Modelling Heat Balance of a Large Lake in Central Tibetan Plateau Incorporating Satellite Observations
"> Figure 1
<p>Location of the study area.</p> "> Figure 2
<p>Comparison between simulated LSWT and remote sensing data (<b>a</b>) monthly and (<b>b</b>) long-term mean daily.</p> "> Figure 3
<p>Comparison between (<b>b</b>) simulated and (<b>a</b>) in-situ temperature profiles, (<b>c</b>–<b>h</b>) is the scatter plot at the depths of 3 m, 6 m, 16 m, 21 m, 26 m, and 31 m.</p> "> Figure 4
<p>Seasonal variation in lake water temperature. (<b>a</b>) Temperature profiles for each calendar date averaged over the period of 1963–2019; (<b>b</b>–<b>e</b>) representative temperature profiles for the summer, autumn, winter, and spring seasons, respectively.</p> "> Figure 5
<p>Seasonal variation in lake thermodynamics: (<b>a</b>) <span class="html-italic">H</span>, <span class="html-italic">LE</span>, <math display="inline"><semantics><mrow><msub><mrow><mi>R</mi><mi>s</mi></mrow><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math>, <math display="inline"><semantics><mrow><msub><mrow><mi>R</mi><mi>l</mi></mrow><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math>, <math display="inline"><semantics><mrow><mi>R</mi><mi>n</mi></mrow></semantics></math> and <math display="inline"><semantics><mrow><mi>S</mi></mrow></semantics></math> represent sensible heat flux, potential heat flux, net solar radiation, net longwave radiation, net radiation, and gain or loss of heat, respectively, with <math display="inline"><semantics><mrow><mi>R</mi><mi>n</mi><mo>=</mo><msub><mrow><mi>R</mi><mi>s</mi></mrow><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mi>R</mi><mi>l</mi></mrow><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math> and <math display="inline"><semantics><mrow><mi>S</mi><mo>=</mo><mi>R</mi><mi>n</mi><mo>−</mo><mi>H</mi><mo>−</mo><mi>L</mi><mi>E</mi></mrow></semantics></math>; (<b>b</b>) water temperature of lake surface (<math display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>s</mi><mi>u</mi><mi>r</mi><mi>f</mi><mi>a</mi><mi>c</mi><mi>e</mi></mrow></msub></mrow></semantics></math>) and water column (<math display="inline"><semantics><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>w</mi><mi>a</mi><mi>t</mi><mi>e</mi><mi>r</mi></mrow></msub></mrow></semantics></math>).</p> "> Figure 6
<p>Long-term change in (<b>a</b>) lake surface temperature, (<b>b</b>) air temperature, (<b>c</b>) water column mean temperature, and (<b>d</b>) thermocline depth of the non-freezing season (June to November).</p> "> Figure 7
<p>Inter-annual variation in energy flux from 1963 to 2019 (<b>a</b>) latent heat flux (<span class="html-italic">LE</span>), sensible heat flux (<span class="html-italic">H</span>), and energy balance residual (<math display="inline"><semantics><mrow><mi>S</mi></mrow></semantics></math>); (<b>b</b>) net shortwave radiation (<math display="inline"><semantics><mrow><msub><mrow><mi>R</mi><mi>s</mi></mrow><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math>) and net longwave radiation (<math display="inline"><semantics><mrow><msub><mrow><mi>R</mi><mi>l</mi></mrow><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math>).</p> "> Figure 8
<p>Inter-annual Mann–Kendall trend of monthly (<b>a</b>) lake temperatures at different depths and (<b>b</b>) energy flux during 1963–2019: net radiation (<math display="inline"><semantics><mrow><mi>R</mi><mi>n</mi></mrow></semantics></math>), net shortwave radiation (<math display="inline"><semantics><mrow><msub><mrow><mi>R</mi><mi>s</mi></mrow><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math>), net longwave radiation (<math display="inline"><semantics><mrow><msub><mrow><mi>R</mi><mi>l</mi></mrow><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow></semantics></math>), sensible heat flux (<span class="html-italic">H</span>), latent heat flux (<span class="html-italic">LE</span>), and energy balance residual (<math display="inline"><semantics><mrow><mi>S</mi></mrow></semantics></math>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
