A Novel Workflow for Crop Type Mapping with a Time Series of Synthetic Aperture Radar and Optical Images in the Google Earth Engine
<p>(<b>a</b>) Geographical location of the studied area. (<b>b</b>) Spatial distribution and elevation of the sampling points in Jiaozuo City. (<b>c</b>) Percentage area covered by the major summer crops in Jiaozuo City in 2018 and 2019.</p> "> Figure 2
<p>Number of observations in the study area between 1 May and 31 October 2021. Total number of Sentinel-2 observations (<b>a</b>), number of “de-cloud processing” Sentinel-2 observations (<b>b</b>), and number of Sentinel-1 observations (<b>c</b>).</p> "> Figure 2 Cont.
<p>Number of observations in the study area between 1 May and 31 October 2021. Total number of Sentinel-2 observations (<b>a</b>), number of “de-cloud processing” Sentinel-2 observations (<b>b</b>), and number of Sentinel-1 observations (<b>c</b>).</p> "> Figure 3
<p>A comparison of SAR image processing effects for speckle noise removal (vertical transmit/vertical receive (VV) band as an example): (<b>a</b>) original SAR image; (<b>b</b>) SAR image after Lee algorithm filtering.</p> "> Figure 4
<p>Flowchart of the proposed methodology for crop type classification within the GEE platform.</p> "> Figure 5
<p>Median vegetation index values, as well as VV and VH polarization band values, for primary land cover in the study area based on all of the training points.</p> "> Figure 6
<p>Median vegetation index values of the major crop types in the study area based on all of the training points.</p> "> Figure 7
<p>(<b>a</b>) The 10 m primary land-cover distribution over Jiaozuo City in 2021. (<b>b</b>) The 30 m land-cover map of LCM30 over Jiaozuo City in 2020.</p> "> Figure 8
<p>Comparisons of a primary land-cover map derived from high-resolution Google Earth images (<b>a<sub>0</sub></b>–<b>d<sub>0</sub></b>), LCM30 (<b>a<sub>1</sub></b>–<b>d<sub>1</sub></b>), and this study (<b>a<sub>2</sub></b>–<b>d<sub>2</sub></b>) for four subsets. a<sub>0</sub>–d<sub>0</sub> are true colors of Sentinel-2 (mean values from 1 May 2021 to 31 October 2021), corresponding to a–d in <a href="#remotesensing-14-05458-f007" class="html-fig">Figure 7</a>.</p> "> Figure 9
<p>Comparisons of crop type maps derived from high-resolution Google Earth images and the five schemes. (<b>A</b>) is the crop-land distribution map based on scheme 5. (<b>a<sub>0</sub></b>,<b>b<sub>0</sub></b>) denote the false color of Sentinel-2 (median from 10 June 2021 to 30 June 2021). (<b>c<sub>0</sub></b>,<b>d<sub>0</sub></b>) denote the false color of Sentinel l-2 (median from 10 September 2021 to 30 September 2021). (<b>a<sub>1</sub></b>–<b>d<sub>1</sub></b>,<b>a<sub>2</sub></b>–<b>d<sub>2</sub></b>,<b>a<sub>3</sub></b>–<b>d<sub>3</sub></b>,<b>a<sub>4</sub></b>–<b>d<sub>4</sub></b>,<b>a<sub>5</sub></b>–<b>d<sub>5</sub></b>) represent the classification results for schemes 1–5, respectively.</p> "> Figure 10
<p>The distribution of crop types based on 2018–2019 statistics and mapping results for scheme 5 in 2021.</p> "> Figure 11
<p>Assessment of crop type classification accuracy based only on SAR data.</p> "> Figure 12
<p>All feature ranking results (top 20). The ordinate represents the abbreviation of each feature band, and the number suffixed in the feature name represents the time phase of the band. For example, NDVI_9 represents the median value of NDVI in September.</p> "> Figure 13
<p>Comparison of the classification results obtained via a (<b>a</b>) pixel-based and (<b>b</b>) object-based approach.</p> "> Figure 14
<p>Classification results with seed segmentation parameters of (<b>a</b>) 50 and (<b>b</b>) 10.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preprocessing
2.2.1. Sentinel-2 Imagery
2.2.2. Sentinel-1 Imagery
2.2.3. Ground Reference Dataset
2.2.4. Land-Cover Map in 2020
2.3. Methods
2.3.1. Crop Type Mapping Algorithms
2.3.2. Accuracy Assessment
3. Results
3.1. Annual Map of Land-Cover Types in 2021
