Uncertainty and Variation of Remotely Sensed Lake Ice Phenology across the Tibetan Plateau
"> Figure 1
<p>Locations of selected lakes in the Tibetan Plateau (numbered in order of latitude).</p> "> Figure 2
<p>Dates of ice phenology of the studied lakes. (Lakes were sorted by latitude. M1, M2, and M3 respectively represent the methods described in <a href="#sec3dot1-remotesensing-10-01534" class="html-sec">Section 3.1</a>, <a href="#sec3dot2-remotesensing-10-01534" class="html-sec">Section 3.2</a> and <a href="#sec3dot3-remotesensing-10-01534" class="html-sec">Section 3.3</a>).</p> "> Figure 3
<p>Spatial correlation between lake ice phenology and environmental factors (M1, M2, and M3 respectively represent the methods described in <a href="#sec3dot1-remotesensing-10-01534" class="html-sec">Section 3.1</a>, <a href="#sec3dot2-remotesensing-10-01534" class="html-sec">Section 3.2</a> and <a href="#sec3dot3-remotesensing-10-01534" class="html-sec">Section 3.3</a>; red line represents the correlation coefficient corresponding to <span class="html-italic">p</span> = 0.05). The lake surface temperature is the mean of temperature of the period from December to May obtained from the MODIS LST product; wind speed, air pressure, and precipitation data were obtained from CMFD.</p> "> Figure 4
<p>Trend of variation in lake ice phenology and duration of ice cover from Mann–Kendall test. Blue circle means earlier FUS/FUE/BUS/BUE and shortening CID/ID; red triangle means later FUS/FUE/BUS/BUE and extended CID/ID. Solid circle or triangle means the trend is statistically significant and the confidence level is 95%, while hollow circle or triangle means no significant trend. Yellow squares represent no trend.</p> "> Figure 5
<p>Heatmap of correlation coefficients between lake ice phenology indices and climate factors. T, R, W, A, and P represent temperature, radiation, wind speed, air pressure, and precipitation, respectively. The FUS, FUE, BUS, BUE, CID and ID are notated by 1–6, respectively. For example, T1 represents the correlation between temperature and FUS.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methods
3.1. Ice Phenology Determination Based on Reflectance Temporal Profile (M1)
3.2. Ice Phenology Determination Based on MODIS Snow Product (M2)
3.3. Ice Phenology Determination Based on Reflectance and LST Data (M3)
3.4. Uncertainty Assessment
4. Results and Discussions
4.1. Consistency and Uncertainty of Lake Ice Phenology from Different Approaches
4.2. Spatial Variation of Lake Ice Phenology in Relation to Climate
4.3. Interannual Variation of Lake Ice Phenology in Relation to Climate
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, X.D.; Chen, B.D. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef] [3.0.CO;2-Y/pdf" target='_blank'>Green Version]
- Zhang, B.; Wu, Y.; Lei, L.; Li, J.; Liu, L.; Chen, D.; Wang, J. Monitoring changes of snow cover, lake and vegetation phenology in Nam Co Lake Basin (Tibetan Plateau) using remote SENSING (2000–2009). J. Great Lakes Res. 2013, 39, 224–233. [Google Scholar] [CrossRef]
- Alley, R.B.; Meese, D.A.; Shuman, C.A.; Gow, A.J.; Taylor, K.C.; Grootes, P.M.; White, J.W.C.; Ram, M.; Waddington, E.D.; Mayewski, P.A.; et al. Abrupt Increase in Greenland Snow Accumulation at the End of the Younger Dryas Event. Nature 1993, 362, 527–529. [Google Scholar] [CrossRef]
- Li, C.L.; Kang, S.C. Review of the studies on climate change since the last inter-glacial period on the Tibetan Plateau. J. Geogr. Sci. 2006, 16, 337–345. [Google Scholar] [CrossRef]