3. Method
3.1. LAKE Model and Configuration
3.2. Air2Water Model and Modification
3.3. Model Calibration and Validation
4. Results
4.1. Model Performance
4.2. Seasonal Variation in Lake Temperature and Thermodynamics
4.3. Long-Term Changes in Lake Temperature and Heat Balance
5. Discussion
5.1. Roles of Remote Sensing Data in Models
5.2. The Warming Trend of Nam Co
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biermann, T.; Babel, W.; Ma, W.Q.; Chen, X.L.; Thiem, E.; Ma, Y.M.; Foken, T. Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau. Theor. Appl. Climatol. 2014, 116, 301–316. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.L.; Lofgren, B.M.; Wang, J.; Chu, P.Y. Improving the lake scheme within a coupled WRF-lake model in the Laurentian Great Lakes. J. Adv. Model. Earth Syst. 2016, 8, 1969–1985. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindler, D.W. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol. Oceanogr. 2009, 54, 2349–2358. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef] [Green Version]
- Austin, J.A.; Colman, S.M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett. 2007, 34, L06604. [Google Scholar] [CrossRef] [Green Version]
- Danis, P.A.; von Grafenstein, U.; Masson-Delmotte, V.; Planton, S.; Gerdeaux, D.; Moisselin, J.M. Vulnerability of two European lakes in response to future climatic changes. Geophys. Res. Lett. 2004, 31, L21507. [Google Scholar] [CrossRef]
- Sahoo, G.B.; Forrest, A.L.; Schladow, S.G.; Reuter, J.E.; Coats, R.; Dettinger, M. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities. Limnol. Oceanogr. 2016, 61, 496–507. [Google Scholar] [CrossRef] [Green Version]
- Butcher, J.B.; Nover, D.; Johnson, T.E.; Clark, C.M. Sensitivity of lake thermal and mixing dynamics to climate change. Clim. Change 2015, 129, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Woolway, R.I.; Merchant, C.J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 2019, 12, 271. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.P.; Jin, J.M.; Wu, Y.H.; Ek, M.B.; Subin, Z.M. Calibration and validation of lake surface temperature simulations with the coupled WRF-lake model. Clim. Change 2015, 129, 471–483. [Google Scholar] [CrossRef]
- Li, Z.G.; Lyu, S.H.; Ao, Y.H.; Wen, L.J.; Zhao, L.; Wang, S.Y. Long-term energy flux and radiation balance observations over Lake Ngoring, Tibetan Plateau. Atmos. Res. 2015, 155, 13–25. [Google Scholar] [CrossRef]
- Eerola, K.; Rontu, L.; Kourzeneva, E.; Pour, H.K.; Duguay, C. Impact of partly ice-free Lake Ladoga on temperature and cloudiness in an anticyclonic winter situation–a case study using a limited area model. Tellus A Dyn. Meteorol. Oceanogr. 2014, 66, 23929. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.G.; Yang, K.; La, Z.; Lu, H.; Jiang, Y.Z.; Zhou, X.; Yao, X.N.; Li, X. Importance of Parameterizing Lake Surface and Internal Thermal Processes in WRF for Simulating Freeze Onset of an Alpine Deep Lake. J. Geophys. Res.-Atmos. 2022, 127, e2022JD036759. [Google Scholar] [CrossRef]
- O’Reilly, C.M.; Alin, S.R.; Plisnier, P.D.; Cohen, A.S.; McKee, B.A. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 2003, 424, 766–768. [Google Scholar] [CrossRef]
- O’Beirne, M.D.; Werne, J.P.; Hecky, R.E.; Johnson, T.C.; Katsev, S.; Reavie, E.D. Anthropogenic climate change has altered primary productivity in Lake Superior. Nat. Commun. 2017, 8, 15713. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Gray, D.K.; Read, J.S.; O’Reilly, C.M.; Schneider, P.; Qudrat, A.; Gries, C.; Stefanoff, S.; Hampton, S.E.; Hook, S.; et al. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci. Data 2015, 2, 150008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, W.; Li, H.; Xie, H.; Hong, Y.; Long, D.; Zhao, L.; Han, Z.; Cui, Y.; Liu, B.; Wang, C. A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001–2015. Sci. Data 2017, 4, 170095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Wu, Y.; Zheng, H.; Zhang, B.; Li, J.; Zhang, F.; Shen, Q. Uncertainty and Variation of Remotely Sensed Lake Ice Phenology across the Tibetan Plateau. Remote Sens. 2018, 10, 1534. [Google Scholar] [CrossRef] [Green Version]
