Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin
"> Figure 1
<p>Map of the Zambezi River basin showing the four different agroecological zones (AEZ) and the test sites (with red boundaries) at each AEZ (Adapted from [<a href="#B34-remotesensing-12-02096" class="html-bibr">34</a>]).</p> "> Figure 2
<p>Spatial distribution of (<b>a</b>) monthly rainfall and (<b>b</b>) monthly surface air temperature over the ZRB from January to December, averaged over 1986–2015 (30-year period). The black boxes indicate the ZRB. Gridded observational temperature and precipitation dataset [<a href="#B47-remotesensing-12-02096" class="html-bibr">47</a>] derived from East Anglia’s Climate Research Unite was used to plot this figure.</p> "> Figure 3
<p>Distribution of the training (6727) samples and validation (4639) samples over the ZRB.</p> "> Figure 4
<p>(<b>a</b>) Overall accuracy (OA %) and (<b>b</b>) kappa coefficient (k) over different AEZs for four classification methods (RF, SVM, MD, and CART).</p> "> Figure 5
<p>(<b>a</b>) Ten-meter cropland extent over the Zambezi River basin (2017–2019) and (<b>b</b>) Landsat-8 color infrared vegetation composite (bands 5, 4, and 3) for January 1st, 2018.</p> "> Figure 6
<p>Comparison of cropland maps from this study and the GFSAD30AFCE at one subset.</p> "> Figure A1
<p>Distribution of (<b>a</b>) training (6727) samples and (<b>b</b>) validation (4639) samples over the ZRB. Non-cropland classes here are referred to as the following classes: forest, grassland, water bodies and urban areas.</p> "> Figure A2
<p>Number of good observations during the rainy season (October 2018 and November–March 2019). The bar legend indicates the frequency of observations of combined Landsat-8 and Sentinel-2 imageries.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data and Processing
2.2.1. Remote Sensing Data and Processing
2.2.2. Samples
2.3. Methods
2.3.1. Definition of Cropland
2.3.2. Four Classifiers
2.3.3. Assessment Indicators
3. Results
3.1. The Feasibility of Derived Training Samples
3.2. Performance of Different Classifiers
3.3. Cropland Extent over the Zambezi River Basin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Overall Accuracy | ||||
Agroecological zones | RF | SVM | MD | CART |
Tropic Cool Sub-humid | 93.8 | 91.8 | 84.5 | 83.5 |
Tropic Cool Semiarid | 87.2 | 82.9 | 79.4 | 82.9 |
Tropic Warm Sub-humid | 85.9 | 68.5 | 76.5 | 68.5 |
Tropic Warm Semiarid | 82.6 | 69.6 | 77 | 72.7 |
Average of Four AEZs | 87.4 | 78.2 | 79.4 | 76.9 |
Kappa Coefficient | ||||
Agroecological zones | RF | SVM | MD | CART |
Tropic Cool Sub-humid | 0.88 | 0.83 | 0.85 | 0.67 |
Tropic Cool Semiarid | 0.72 | 0.63 | 0.53 | 0.62 |
Tropic Warm Sub-humid | 0.68 | 0.17 | 0.42 | 0.46 |
Tropic Warm Semiarid | 0.6 | 0.27 | 0.45 | 0.33 |
Average of Four AEZs | 0.72 | 0.48 | 0.56 | 0.52 |
Source of Variation | SS | df | MS | F | p-Value | F crit |
---|---|---|---|---|---|---|
Classification methods | 0.0269 | 3 | 0.0090 | 5.6318 | 0.0188 | 3.8625 |
Agroecological zones | 0.0507 | 3 | 0.0169 | 10.5938 | 0.0026 | 3.8625 |
Error | 0.0143 | 9 | 0.0016 | |||
Total corrected | 0.0919 | 15 | ||||
CV (%) = | 4.96 | |||||
Overall mean: | 0.8045 | The number of observations: | 16 |
Source of Variation | SS | df | MS | F | p-Value | F crit |
---|---|---|---|---|---|---|
Classification methods | 0.1380 | 3 | 0.0460 | 3.9544 | 0.0473 | 3.8625 |
Agroecological zones | 0.4117 | 3 | 0.1372 | 11.7954 | 0.0018 | 3.8625 |
Error | 0.1047 | 9 | 0.0116 | |||
Total corrected | 0.6545 | 15 | ||||
CV (4%) = | 18.98 | |||||
Overall mean: | 0.5683 | The number of observations: | 16 |
References
- Waldner, F.; De Abelleyra, D.; Verón, S.R.; Zhang, M.; Wu, B.; Plotnikov, D.; Bartalev, S.; Lavreniuk, M.; Skakun, S.; Kussul, N.; et al. Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity. Int. J. Remote Sens. 2016, 37, 3196–3231. [Google Scholar] [CrossRef] [Green Version]
- Lambert, M.J.; Waldner, F.; Defourny, P. Cropland mapping over Sahelian and Sudanian agrosystems: A Knowledge-based approach using PROBA-V time series at 100-m. Remote Sens. 2016, 8, 232. [Google Scholar] [CrossRef] [Green Version]
- Husak, G.J.; Marshall, M.T.; Michaelsen, J.; Pedreros, D.; Funk, C.; Galu, G. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Phalke, A.R.; Özdoğan, M. Large area cropland extent mapping with Landsat data and a generalized classifier. Remote Sens. Environ. 2018, 219, 180–195. [Google Scholar] [CrossRef]