- Dornhofer, K.; Oppelt, N. Remote sensing for lake research and monitoring—Recent advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Vincent, W.F. Effects of Climate Change on Lakes. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Elsevier Science Publishing Co. Inc.: Amsterdam, The Netherlands, 2007; pp. 55–60. ISBN 978-0-12-370626-3. [Google Scholar]
- Lu, C.X.; Yu, G.; Xie, G.D. Tibetan plateau serves as a water tower. In Proceedings of the 25th IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2005), Seoul, Korea, 25–29 July 2005. [Google Scholar]
- Wu, Y.H.; Zheng, H.X.; Zhang, B.; Chen, D.M.; Lei, L.P. Long-Term Changes of Lake Level and Water Budget in the Nam Co Lake Basin, Central Tibetan Plateau. J. Hydrometeorol. 2014, 15, 1312–1322. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.S.; Yao, H.X. Trends of ice breakup date in south-central Ontario. J. Geophys. Res. Atmos. 2015, 120, 9220–9236. [Google Scholar] [CrossRef]
- Ke, C.Q.; Tao, A.Q.; Jin, X. Variability in the ice phenology of Nam Co Lake in central Tibet from scanning multichannel microwave radiometer and special sensor microwave/imager: 1978 to 2013. J. Appl. Remote Sens. 2013, 7, 12. [Google Scholar] [CrossRef]
- Livingstone, D.M. Break-up dates of Alpine lakes as proxy data for local and regional mean surface air temperatures. Clim. Chang. 1997, 37, 407–439. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Semovski, S.V.; Shimaraev, M.N.; Mognard, N.M.; Legresy, B.; Remy, F. Observations of Lake Baikal ice from satellite altimetry and radiometry. Remote Sens. Environ. 2007, 108, 240–253. [Google Scholar] [CrossRef]
- Marszelewski, W.; Skowron, R. Ice cover as an indicator of winter air temperature changes: Case study of the Polish Lowland lakes. Hydrol. Sci. J.-J. Sci. Hydrol. 2006, 51, 336–349. [Google Scholar] [CrossRef]
- Walsh, S.E.; Vavrus, S.J.; Foley, J.A.; Fisher, V.A.; Wynne, R.H.; Lenters, J.D. Global patterns of lake ice phenology and climate: Model simulations and observations. J. Geophys. Res. Atmos. 1998, 103, 28825–28837. [Google Scholar] [CrossRef] [Green Version]
- Kropacek, J.; Maussion, F.; Chen, F.; Hoerz, S.; Hochschild, V. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. Cryosphere 2013, 7, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Xie, H.J.; Kang, S.C.; Yi, D.H.; Ackley, S.F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, L.; Ye, Q.; Wang, L. The response of lake-glacier area change to climate variations in Namco Basin, Central Tibetan Plateau, during the last three decades. Acta Geogr. Sin. 2007, 62, 301–311. [Google Scholar]
- Benson, B.J.; Magnuson, J.J.; Jensen, O.P.; Card, V.M.; Hodgkins, G.; Korhonen, J.; Livingstone, D.M.; Stewart, K.M.; Weyhenmeyer, G.A.; Granin, N.G. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Chang. 2012, 112, 299–323. [Google Scholar] [CrossRef]
- Latifovic, R.; Pouliot, D. Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sens. Environ. 2007, 106, 492–507. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Robertson, D.M.; Benson, B.J.; Wynne, R.H.; Livingstone, D.M.; Arai, T.; Assel, R.A.; Barry, R.G.; Card, V.; Kuusisto, E.; et al. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 2000, 289, 1743–1746. [Google Scholar] [CrossRef] [PubMed]
- Gou, P.; Ye, Q.; Che, T.; Feng, Q.; Ding, B.; Lin, C.; Zong, J. Lake ice phenology of Nam Co, Central Tibetan Plateau, China, derived from multiple MODIS data products. J. Great Lakes Res. 2017, 43, 989–998. [Google Scholar] [CrossRef]