- Janssen, A.B.G.; Arhonditsis, G.B.; Beusen, A.; Bolding, K.; Bruce, L.; Bruggeman, J.; Couture, R.M.; Downing, A.S.; Elliott, J.A.; Frassl, M.A.; et al. Exploring, exploiting and evolving diversity of aquatic ecosystem models: A community perspective. Aquat. Ecol. 2015, 49, 513–548. [Google Scholar] [CrossRef] [Green Version]
- Goudsmit, G.H.; Burchard, H.; Peeters, F.; Wuest, A. Application of k-epsilon turbulence models to enclosed basins: The role of internal seiches. J. Geophys. Res.-Ocean. 2002, 107, 23-1–23-13. [Google Scholar] [CrossRef] [Green Version]
- Kirillin, G.; Wen, L.J.; Shatwell, T. Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands. Hydrol. Earth Syst. Sci. 2017, 21, 1895–1909. [Google Scholar] [CrossRef] [Green Version]
- Launiainen, J.; Cheng, B. Modelling of ice thermodynamics in natural water bodies. Cold Reg. Sci. Technol. 1998, 27, 153–178. [Google Scholar] [CrossRef]
- Peeters, F.; Livingstone, D.M.; Goudsmit, G.H.; Kipfer, R.; Forster, R. Modeling 50 years of historical temperature profiles in a large central European lake. Limnol. Oceanogr. 2002, 47, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Stepanenko, V.; Mammarella, I.; Ojala, A.; Miettinen, H.; Lykosov, V.; Vesala, T. LAKE 2.0: A model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geosci. Model Dev. 2016, 9, 1977–2006. [Google Scholar] [CrossRef] [Green Version]
- Mironov, D.V. Parameterization of Lakes in Numerical Weather Prediction: Description of a Lake Model; Technical Report no. 11; ARPA Piemonte: Offenbach, Germany, 2008. [Google Scholar]
- Stepanenko, V.M.; Machul’skaya, E.E.; Glagolev, M.V.; Lykossov, V.N. Numerical Modeling of Methane Emissions from Lakes in the Permafrost Zone. Izv. Atmos. Ocean. Phys. 2011, 47, 252–264. [Google Scholar] [CrossRef]
- Iakunin, M.; Stepanenko, V.; Salgado, R.; Potes, M.; Penha, A.; Novais, M.H.; Rodrigues, G. Numerical study of the seasonal thermal and gas regimes of the largest artificial reservoir in western Europe using the LAKE 2.0 model. Geosci. Model Dev. 2020, 13, 3475–3488. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Toffolon, M.; Majone, B. A simple lumped model to convert air temperature into surface water temperature in lakes. Hydrol. Earth Syst. Sci. 2013, 17, 3323–3338. [Google Scholar] [CrossRef]
- Liu, B.J.; Wan, W.; Xie, H.J.; Li, H.; Zhu, S.Y.; Zhang, G.Q.; Wen, L.J.; Hong, Y. A long-term dataset of lake surface water temperature over the Tibetan Plateau derived from AVHRR 1981–2015. Sci. Data 2019, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.A.; Zheng, H.X.; Wu, Y.H.; Fan, L.X.; Wen, M.X.; Li, J.S.; Zhang, F.F.; Zhu, L.P.; Zhang, B. An integrated dataset of daily lake surface water temperature over the Tibetan Plateau. Earth Syst. Sci. Data 2022, 14, 3411–3422. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, L.; Zhang, B.; Zheng, H.; Fan, L.; Chi, H.; Li, J.; Wang, S. Ice phenology dataset reconstructed from remote sensing and modelling for lakes over the Tibetan Plateau. Sci. Data 2022, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.L.; Jia, L.; Zhang, L.; Wei, Y.P.; Baig, M.H.A.; Zhai, Z.K.; Meng, J.H.; Li, X.S.; Zhang, G.F. Lake water surface mapping in the Tibetan Plateau using the MODIS MOD09Q1 product. Remote Sens. Lett. 2017, 8, 224–233. [Google Scholar] [CrossRef]
- Phan, V.H.; Lindenbergh, R.; Menenti, M. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. Int. J. Appl. Earth Obs. Geoinf. 2012, 17, 12–22. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, L. The response of lake-glacier variations to climate change in Nam Co Catchment, central Tibetan Plateau, during 1970–2000. J. Geogr. Sci. 2008, 18, 177–189. [Google Scholar] [CrossRef]
- Zhu, L.P.; Xie, M.P.; Wu, Y.H. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 1294–1303. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Tank, A.M.K.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.A.R.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A. Observations: Atmosphere and surface. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 159–254. [Google Scholar]