3.2. Annual Map of Major Crop Types in 2021
3.3. Comparison of Crop Area Estimates from the Remote Sensing Approach and Agricultural Statistical Reports
4. Discussion
4.1. Potential Applications of SAR and Optical Images for Crop Type Mapping
4.2. Algorithm Improvement
4.3. Uncertainty
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, Y.; Xu, Y.; Zhang, L.; Song, S. Can China’s food production capability meet her peak food demand in the future? Int. Food Agribus. Man. 2020, 23, 1–18. [Google Scholar] [CrossRef]
- Sheng, Y.; Song, L. Agricultural production and food consumption in China: A long-term projection. China Econ. Rev. 2019, 53, 15–29. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Hu, Q.; van Vliet, J.; Verburg, P.H.; Wu, W. GlobeLand30 shows little cropland area loss but greater fragmentation in China. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 37–45. [Google Scholar] [CrossRef]
- Arino, O.; Gross, D.; Ranera, F.; Leroy, M.; Bicheron, P.; Brockman, C.; Defourny, P.; Vancutsem, C.; Achard, F.; Durieux, L. GlobCover: ESA service for global land cover from MERIS. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007. [Google Scholar]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Hu, Q.; Xiang, M.; Chen, D.; Zhou, J.; Wu, W.; Song, Q. Global cropland intensification surpassed expansion between 2000 and 2010: A spatio-temporal analysis based on GlobeLand30. Sci. Total Environ. 2020, 746, 141035. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Fisette, T.; Rollin, P.; Aly, Z.; Campbell, L.; Daneshfar, B.; Filyer, P.; Smith, A.; Davidson, A.; Shang, J.; Jarvis, I. AAFC annual crop inventory. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013. [Google Scholar]
- Ghassemi, B.; Dujakovic, A.; Żółtak, M.; Immitzer, M.; Atzberger, C.; Vuolo, F. Designing a European-Wide Crop Type Mapping Approach Based on Machine Learning Algorithms Using LUCAS Field Survey and Sentinel-2 Data. Remote Sens. 2022, 14, 541. [Google Scholar] [CrossRef]
- Chong, L.; Liu, H.; Lu, L.; Liu, Z.; Kong, F.; Zhang, X. Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine. J. Integr. Agric. 2021, 20, 1944–1957. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Ni, R.; Tian, J.; Li, X.; Yin, D.; Li, J.; Gong, H.; Zhang, J.; Zhu, H.; Wu, D. An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 178, 282–296. [Google Scholar] [CrossRef]
- Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Schlautman, M.A.; Sharp, J.L. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 175–185. [Google Scholar] [CrossRef]
- Adrian, J.; Sagan, V.; Maimaitijiang, M. Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 175, 215–235. [Google Scholar] [CrossRef]
- You, N.; Dong, J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [Google Scholar] [CrossRef]
- Sujud, L.; Jaafar, H.; Hassan, M.A.H.; Zurayk, R. Cannabis detection from optical and RADAR data fusion: A comparative analysis of the SMILE machine learning algorithms in Google Earth Engine. Remote Sens. Appl. 2021, 24, 100639. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Z.; Zhao, Y.; Zhang, L.; Liu, D.; Ren, T.; Zhang, X.; Li, S. An Unsupervised Crop Classification Method Based on Principal Components Isometric Binning. ISPRS Int. J. Geo Inf. 2020, 9, 648. [Google Scholar] [CrossRef]
- Jia, M.; Mao, D.; Wang, Z.; Ren, C.; Zhu, Q.; Li, X.; Zhang, Y. Tracking long-term floodplain wetland changes: A case study in the China side of the Amur River Basin. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102185. [Google Scholar] [CrossRef]
- Schulz, D.; Yin, H.; Tischbein, B.; Verleysdonk, S.; Adamou, R.; Kumar, N. Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel. ISPRS J. Photogramm. Remote Sens. 2021, 178, 97–111. [Google Scholar] [CrossRef]
- Dronova, I.; Gong, P.; Wang, L.; Zhong, L. Mapping dynamic cover types in a large seasonally flooded wetland using extended principal component analysis and object-based classification. Remote Sens. Environ. 2015, 158, 193–206. [Google Scholar] [CrossRef]
