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. Gaofen-1 Wide-Field-of-View (GF-1 WFV) Data
2.2.2. Moderate-Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD) Data
2.2.3. Ground Measurements
3. AOD Retrieval Algorithm
3.1. Aerosol Optical Properties over Wuhan
3.2. Surface Reflectance Determination
4. Results and Discussion
4.1. Retrieved Results from the Proposed Algorithm
4.2. Comparison of GF-1 WFV AOD with MODIS AOD
4.3. Comparison of GF-1 WFV AOD with Ground Measurements
4.4. Performance and Limitations of the Proposed Algorithm
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, Z.; Wild, O.; Xu, W.; Chen, C.; Fu, P.; Du, W.; Zhou, L.; Zhang, Q.; Han, T.; et al. “APEC Blue”: Secondary aerosol reductions from emission controls in Beijing. Sci. Rep. 2016, 6, 20668. [Google Scholar] [CrossRef] [PubMed]
- Mishchenko, M.I.; Geogdzhayev, I.V.; Cairns, B.; Carlson, B.E.; Chowdhary, J.; Lacis, A.A.; Liu, L.; Rossow, W.B.; Travis, L.D. Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective. J. Quant. Spectrosc. Radiat. Transf. 2007, 106, 325–347. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 3, 875–883, Erratum in 2014, 4, 74. [Google Scholar] [CrossRef]
- Holben, B.; Vermote, E.; Kaufman, Y.J.; Tanré, D.; Kalb, V. Aerosol retrieval over land from AVHRR data-application for atmospheric correction. IEEE Trans. Geosci. Remote Sens. 1992, 30, 212–222. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.; Tanré, D.; Mattoo, S.; Chu, D.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.; Kleidman, R. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Lee, K.H.; Li, Z.; Kim, Y.J.; Kokhanovsky, A. Atmospheric aerosol monitoring from satellite observations: A history of three decades. In Atmospheric and Biological Environmental Monitoring; Springer: Heidelberg, Germany, 2009; pp. 13–38. [Google Scholar]
- Sun, L.; Sun, C.K.; Liu, Q.H.; Zhong, B. Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data. Sci. China Earth Sci. 2010, 53, 74–80. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Sayer, A.M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013. Environ. Health Perspect. 2016, 124, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Chen, L.; Su, L.; Tao, J. Satellite observation of regional haze pollution over the North China Plain. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Omar, A.H.; Won, J.G.; Winker, D.M.; Yoon, S.C.; Dubovik, O.; McCormick, M.P. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Li, C.; Lau, A.; Mao, J.; Chu, D. Retrieval, Validation, and Application of the 1-km Aerosol Optical Depth from MODIS Measurements over Hong Kong. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2650–2658. [Google Scholar]
- Kaufman, Y.J.; Wald, A.E.; Remer, L.A.; Gao, B.-C.; Li, R.-R.; Flynn, L. The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1286–1298. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Liang, S.; Fallah-Adl, H.; Kalluri, S.; JáJá, J.; Kaufman, Y.J.; Townshend, J.R.G. An operational atmospheric correction algorithm for Landsat Thematic Mapper imagery over the land. J. Geophys. Res. Atmos. 1997, 102, 17173–17186. [Google Scholar] [CrossRef]