- Kuang, X.X.; Jiao, J.J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res.-Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.H.; Zhang, Y.S.; Ma, N.; Song, H.T.; Gao, H.F. Quantifying Surface Energy Fluxes and Evaporation over a Significant Expanding Endorheic Lake in the Central Tibetan Plateau. J. Meteorol. Soc. Jpn. 2016, 94, 453–465. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Ma, Y.; Chen, X.; Ma, W.; Su, Z.; Menenti, M. Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau. J. Geophys. Res.-Atmos. 2015, 120, 12327–12344. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.J.; Lyu, S.H.; Kirillin, G.; Li, Z.G.; Zhao, L. Air-lake boundary layer and performance of a simple lake parameterization scheme over the Tibetan highlands. Tellus Ser. A-Dyn. Meteorol. Oceanogr. 2016, 68, 31091. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, L.; Ju, J.; Daut, G.; Ma, Q.; Zhu, L.; Haberzettl, T.; Baade, J.; Mäusbacher, R.; Hamilton, A. Seasonal stratification of a deep, high-altitude, dimictic lake: Nam Co, Tibetan Plateau. J. Hydrol. 2020, 584, 124668. [Google Scholar] [CrossRef]
- Guan, Z.H.; Chen, C.Y.; Ou, Y.X.; Fan, Y.Q.; Zhang, Y.S.; Chen, Z.M.; Bao, S.H.; Zu, Y.T.; He, X.W.; Zhang, M.T. Rivers and Lakes in Tibet; Science Press: Beijing, China, 1984. [Google Scholar]
- Ma, Y.-Z.; Yi, C.-L.; Wu, J.-Z.; Jin, Y. Lake surface expansion of Nam Co during 1970-2009: Evidence of satellite remote sensing and cause analysis. J. Glaciol. Geocryol. 2012, 34, 81–88. [Google Scholar]
- Ma, N.; Szilagyi, J.; Niu, G.-Y.; Zhang, Y.; Zhang, T.; Wang, B.; Wu, Y. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion. J. Hydrol. 2016, 537, 27–35. [Google Scholar] [CrossRef]
- Lazhu; Yang, K.; Wang, J.; Lei, Y.; Chen, Y.; Zhu, L.; Ding, B.; Qin, J. Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. J. Geophys. Res.-Atmos. 2016, 121, 7578–7591. [Google Scholar] [CrossRef]
- Hu, Q.; Jiang, D.; Fan, G. Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau. Chin. J. Atmos. Sci. 2014, 38, 924–938. [Google Scholar]
- Song, K.; Wang, M.; Du, J.; Yuan, Y.; Ma, J.; Wang, M.; Mu, G. Spatiotemporal Variations of Lake Surface Temperature across the Tibetan Plateau Using MODIS LST Product. Remote Sens. 2016, 8, 854. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Yao, T.D.; Xie, H.J.; Qin, J.; Ye, Q.H.; Dai, Y.F.; Guo, R.F. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data. J. Geophys. Res.-Atmos. 2014, 119, 8552–8567. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Woolway, R.I.; Merchant, C.J. Global reconstruction of twentieth century lake surface water temperature reveals different warming trends depending on the climatic zone. Clim. Change 2020, 160, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Layden, A.; Merchant, C.; MacCallum, S. Global climatology of surface water temperatures of large lakes by remote sensing. Int. J. Climatol. 2015, 35, 4464–4479. [Google Scholar] [CrossRef] [Green Version]
- Stepanenko, V.; Lykossov, V. Numerical modeling of heat and moisture transfer processes in a system lake-soil. Russ. Meteorol. Hydrol. 2005, 3, 95–104. [Google Scholar]
- Stepanenko, V.M.; Valerio, G.; Pilotti, M. Horizontal Pressure Gradient Parameterization for One-Dimensional Lake Models. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001906. [Google Scholar] [CrossRef] [Green Version]
- Czernecki, B.; Ptak, M. The impact of global warming on lake surface water temperature in Poland—The application of empirical-statistical downscaling, 1971–2100. J. Limnol. 2018, 77, 330–348. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.; Koster, O. Excess warming of a Central European lake driven by solar brightening. Water Resour. Res. 2016, 52, 8103–8116. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Toffolon, M.; Majone, B. The role of stratification on lakes’ thermal response: The case of Lake Superior. Water Resour. Res. 2015, 51, 7878–7894. [Google Scholar] [CrossRef] [Green Version]