- Luo, H.; Li, M.; Dai, S.; Li, H.; Li, Y.; Hu, Y.; Zheng, Q.; Yu, X.; Fang, J. Combinations of Feature Selection and Machine Learning Algorithms for Object-Oriented Betel Palms and Mango Plantations Classification Based on Gaofen-2 Imagery. Remote Sens. 2022, 14, 1757. [Google Scholar] [CrossRef]
- Aguirre-Gutiérrez, J.; Seijmonsbergen, A.C.; Duivenvoorden, J.F. Optimizing land cover classification accuracy for change detection, a combined pixel-based and object-based approach in a mountainous area in Mexico. Appl Geogr. 2012, 34, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Li, Z.; Pan, B.; Lin, S.; Dong, J.; Li, X.; Yuan, W. Development of a Phenology-Based Method for Identifying Sugarcane Plantation Areas in China Using High-Resolution Satellite Datasets. Remote Sens. 2022, 14, 1274. [Google Scholar] [CrossRef]
- Guo, L.; Gao, J.; Hao, C.; Zhang, L.; Wu, S.; Xiao, X. Winter wheat green-up date variation and its diverse response on the hydrothermal conditions over the North China Plain, using MODIS time-series data. Remote Sens. 2019, 11, 1593. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Xiao, X.; Dong, J.; Zhou, Y.; Zhu, Z.; Zhang, G.; Du, G.; Jin, C.; Kou, W.; Wang, J.; et al. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2015, 105, 220–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, C.; Li, P.; Zhang, C. A spectral index for winter wheat mapping using multi-temporal Landsat NDVI data of key growth stages. ISPRS J. Photogramm. Remote Sens. 2021, 175, 431–447. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Yu, L.; Gong, P.; Biging, G.S. Automated mapping of soybean and corn using phenology. ISPRS J. Photogramm. Remote Sens. 2016, 119, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Bofana, J.; Zhang, M.; Nabil, M.; Wu, B.; Tian, F.; Liu, W.; Zeng, H.; Zhang, N.; Nangombe, S.S.; Cipriano, S.A. Comparison of different cropland classification methods under diversified agroecological conditions in the Zambezi River Basin. Remote Sens. 2020, 12, 2096. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS J. Photogramm. Remote Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Tian, F.; Wu, B.; Zeng, H.; Zhang, X.; Xu, J. Efficient identification of corn cultivation area with multitemporal synthetic aperture radar and optical images in the google earth engine cloud platform. Remote Sens. 2019, 11, 629. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shao, G.; Zhu, H.; Liu, S. A neural network approach for enhancing information extraction from multispectral image data. Can J. Remote Sense. 2005, 31, 432–438. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X. An experimental comparison between KELM and CART for crop classification using Landsat-8 OLI data. Geocarto Int. 2017, 32, 128–138. [Google Scholar] [CrossRef]
- Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1–13. [Google Scholar] [CrossRef]
- Tan, M.; Robinson, G.M.; Li, X.; Xin, L. Spatial and temporal variability of farm size in China in context of rapid urbanization. Chin Geogr Sci. 2013, 23, 607–619. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Xia, H.; Yang, J.; Niu, W.; Wang, R.; Song, H.; Guo, Y.; Qin, Y. Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102376. [Google Scholar] [CrossRef]
- Dalezios, N.R.; Domenikiotis, C.; Loukas, A.; Tzortzios, S.T.; Kalaitzidis, C. Cotton yield estimation based on NOAA/AVHRR produced NDVI. Phys. Chem. Eurrh B 2001, 26, 247–251. [Google Scholar] [CrossRef]
- Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 2005, 94, 244–255. [Google Scholar] [CrossRef]
- Fu, G.; Shen, Z.; Zhang, X.; You, S.; Wu, J.; Shi, P. Modeling gross primary productivity of alpine meadow in the northern Tibet Plateau by using MODIS images and climate data. Acta Ecol. Sin. 2010, 30, 264–269. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; Leeuwen, W.V. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Pan, L.; Xia, H.; Zhao, X.; Guo, Y.; Qin, Y. Mapping Winter Crops Using a Phenology Algorithm, Time-Series Sentinel-2 and Landsat-7/8 Images, and Google Earth Engine. Remote Sens. 2021, 13, 2510. [Google Scholar] [CrossRef]