- Gillingham, S.; Flood, N.; Gill, T.; Mitchell, R. Limitations of the dense dark vegetation method for aerosol retrieval under Australian conditions. Remote Sens. Lett. 2012, 3, 67–76. [Google Scholar] [CrossRef]
- Santer, R.; Ramon, D.; Vidot, J.; Dilligeard, E. A surface reflectance model for aerosol remote sensing over land. Int. J. Remote Sens. 2007, 28, 737–760. [Google Scholar] [CrossRef]
- Nichol, J.E.; Wong, M.S.; Chan, Y.Y. Fine resolution air quality monitoring from a small satellite: CHRIS/PROBA. Sensors 2008, 8, 7581–7595. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, L.; Gong, H.; Gao, H. Modified DDV method of aerosol optical depth inversion over land surfaces from CBERS02B. J. Remote Sens. 2009, 13, 1047–1059. [Google Scholar]
- Munchak, L.; Levy, R.; Mattoo, S.; Remer, L.; Holben, B.; Schafer, J.; Hostetler, C.; Ferrare, R. MODIS 3 km aerosol product: Applications over land in an urban/suburban region. Atmos. Meas. Tech. 2013, 6, 1747–1759. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Gautam, R.; Sayer, A.M.; Bettenhausen, C.; Li, C.; Jeong, M.J.; Tsay, S.C.; Holben, B.N. Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys. 2012, 12, 8037–8053. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.-C.; King, M.D.; Herman, J.R. Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Hsu, N.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.; Hansell, R.; Seftor, C.; Huang, J.; Tsay, S.C. Enhanced deep blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Song, C.H.; Ryu, J.; Ahn, Y.; Song, C.K. Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager. Remote Sens. Environ. 2010, 114, 1077–1088. [Google Scholar] [CrossRef]
- Guo, J.P.; Zhang, X.Y.; Wu, Y.R.; Zhaxi, Y.; Che, H.Z.; La, B.; Wang, W.; Li, X.W. Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980–2008. Atmos. Environ. 2011, 45, 6802–6811. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, Q.; Streets, D.G. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos. Chem. Phys. 2011, 11, 9839–9864. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Gong, W.; Wang, Z.; Zhang, F.; Wang, X.; Lv, X.; Liu, J.; Fu, X.; Zhang, G. Ionic composition of submicron particles (PM1.0) during the long-lasting haze period in January 2013 in Wuhan, central China. J. Environ. Sci. 2014, 26, 810–817. [Google Scholar] [CrossRef]
- Song, J.; Guang, W.; Li, L.; Xiang, R. Assessment of air quality status in Wuhan, China. Atmosphere 2016, 7, 56. [Google Scholar] [CrossRef]
- Wang, L.; Gong, W.; Xia, X.; Zhu, J.; Li, J.; Zhu, Z. Long-term observations of aerosol optical properties at Wuhan, an urban site in Central China. Atmos. Environ. 2015, 101, 94–102. [Google Scholar] [CrossRef]
- Feng, L.; Li, J.; Gong, W.; Zhao, X.Z.; Chen, X.; Pang, X. Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: A solution for large view angle associated problems. Remote Sens. Environ. 2016, 174, 56–68. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.L.; Tian, L.Q.; Huang, J.; Feng, L. Improved capabilities of the Chinese high-resolution remote sensing satellite GF-1 for monitoring suspended particulate matter (SPM) in inland waters: Radiometric and spatial considerations. ISPRS J. Photogramm. Remote Sens. 2015, 106, 145–156. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Li, Z.; Niu, F.; Lee, K.; Xin, J.; Hao, W.; Nordgren, B.; Wang, Y.; Wang, P. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- He, Q.; Li, C.; Tang, X.; Li, H.; Geng, F.; Wu, Y. Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China. Remote Sens. Environ. 2010, 114, 1649–1661. [Google Scholar] [CrossRef]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R.R.; Thompson, A.M.; Schafer, J.S. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Russell, P.B.; Bergstrom, R.W.; Shinozuka, Y.; Clarke, A.D.; DeCarlo, P.F.; Jimenez, J.L.; Livingston, J.M.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Wong, M.S.; Yoon, J.; Lee, J.; Wu, D.; Chan, P.W.; Nichol, J.; Chung, C.; Ou, M. Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction. Remote Sens. Environ. 2014, 142, 176–187. [Google Scholar] [CrossRef]
- Levy, R.; Mattoo, S.; Munchak, L.; Remer, L.; Sayer, A.; Patadia, F.; Hsu, N. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Wong, M.S.; Nichol, J.; Lee, K.H. An operational MODIS aerosol retrieval algorithm at high spatial resolution, and its application over a complex urban region. Atmos. Res. 2011, 99, 579–589. [Google Scholar] [CrossRef]
- Luo, N.; Wong, M.S.; Zhao, W.; Yan, X.; Xiao, F. Improved aerosol retrieval algorithm using Landsat images and its application for PM10 monitoring over urban areas. Atmos. Res. 2015, 153, 264–275. [Google Scholar] [CrossRef]
- Gupta, P.; Khan, M.N.; da Silva, A.; Patadia, F. Modis aerosol optical depth observations over urban areas in Pakistan: Quantity and quality of the data for air quality monitoring. Atmos. Pollut. Res. 2013, 4, 43–52. [Google Scholar] [CrossRef]
- Nichol, J.; Bilal, M. Validation of MODIS 3 km resolution aerosol optical depth retrievals over Asia. Remote Sens. 2016, 8, 328. [Google Scholar] [CrossRef]
- Sun, L.; Wei, J.; Bilal, M.; Tian, X.; Jia, C.; Guo, Y.; Mi, X. Aerosol optical depth retrieval over bright areas using Landsat 8 OLI images. Remote Sens. 2016, 8, 23. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.; Xiong, X.; Tao, J.; Su, L.; Han, D.; Liu, Y. Retrieval of the haze optical thickness in North China Plain using MODIS data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2528–2540. [Google Scholar] [CrossRef]
Band | Band Range (µm) | Spatial Resolution (m) | Re-Visiting Period (Days) | Swath (km) |
---|---|---|---|---|
Blue | 045–0.52 | 16 | 4 | 800 |
Green | 0.52–0.59 | |||
Red | 0.63–0.69 | |||
NIR | 0.77–0.89 |
Site | Lat/Lon | Terrain | Instrument | Observing Period |
---|---|---|---|---|
WHU | 30°32′N, 114°21′E | Urban | CE-318 | 2008–2012; December 2014–June 2015 |
WHR | 30°28′N, 114°32′E | Rural | MICROTOPS-II | December 2014–June 2015 |
Input Variables | No. of Entries | Entries |
---|---|---|
SZA | 14 | 0, 6, 12, …, 78 |
VZA | 14 | 0, 6, 12, …, 78 |
RAA | 16 | 0, 12, 24, …, 180 |
AOD | 9 | 0, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 3.0, 5.0 |
Atmospheric model | 2 | Mid-latitude summer/winter |
Surface reflectance | 4 | 0.0, 0.1, 0.2, 0.3 |
Parameters | Season | AOD Range | ||||
---|---|---|---|---|---|---|
0–0.5 | 0.5–1.0 | 1.0–1.5 | 1.5–2.0 | 2.0–3.0 | ||
Refractive index (real) at 670 nm | Spring | 1.54 | 1.45 | 1.48 | 1.48 | 1.51 |
Summer | 1.33 | 1.41 | 1.41 | 1.42 | 1.41 | |
Autumn | 1.46 | 1.44 | 1.42 | 1.40 | 1.41 | |
Winter | 1.46 | 1.46 | 1.46 | 1.45 | 1.44 | |