- Prats, J.; Danis, P.A. An epilimnion and hypolimnion temperature model based on air temperature and lake characteristics. Knowl. Manag. Aquat. Ecosyst. 2019, 24, 8. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles—ScienceDirect. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Huang, A.N.; Lazhu; Wang, J.B.; Dai, Y.J.; Yang, K.; Wei, N.; Wen, L.J.; Wu, Y.; Zhu, X.Y.; Zhang, X.D.; et al. Evaluating and Improving the Performance of Three 1-D Lake Models in a Large Deep Lake of the Central Tibetan Plateau. J. Geophys. Res.-Atmos. 2019, 124, 3143–3167. [Google Scholar] [CrossRef] [PubMed]
- Blanken, P.D.; Spence, C.; Hedstrorn, N.; Lenters, J.D. Evaporation from Lake Superior: 1. Physical controls and processes. J. Great Lakes Res. 2011, 37, 707–716. [Google Scholar] [CrossRef]
- Schertzer, W.M.; Rouse, W.R.; Blanken, P.D.; Walker, A.E. Over-lake meteorology and estimated bulk heat exchange of Great Slave Lake in 1998 and 1999. J. Hydrometeorol. 2003, 4, 649–659. [Google Scholar] [CrossRef]
- Haginoya, S.; Fujii, H.; Kuwagata, T.; Xu, J.Q.; Ishigooka, Y.; Kang, S.C.; Zhang, Y.J. Air-Lake Interaction Features Found in Heat and Water Exchanges over Nam Co on the Tibetan Plateau. Sola 2009, 5, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Hambright, K.D.; Gophen, M.; Serruya, S. Influence of long-term climatic changes on the stratification of a subtropical, warm monomictic lake. Limnol. Oceanogr. 1994, 39, 1233–1242. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.B.; Zhu, L.P.; Ju, J.T.; Daut, G. The Warming of Large Lakes on the Tibetan Plateau: Evidence from a Lake Model Simulation of Nam Co, China, During 1979–2012. J. Geophys. Res.-Atmos. 2017, 122, 13095–13107. [Google Scholar] [CrossRef] [Green Version]
- Arvola, L.; George, G.; Livingstone, D.M.; Jrvinen, M.; Weyhenmeyer, G.A. The Impact of the Changing Climate on the Thermal Characteristics of Lakes. In The Impact of Climate Change on European Lakes; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Shimoda, Y.; Azim, M.E.; Perhar, G.; Ramin, M.; Kenney, M.A.; Sadraddini, S.; Gudimov, A.; Arhonditsis, G.B. Our current understanding of lake ecosystem response to climate change: What have we really learned from the north temperate deep lakes? J. Great Lakes Res. 2011, 37, 173–193. [Google Scholar] [CrossRef]
- Wang, B.B.; Ma, Y.M.; Ma, W.Q.; Su, Z.B. Physical controls on half-hourly, daily, and monthly turbulent flux and energy budget over a high-altitude small lake on the Tibetan Plateau. J. Geophys. Res.-Atmos. 2017, 122, 2289–2303. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 2nd ed.; Hafner Publishing Co.: London, Britain, 1955. [Google Scholar]
- Prats, J.; Reynaud, N.; Rebiere, D.; Peroux, T.; Tormos, T.; Danis, P.A. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999-2016 from Landsat archives. Earth Syst. Sci. Data 2018, 10, 727–743. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Hook, S.J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 2010, 37, L22405. [Google Scholar] [CrossRef] [Green Version]
- Layden, A.; MacCallum, S.N.; Merchant, C.J. Determining lake surface water temperatures worldwide using a tuned one-dimensional lake model (FLake, v1). Geosci. Model Dev. 2016, 9, 2167–2189. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Zheng, H.; Wu, Y.; Zhu, L.; Wang, J.; Ju, J. Modelling Heat Balance of a Large Lake in Central Tibetan Plateau Incorporating Satellite Observations. Remote Sens. 2023, 15, 3982. https://doi.org/10.3390/rs15163982
Guo L, Zheng H, Wu Y, Zhu L, Wang J, Ju J. Modelling Heat Balance of a Large Lake in Central Tibetan Plateau Incorporating Satellite Observations. Remote Sensing. 2023; 15(16):3982. https://doi.org/10.3390/rs15163982
Chicago/Turabian StyleGuo, Linan, Hongxing Zheng, Yanhong Wu, Liping Zhu, Junbo Wang, and Jianting Ju. 2023. "Modelling Heat Balance of a Large Lake in Central Tibetan Plateau Incorporating Satellite Observations" Remote Sensing 15, no. 16: 3982. https://doi.org/10.3390/rs15163982