- Bhogapurapu, N.; Dey, S.; Bhattacharya, A.; Mandal, D.; Lopez-Sanchez, J.M.; McNairn, H.; López-Martínez, C.; Rao, Y.S. Dual-polarimetric descriptors from Sentinel-1 GRD SAR data for crop growth assessment. ISPRS J. Photogramm. Remote Sens. 2021, 178, 20–35. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; You, C.; Tommaso, S.D.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Mullissa, A.G.; Tolpekin, V.; Stein, A. Scattering property based contextual PolSAR speckle filter. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 78–89. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Hudait, M.; Patel, P.P. Crop-type mapping and acreage estimation in smallholding plots using Sentinel-2 images and machine learning algorithms: Some comparisons. Egypt. J. Remote Sens. Space Sci. 2022, 25, 147–156. [Google Scholar] [CrossRef]
- Puissant, A.; Rougier, S.; Stumpf, A. Object-oriented mapping of urban trees using Random Forest classifiers. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 235–245. [Google Scholar] [CrossRef]
- Fei, H.; Fan, Z.; Wang, C.; Zhang, N.; Wang, T.; Chen, R.; Bai, T. Cotton Classification Method at the County Scale Based on Multi-Features and Random Forest Feature Selection Algorithm and Classifier. Remote Sens. 2022, 14, 829. [Google Scholar] [CrossRef]
- Wang, H.; Magagi, R.; Goïta, K.; Trudel, M.; McNairn, H.; Powers, J. Crop phenology retrieval via polarimetric SAR decomposition and Random Forest algorithm. Remote Sens. Environ. 2019, 231, 111234. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, W.; Wei, P.; Fang, P.; Zhang, X.; Yan, N.; Liu, W.; Zhao, H.; Wu, Q. Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period. Ecol. Indic. 2022, 135, 108529. [Google Scholar] [CrossRef]
- Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Ren, T.; Xu, H.; Cai, X.; Yu, S.; Qi, J. Smallholder Crop Type Mapping and Rotation Monitoring in Mountainous Areas with Sentinel-1/2 Imagery. Remote Sens. 2022, 14, 566. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [Google Scholar] [CrossRef]
- Zhao, W.; Qu, Y.; Chen, J.; Yuan, Z. Deeply synergistic optical and SAR time series for crop dynamic monitoring. Remote Sens. Environ. 2020, 247, 111952. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, S.; Zhao, L.; Huang, X.; Jiang, X. Parcel-based summer maize mapping and phenology estimation combined using Sentinel-2 and time series Sentinel-1 data. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102720. [Google Scholar] [CrossRef]
- Liu, X.; Zhai, H.; Shen, Y.; Lou, B.; Jiang, C.; Li, T.; Hussain, S.B.; Shen, G. Large-Scale Crop Mapping from Multisource Remote Sensing Images in Google Earth Engine. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2020, 13, 414–427. [Google Scholar] [CrossRef]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of crop identification based on optical and SAR image time series. Remote Sens. Environ. 2005, 96, 352–365. [Google Scholar] [CrossRef]
- Chu, L.; Liu, Q.; Huang, C.; Liu, G. Monitoring of winter wheat distribution and phenological phases based on MODIS time-series: A case study in the Yellow River Delta. China. J. Integr. Agr. 2016, 15, 2403–2416. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Koley, S.; Chockalingam, J. Sentinel 1 and Sentinel 2 for cropland mapping with special emphasis on the usability of textural and vegetation indices. Adv. Space Res. 2022, 69, 1768–1785. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, J.; Xu, X.; Zhang, L. Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi’an County, Heilongjiang province, China. Comput. Electron. Agric. 2020, 176, 105618. [Google Scholar] [CrossRef]