- Waldner, F.; Hansen, M.C.; Potapov, P.V.; Löw, F.; Newby, T.; Ferreira, S.; Defourny, P. National-scale cropland mapping based on spectral-temporal features and outdated land cover information. PLoS ONE 2017, 12, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosegrant, M.W.; Cline, S.A. Global Food Security: Challenges and Policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matyas, C.J.; Silva, J.A. Extreme weather and economic well-being in rural Mozambique. Nat. Hazards 2013, 66, 31–49. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Mccallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.; Perger, C.; et al. Mapping global cropland and field size. Glob. Chang. Biol. 2015, 21, 1980–1992. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Wu, B.; Zhang, N.; Tian, F.; Phiri, E.; Musakwa, W.; Zhang, M.; Zhu, L.; Mashonjowa, E. Spatiotemporal analysis of precipitation in the sparsely gauged Zambezi River Basin using remote sensing and google Earth engine. Remote Sens. 2019, 11, 2977. [Google Scholar] [CrossRef] [Green Version]
- Marklund, L.G.; Batello, C. FAO Datasets on Land Use, Land Use Change, Agriculture and Forestry and Their Applicability for National Greenhouse Gas Reporting A Background Paper for the IPCC Expert Meeting on Guidance on Greenhouse Gas Inventories of Land Uses such as Agriculture a. 2008. Available online: http://www.fao.org/climatechange/15534-03bd24352e5f95a54c039491c08ca2325.pdf (accessed on 13 June 2020).
- Wei, Y.; Lu, M.; Wu, W.; Ru, Y. Multiple factors influence the consistency of cropland datasets in Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102087. [Google Scholar] [CrossRef]
- Nabil, M.; Zhang, M.; Bofana, J.; Wu, B.; Stein, A.; Dong, T. Assessing factors impacting the spatial discrepancy of remote sensing based cropland products: A case study in Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102010. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Tucker, C.J.; Townshend, J.R.G. Goff African Land-cover classification using satellite data. Science 1985, 227, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Ustuner, M.; Sanli, F.B.; Abdikan, S.; Esetlili, M.T.; Kurucu, Y. Crop type classification using vegetation indices of rapideye imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2014, 40, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Ingmar, N.; Schulthess, U.; Asche, H. Comparison of Machine Learning Algorithms Random Forest, Artificial Neural Network and Support Vector Machine To Maximum Likelihood for Supervised Crop Type Classification. In Proceedings of the 4th GEOBIA, Rio Janeiro, Brazil, 7–9 May 2012; pp. 35–40. Available online: https://www.researchgate.net/publication/275641579_COMPARISON_OF_MACHINE_LEARNING_ALGORITHMS_RANDOM_FOREST_ARTIFICIAL_NEURAL_NETWORK_AND_SUPPORT_VECTOR_MACHINE_TO_MAXIMUM_LIKELIHOOD_FOR_SUPERVISED_CROP_TYPE_CLASSIFICATION (accessed on 13 June 2020).
- Lobell, D.B.; Asner, G.P. Cropland distributions from temporal unmixing of MODIS data. Remote Sens. Environ. 2004, 93, 412–422. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1–13. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. In Proceedings of the Pattern Recognition Letters; 2006; Volume 27, pp. 294–300. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0167865505002242 (accessed on 13 June 2020).
- Razi, M.A.; Athappilly, K. A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Syst. Appl. 2005, 29, 65–74. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, S.; Zhou, Z.H. Learning the kernel parameters in kernel minimum distance classifier. Pattern Recognit. 2006, 39, 133–135. [Google Scholar] [CrossRef]
- Ramesh, V.; Ramar, K. Classification of Agricultural Land Soils: A Data Mining Approach. Agric. J. 2011, 6, 82–86. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- CCI Land Cover S2 Prototype Land Cover 20 m map of Africa. ESA. 2017. Available online: https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 13 June 2020).
- CCI-LC-PUGV2 Land Cover CCI. Product User Guide Version 2. 2017. Available online: https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 13 June 2020).
- CGLOPS-1 Validation Report: Moderate Dynamic Land Cover Collection 100m, Version 1. Copernicus Global Land Operations—Lot 1; Paris, France, 2018; Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_VR_LC100m-V1_I1.20.pdf (accessed on 13 June 2020).