- Brown, L.C.; Duguay, C.R. The response and role of ice cover in lake-climate interactions. Prog. Phys. Geogr. 2010, 34, 671–704. [Google Scholar] [CrossRef]
- Bernhardt, J.; Engelhardt, C.; Kirillin, G.; Matschullat, J. Lake ice phenology in Berlin-Brandenburg from 1947–2007: Observations and model hindcasts. Clim. Chang. 2012, 112, 791–817. [Google Scholar] [CrossRef]
- Dibike, Y.; Prowse, T.; Saloranta, T.; Ahmed, R. Response of Northern Hemisphere lake-ice cover and lake-water thermal structure patterns to a changing climate. Hydrol. Process. 2011, 25, 2942–2953. [Google Scholar] [CrossRef]
- Ghanbari, R.N.; Bravo, H.R.; Magnuson, J.J.; Hyzer, W.G.; Benson, B.J. Coherence between lake ice cover, local climate and teleconnections (Lake Mendota, Wisconsin). J. Hydrol. 2009, 374, 282–293. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R. Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data. Chin. Sci. Bull. 2009, 54, 787–791. [Google Scholar] [CrossRef]
- Kang, K.K.; Duguay, C.R.; Howell, S.E.L. Estimating ice phenology on large northern lakes from AMSR-E: Algorithm development and application to Great Bear Lake and Great Slave Lake, Canada. Cryosphere 2012, 6, 235–254. [Google Scholar] [CrossRef]
- Ruan, Y.; Qiu, Y.; Yu, X.; Guo, H.; Cheng, B. Passive microwave remote sensing of lake freeze-thaw over High Mountain Asia. In Proceedings of the 36th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2818–2821. [Google Scholar]
- Cai, Y.; Ke, C.Q.; Duan, Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Sci. Total Environ. 2017, 607–608, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Duguay, C.R.; Bernier, M.; Gauthier, Y.; Kouraev, A. Remote sensing of lake and river ice. In Remote Sensing of the Cryosphere, 1st ed.; Tedesco, M., Ed.; Wiley–Blackwell: Hoboken, NJ, USA, 2015; pp. 273–306. ISBN 978-1-118-36885-5. [Google Scholar]
- Nonaka, T.; Matsunaga, T.; Hoyano, A. Estimating ice breakup dates on Eurasian lakes using water temperature trends and threshold surface temperatures derived from MODIS data. Int. J. Remote Sens. 2007, 28, 2163–2179. [Google Scholar] [CrossRef]
- Wei, Q.; Ye, Q. Review of Lake Ice Monitoring by Remote Sensing. Prog. Geogr. 2010, 29, 803–810. [Google Scholar]
- Mao, D.H.; Wang, Z.M.; Yang, H.; Li, H.Y.; Thompson, J.R.; Li, L.; Song, K.S.; Chen, B.; Gao, H.K.; Wu, J.G. Impacts of Climate Change on Tibetan Lakes: Patterns and Processes. Remote Sens. 2018, 10, 358. [Google Scholar] [CrossRef]
- Yao, T.; Wu, F.; Lin, D.; Sun, J.; Zhu, L.; Piao, S.; Tao, D.; Ni, X.; Zheng, H.; Hua, O. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: A review of the recent researches. Natl. Sci. Rev. 2015, 2, 468–488. [Google Scholar] [CrossRef]
- Wang, S.M.; Dou, H.S. Records of Lakes in China, 1st ed.; Science Press: Beijing, China, 1998; pp. 342–483. ISBN 7-03-006706-1. [Google Scholar]
- Vermote, E. MOD09GA Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid V006; NASA EOSDIS Land Processes DAAC; NASA: Washington, DC, USA, 2015.
- Hall, D.K.; Riggs, G.A. MODIS/Aqua Snow Cover 8-Day L3 Global 500 m Grid, Version 6; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016.
- Wan, Z. MOD11A1 Land Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid; NASA EOSDIS Land Processes DAAC: Boulder, CO, USA, 2013.
- Yang, K.; He, J.; Tang, W.J.; Qin, J.; Cheng, C.C.K. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Lang, J.H.; Lyu, S.H.; Li, Z.G.; Ma, Y.M.; Su, D.S. An Investigation of Ice Surface Albedo and Its Influence on the High-Altitude Lakes of the Tibetan Plateau. Remote Sens. 2018, 10, 218. [Google Scholar] [CrossRef]