- Wei, G.; Zhao, J.; Feng, Y.; He, A.; Yu, J. A novel hybrid feature selection method based on dynamic feature importance. Appl. Soft Comput. 2020, 93, 106337. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, H. Object-based rice mapping using time-series and phenological data. Adv. Space Res. 2019, 63, 190–202. [Google Scholar] [CrossRef]
- Matton, N.; Canto, G.S.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series. Remote Sens. 2015, 7, 13208–13232. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, L.F.C.; Guasselli, L.A.; Simioni, J.P.D.; Belloli, T.F.; Fernandes, P.C.B. Object-based classification of vegetation species in a subtropical wetland using Sentinel-1 and Sentinel-2A images. Sci. Remote Sens. 2021, 3, 100017. [Google Scholar] [CrossRef]
- Hao, P.; Di, L.; Zhang, C.; Guo, L. Transfer Learning for Crop classification with Cropland Data Layer data (CDL) as training samples. Sci. Total Environ. 2020, 733, 138869. [Google Scholar] [CrossRef]
Class | Error Matrix | Accuracy (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Crop | Forest | Meadow | Impervious Surface | Water | Producer’s | User’s | F1-Score | OA | |
Crop | 209 | 0 | 0 | 3 | 0 | 98.56 | 98.56 | 98.56 | 95.42 |
Forest | 0 | 19 | 3 | 1 | 0 | 78.95 | 84.21 | 81.50 | |
Meadow | 1 | 3 | 13 | 0 | 0 | 69.23 | 69.23 | 69.23 | |
Impervious Surface | 1 | 0 | 1 | 39 | 0 | 94.87 | 89.74 | 92.23 | |
Water | 1 | 0 | 0 | 0 | 12 | 91.67 | 100.00 | 95.65 |
Cropland | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 | Scheme 5 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Producer’s (%) | User’s (%) | F1-Sore (%) | Producer’s (%) | User’s (%) | F1-Sore (%) | Producer’s (%) | User’s (%) | F1-Score (%) | Producer’s (%) | User’s (%) | F1-Score (%) | Producer’s (%) | User’s (%) | F1-Score (%) | |
Maize | 99.09 | 93.27 | 96.09 | 98.01 | 93.87 | 95.90 | 98.98 | 88.31 | 93.34 | 98.94 | 93.22 | 95.99 | 98.98 | 93.27 | 96.04 |
Peanut | 93.79 | 87.31 | 90.43 | 93.64 | 90.33 | 91.96 | 90.85 | 95.55 | 93.15 | 92.64 | 87.92 | 90.22 | 90.56 | 96.54 | 93.45 |
Yam | 61.82 | 87.51 | 72.46 | 61.00 | 87.14 | 71.76 | 83.64 | 88.87 | 86.18 | 77.47 | 81.95 | 79.65 | 85.35 | 87.25 | 86.29 |
Other | 100 | 96.74 | 98.34 | 84.13 | 100 | 91.38 | 100 | 91.22 | 95.41 | 100 | 91.63 | 95.63 | 99.04 | 88.40 | 93.42 |
Soybean | 68.12 | 83.79 | 75.15 | 75.28 | 87.31 | 80.85 | 79.62 | 93.11 | 85.84 | 67.32 | 89.21 | 76.73 | 81.19 | 93.36 | 86.85 |
Cotton | 100 | 92.78 | 96.25 | 100 | 85.40 | 92.13 | 100 | 91.02 | 95.30 | 100 | 80.04 | 88.91 | 100 | 87.54 | 93.36 |
OA (%) | 89.55 | 90.64 | 91.92 | 89.93 | 93.22 | ||||||||||
KC | 0.84 | 0.87 | 0.88 | 0.85 | 0.89 |
Scheme | Optical Data | SAR Data | SAR and Optical Data | |||
---|---|---|---|---|---|---|
OA (%) | KC | OA (%) | KC | OA (%) | KC | |
Scheme 1 | 86.57 | 0.81 | 65.15 | 0.48 | 89.55 | 0.84 |
Scheme 2 | 89.20 | 0.85 | 90.64 | 0.87 | ||
Scheme 3 | 90.33 | 0.86 | 91.92 | 0.88 | ||
Scheme 4 | 89.84 | 0.85 | 89.93 | 0.85 | ||
Scheme 5 | 90.76 | 0.86 | 93.22 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Zhao, S.; Gao, J.; Zhang, H.; Zou, Y.; Xiao, X. A Novel Workflow for Crop Type Mapping with a Time Series of Synthetic Aperture Radar and Optical Images in the Google Earth Engine. Remote Sens. 2022, 14, 5458. https://doi.org/10.3390/rs14215458
Guo L, Zhao S, Gao J, Zhang H, Zou Y, Xiao X. A Novel Workflow for Crop Type Mapping with a Time Series of Synthetic Aperture Radar and Optical Images in the Google Earth Engine. Remote Sensing. 2022; 14(21):5458. https://doi.org/10.3390/rs14215458
Chicago/Turabian StyleGuo, Linghui, Sha Zhao, Jiangbo Gao, Hebing Zhang, Youfeng Zou, and Xiangming Xiao. 2022. "A Novel Workflow for Crop Type Mapping with a Time Series of Synthetic Aperture Radar and Optical Images in the Google Earth Engine" Remote Sensing 14, no. 21: 5458. https://doi.org/10.3390/rs14215458
APA StyleGuo, L., Zhao, S., Gao, J., Zhang, H., Zou, Y., & Xiao, X. (2022). A Novel Workflow for Crop Type Mapping with a Time Series of Synthetic Aperture Radar and Optical Images in the Google Earth Engine. Remote Sensing, 14(21), 5458. https://doi.org/10.3390/rs14215458