Refractive index (imaginary) at 670 nm | Spring | 0.0122 | 0.0428 | 0.0175 | 0.0094 | 0.0065 |
Summer | 0.0258 | 0.0538 | 0.0121 | 0.0112 | 0.0039 | |
Autumn | 0.0425 | 0.0539 | 0.0247 | 0.0180 | 0.0220 | |
Winter | 0.0268 | 0.0304 | 0.0245 | 0.0139 | 0.0141 | |
Single scattering albedo at 670 nm | Spring | 0.86 | 0.78 | 0.86 | 0.90 | 0.92 |
Summer | 0.78 | 0.72 | 0.91 | 0.93 | 0.97 | |
Autumn | 0.81 | 0.75 | 0.85 | 0.89 | 0.86 | |
Winter | 0.84 | 0.82 | 0.85 | 0.90 | 0.90 |
Year | Season | GF-1 WFV Image Date | MODIS AOD | View Zenith(°) | ||||
---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Std | Coverage | ||||
2013 | JJA | 8 July 2013 | 0.27 | 0.11 | 0.70 | 0.11 | 99.5 | 31.0 |
1 August 2013 | 0.12 | 0.05 | 0.48 | 0.09 | 84.7 | 38.1 | ||
10 August 2013 | 0.09 | 0.05 | 0.59 | 0.07 | 100.0 | 7.5 | ||
SON | 19 September 2013 | 0.28 | 0.14 | 0.88 | 0.10 | 95.4 | 12.4 | |
1 October 2013 | 0.49 | 0.22 | 0.96 | 0.10 | 92.9 | 18.4 | ||
6 October 2013 | 0.42 | 0.09 | 0.92 | 0.16 | 100.0 | 31.4 | ||
9 October 2013 | 0.35 | 0.09 | 0.72 | 0.14 | 99.5 | 22.3 | ||
14 October 2013 | 0.42 | 0.21 | 0.92 | 0.15 | 100.0 | 27.6 | ||
7 November 2013 | 0.20 | 0.12 | 0.34 | 0.06 | 48.0 | 14.5 | ||
19 November 2013 | 0.38 | 0.14 | 0.58 | 0.10 | 100.0 | 6.7 | ||
2014 | DJF | 23 January 2014 | 0.32 | 0.11 | 0.60 | 0.13 | 85.7 | 7.0 |
MAM | 17 March 2014 | 0.43 | 0.25 | 0.64 | 0.09 | 100.0 | 5.2 | |
JJA | 22 July 2014 | 0.31 | 0.09 | 0.84 | 0.12 | 92.9 | 0.9 | |
26 July 2014 | 0.40 | 0.05 | 1.25 | 0.37 | 75.0 | 4.7 | ||
30 July 2014 | 0.11 | 0.05 | 0.50 | 0.07 | 100.0 | 10.2 | ||
SON | 21 September 2014 | 0.08 | 0.05 | 0.57 | 0.09 | 71.4 | 24.8 | |
8 October 2014 | 0.38 | 0.26 | 0.61 | 0.07 | 100.0 | 6.0 | ||
24 October 2014 | 0.36 | 0.17 | 0.58 | 0.09 | 100.0 | 14.7 | ||
14 November 2014 | 0.27 | 0.18 | 0.39 | 0.05 | 100.0 | 11.1 | ||
2015 | DJF | 8 December 2014 | 0.23 | 0.05 | 0.50 | 0.09 | 99.5 | 20.6 |
16 December 2014 | 0.14 | 0.05 | 0.22 | 0.03 | 100.0 | 29.8 | ||
17 December 2014 | 0.06 | 0.04 | 0.22 | 0.03 | 100.0 | 22.1 | ||
21 December 2014 | 0.22 | 0.03 | 0.46 | 0.12 | 99.5 | 17.3 | ||
MAM | 25 March 2015 | 0.19 | 0.05 | 0.62 | 0.11 | 100.0 | 1.0 | |
14 April 2015 | 0.25 | 0.13 | 0.44 | 0.06 | 100.0 | 25.0 | ||
JJA | 3 August 2015 | 0.08 | 0.05 | 0.25 | 0.04 | 100.0 | 10.0 | |
23 August 2015 | 0.17 | 0.05 | 0.65 | 0.15 | 99.5 | 33.4 | ||
SON | 20 October 2015 | 0.53 | 0.17 | 0.84 | 0.10 | 100.0 | 4.4 | |
1 November 2015 | 0.54 | 0.36 | 0.79 | 0.13 | 72.4 | 20.2 | ||
2016 | DJF | 16 December 2015 | 0.08 | 0.03 | 0.15 | 0.03 | 100.0 | 24.3 |
17 December 2015 | 0.06 | 0.03 | 0.20 | 0.04 | 100.0 | 26.6 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; Chen, X.; Zhu, Z.; Zhang, T. High Resolution Aerosol Optical Depth Retrieval Using Gaofen-1 WFV Camera Data. Remote Sens. 2017, 9, 89. https://doi.org/10.3390/rs9010089
Sun K, Chen X, Zhu Z, Zhang T. High Resolution Aerosol Optical Depth Retrieval Using Gaofen-1 WFV Camera Data. Remote Sensing. 2017; 9(1):89. https://doi.org/10.3390/rs9010089
Chicago/Turabian StyleSun, Kun, Xiaoling Chen, Zhongmin Zhu, and Tianhao Zhang. 2017. "High Resolution Aerosol Optical Depth Retrieval Using Gaofen-1 WFV Camera Data" Remote Sensing 9, no. 1: 89. https://doi.org/10.3390/rs9010089