- Weber, H.; Riffler, M.; Noges, T.; Wunderle, S. Lake ice phenology from AVHRR data for European lakes: An automated two-step extraction method. Remote Sens. Environ. 2016, 174, 329–340. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Chang, J.; Zhang, X.; Peng, D. Temporal and Spatial Variation of Lake Ice Phenology and Its Influencing Factors in the Tibetan Plateau. J. Beijing Univ. Technol. 2017, 43, 701–709. [Google Scholar]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. Oceans 1998, 103, 7755–7766. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.L.; Wei, S.S.; Jiang, C.Y.; Scipal, K. Theoretical Uncertainty Analysis of Global Modis, Cyclopes, and Globcarbon Lai Products Using a Triple Collocation Method. Remote Sens. Environ. 2012, 124, 610–621. [Google Scholar] [CrossRef]
- Scipal, K.; Holmes, T.; de Jeu, R.; Naeimi, V.; Wagner, W. A possible solution for the problem of estimating the error structure of global soil moisture data sets. Geophys. Res. Lett. 2008, 35, 4. [Google Scholar] [CrossRef]
- Lin, W.M.; Portabella, M.; Stoffelen, A.; Vogelzang, J.; Verhoef, A. ASCAT wind quality under high subcell wind variability conditions. J. Geophys. Res. Oceans 2015, 120, 5804–5819. [Google Scholar] [CrossRef] [Green Version]
- Gentemann, C.L. Three way validation of MODIS and AMSR-E sea surface temperatures. J. Geophys. Res. Oceans 2014, 119, 2583–2598. [Google Scholar] [CrossRef] [Green Version]
- Janssen, P.; Abdalla, S.; Hersbach, H.; Bidlot, J.R. Error estimation of buoy, satellite, and model wave height data. J. Atmos. Ocean. Technol. 2007, 24, 1665–1677. [Google Scholar] [CrossRef]
- York, D.; Evensen, N.M.; MartíNez, M.L.; Delgado, J.D.B. Unified equations for the slope, intercept, and standard errors of the best straight line. Am. J. Phys. 2004, 72, 367–375. [Google Scholar] [CrossRef]
- Qu, B.; Kang, S.; Chen, F.; Zhang, Y.; Zhang, G. Lake Ice and Its Effect Factors in the Nam Co Basin, Tibetan Plateau. Prog. Inquis. Mutat. Clim. 2012, 8, 327–333. [Google Scholar]
- Shen, H.T. River Ice Processes. In Advances in Water Resources Management; Handbook of Environmental, Engineering; Wang, L.K., Yang, C.T., Wang, M.S., Eds.; Springer: Cham, Germany, 2016; Volume 16, pp. 483–530. ISBN 978-3-319-22923-2. [Google Scholar]
- Kolerski, T.; Shen, H.T. Possible effects of the 1984 St. Clair River ice jam on bed changes. Can. J. Civ. Eng. 2015, 42, 696–703. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Hodder Arnold: London, UK, 1976; ISBN 9780852641996. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Shadmani, M.; Marofi, S.; Roknian, M. Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resour. Manag. 2012, 26, 211–224. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Guan, Y.Q.; Shao, G.W.; Zhang, D.R. Investigating trends in streamflow and precipitation in Huangfuchuan Basin with wavelet analysis and the Mann-Kendall test. Water 2016, 8, 77. [Google Scholar] [CrossRef]
Label | Name | Latitude (N) | Longitude (E) | Water Level (m) | Area (km2) | Temperature (°C) |
---|---|---|---|---|---|---|
1 | Har Lake | 38°12′–38°25′ | 97°24′–97°47′ | 4077 | 601.7 | −2.04 |
2 | Ayakum Lake | 37°28′–37°38′ | 89°04′–89°36′ | 3876 | 537.6 | 3.90 |
3 | Aqqik Kol | 36°58′–37°10′ | 88°18′–88°33′ | 4250 | 351.2 | 3.90 |
4 | Qinghai Lake | 36°32′–37°15′ | 99°36′–100°47′ | 3194 | 4340 | 0.20 |
5 | Jingyu | 36°14′–36°27′ | 89°16′–89°37′ | 4708 | 264 | 3.90 |
6 | Lexie Wudan Lake | 35°41′–35°49′ | 90°02′–90°21′ | 4867 | 227 | −3.54 |
7 | Hoh Sai Lake | 35°38′–35°50′ | 92°37′–93°03′ | 4475 | 254.4 | −4.60 |
8 | Donggei Cuona Lake | 35°13′–35°23′ | 98°20′–98°43′ | 4082 | 232.2 | −3.13 |
9 | Gozha Co | 34°58′–35°05′ | 80°55′–81°15′ | 5080 | 252.6 | 1.21 |
10 | Zhaling Lake | 34°48′–35°01′ | 97°02′–97°30′ | 4292 | 526 | −3.13 |
11 | Ngoring Lake | 34°45′–35°05′ | 97°31′–97°55′ | 4269 | 610.7 | −3.13 |
12 | Ulan Ul Lake | 34°41′–34°55′ | 90°14′–90°44′ | 4854 | 544.5 | −3.54 |
13 | Dogai Coring | 34°29′–34°41′ | 88°32′–89°14′ | 4814 | 393.3 | −2.25 |
14 | Lumajangdong Co | 33°54′–34°07′ | 81°27′–81°49′ | 4810 | 324.8 | 1.21 |
15 | Pangong Tso | 33°26′–33°58′ | 78°25′–79°56′ | 4241 | 604 | 1.21 |
16 | Chibzhang Co | 33°18′–33°40′ | 89°59′–90°25′ | 4931 | 476.8 | −2.25 |
17 | Dorsoidong Co | 33°16′–33°31′ | 89°38′–89°59′ | 4921 | 400 | −2.25 |
18 | Dagze Lake | 31°49′–31°59′ | 87°25′–87°39′ | 4459 | 244.7 | 0.46 |
19 | Siling Lake | 31°34′–31°57′ | 88°33′–89°21′ | 4530 | 1628 | 0.46 |
20 | Urru Lake | 31°37′–31°48′ | 87°50′–88°11′ | 4548 | 342.7 | 0.46 |
21 | Tso Ngon | 31°25′–31°42′ | 88°32′–88°50′ | 4561 | 269 | 0.46 |
22 | Ang Laren | 31°27′–31°40′ | 82°48′–83°23′ | 4715 | 512.7 | 0.59 |
23 | Gyaring Co | 30°57′–31°19′ | 88°03′–88°34′ | 4650 | 475.9 | 0.46 |
24 | Tangra Yumco | 30°45′–31°22′ | 86°23′–86°49′ | 4528 | 835.3 | 0.46 |
25 | Ngangze Co | 30°54′–31°09′ | 86°59′–87°20′ | 4683 | 461.5 | 0.46 |
26 | Zhari Namco | 30°44′–31°05′ | 85°20′–85°54′ | 4613 | 996.9 | 0.59 |
27 | Nam Co | 30°30′–30°56′ | 90°16′–91°03′ | 4718 | 1961.5 | 2.20 |
28 | Lake Rakshastal | 30°40′–30°51′ | 81°06′–81°19′ | 4572 | 268.5 | 3.97 |
29 | Lake Manasarovar | 30°34′–30°47′ | 81°22′–81°27′ | 4586 | 412 | 3.97 |
30 | Xuru Co | 30°10′–30°23′ | 86°20′–86°29′ | 4714 | 211.1 | 10.16 |
31 | Lake Paiku | 28°46’–29°02′ | 85°30′–85°42′ | 4580 | 284.4 | 3.93 |
32 | Puma Yumco | 28°30′–28°38′ | 90°13′–90°33′ | 5010 | 290 | 3.27 |
Phenology | Criteria A | Criteria B | Criteria C |
---|---|---|---|
FUS | ≤ 0.3 | ≥ 0.4 | . |
FUE | ≤ 0.3 | ≤ 0.4 | . |
BUS | ≥ 0.7 | ≥ 1.4 | . |
BUE | ≥ 0.7 | ≤ 1.4 | . |
Phenology | Criteria Based on NIR | Criteria Based on LST |
---|---|---|
FUS | ≤ 0.3, ≥ | ≥ 0.7, ≤ |
FUE | ≤ 0.3, ≥ | ≥ 0.7, ≤ |
BUS | ≥ 0.7, ≤ | ≤ 0.3, ≥ |
BUE | ≥ 0.7, ≤ | ≤ 0.3, ≥ |
Phenology | M1 and M2 | M1 and M3 | M2 and M3 |
---|---|---|---|
FUS | 0.72 | 0.77 | 0.65 |
FUE | 0.67 | 0.54 | 0.59 |
BUS | 0.85 | 0.78 | 0.74 |
BUE | 0.85 | 0.76 | 0.75 |
CID | 0.86 | 0.73 | 0.69 |
ID | 0.83 | 0.77 | 0.73 |
Phenology | M1 | M2 | M3 |
---|---|---|---|
FUS | 4.1 | 17.0 | 11.0 |
FUE | 11.3 | 14.1 | 15.9 |
BUS | 13.4 | 10.7 | 10.4 |
BUE | 4.7 | 16.7 | 12.7 |
CID | 17.8 | 15.5 | 21.1 |
ID | 12.2 | 37.4 | 20.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Wu, Y.; Zheng, H.; Zhang, B.; Li, J.; Zhang, F.; Shen, Q. Uncertainty and Variation of Remotely Sensed Lake Ice Phenology across the Tibetan Plateau. Remote Sens. 2018, 10, 1534. https://doi.org/10.3390/rs10101534
Guo L, Wu Y, Zheng H, Zhang B, Li J, Zhang F, Shen Q. Uncertainty and Variation of Remotely Sensed Lake Ice Phenology across the Tibetan Plateau. Remote Sensing. 2018; 10(10):1534. https://doi.org/10.3390/rs10101534
Chicago/Turabian StyleGuo, Linan, Yanhong Wu, Hongxing Zheng, Bing Zhang, Junsheng Li, Fangfang Zhang, and Qian Shen. 2018. "Uncertainty and Variation of Remotely Sensed Lake Ice Phenology across the Tibetan Plateau" Remote Sensing 10, no. 10: 1534. https://doi.org/10.3390/rs10101534