- Xu, Y.; Yu, L.; Feng, D.; Peng, D.; Li, C.; Huang, X.; Gong, P. Comparisons of three recent moderate resolution African land cover datasets: CGLS-LC100, ESA-S2-. Int. J. Remote Sens. ISSN 2019, 1161. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Remote Sensing of Environment Sentinel-2 cropland mapping using pixel-based and object-based time- weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 2017, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Bey, A.; Jetimane, J.; Lisboa, S.N.; Ribeiro, N.; Sitoe, A.; Meyfroidt, P. Mapping smallholder and large-scale cropland dynamics with a flexible classification system and pixel-based composites in an emerging frontier of Mozambique. Remote Sens. Environ. 2020, 239, 111611. [Google Scholar] [CrossRef]
- HarvestChoice AEZ (16-class, 2009). Available online: http://harvestchoice.org/data/aez16_clas (accessed on 19 June 2018).
- Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zou, W.; Zheng, Y.; Zhang, N.; Chang, S.; Xing, Q.; et al. Global crop monitoring: A satellite-based hierarchical approach. Remote Sens. 2015, 7, 3907–3933. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Jacobson, A.; Dhanota, J.; Godfrey, J.; Jacobson, H.; Rossman, Z.; Stanish, A.; Walker, H.; Riggio, J. A novel approach to mapping land conversion using Google Earth with an application to East Africa. Environ. Model. Softw. 2015, 72, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; Moore, B. Modelling basins-scale hydrology in support of physical climate and global biogeochemical studies: An example using the Zambezi River. Surv. Geophys. 1991, 12, 271–311. [Google Scholar] [CrossRef]
- Beck, L.; Bernauer, T. How will combined changes in water demand and climate affect water availability in the Zambezi river basin? Glob. Environ. Chang. 2011, 21, 1061–1072. [Google Scholar] [CrossRef]
- Timberlake, J. Biodiversity of the Zambezi Basin; Occasional Publications in Biodiversity: Bulawayo, Zimbabwe, 2000; Volume 9. [Google Scholar]
- Cohen Liechti, T.; Matos, J.P.; Boillat, J.L.; Schleiss, A.J. Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin. Hydrol. Earth Syst. Sci. 2012, 16, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Moore, A.E.; Cotterill, F.P.D.; Main, M.P.L.; Williams, H.B. The Zambezi River. Large Rivers Geomorphol. Manag. 2008, 311–332. [Google Scholar] [CrossRef]
- The World Bank. Zambezi River Basin Sustainable Agriculture Water Development Angola, Botswana, Malawi, Mozambique, Namibia, Tanzania, Zambia, Zimbabwe; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Beyer, M.; Wallner, M.; Bahlmann, L.; Thiemig, V.; Dietrich, J.; Billib, M. Rainfall characteristics and their implications for rain-fed agriculture: A case study in the Upper Zambezi River Basin. Hydrol. Sci. J. 2016, 61, 321–343. [Google Scholar] [CrossRef]
- Calzadilla, A.; Zhu, T.; Rehdanz, K.; Tol, R.S.J.; Ringler, C. Economywide impacts of climate change on agriculture in Sub-Saharan Africa. Ecol. Econ. 2013, 93, 150–165. [Google Scholar] [CrossRef] [Green Version]
- Milgroom, J.; Giller, K.E. Courting the rain: Rethinking seasonality and adaptation to recurrent drought in semi-arid southern africa. Agric. Syst. 2013, 118, 91–104. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J. Remote Sensing of Environment Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted re fl ectance and NDVI di ff erences. Remote Sens. Environ. 2018, 215, 482–494. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47. [Google Scholar] [CrossRef]
- Tian, F.; Wu, B.; Zeng, H.; Zhang, X.; Xu, J. Efficient Identification of Corn Cultivation Area with Multitemporal Synthetic Aperture Radar and Optical Images in the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 629. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and Photographic Infrared l, lnear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A. A Soil-Adjusted Vegetation Index ( SAVI ). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Chen, W.; Liu, L.; Zhang, C.; Wang, J.; Wang, J.; Pan, Y. Monitoring the seasonal bare soil areas in Beijing using multi-temporal TM images. Int. Geosci. Remote Sens. Symp. 2004, 5, 3379–3382. [Google Scholar] [CrossRef]
- Laso Bayas, J.C.; Lesiv, M.; Waldner, F.; Schucknecht, A.; Duerauer, M.; See, L.; Fritz, S.; Fraisl, D.; Moorthy, I.; McCallum, I.; et al. A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform. Sci. Data 2017, 4, 222222. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Tian, Y.; Li, Q. GVG, a Crop Type Proportion Sampling Instrument. J. Remote Sens. 2004, 8, 570–580. [Google Scholar]
- Waldner, F.; Fritz, S.; Di Gregorio, A.; Plotnikov, D.; Bartalev, S.; Kussul, N.; Gong, P.; Thenkabail, P.; Hazeu, G.; Klein, I.; et al. A unified cropland layer at 250 m for global agriculture monitoring. Data 2016, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Dubath, P.; Rimoldini, L.; Süveges, M.; Blomme, J.; López, M.; Sarro, L.M.; de Ridder, J.; Cuypers, J.; Guy, L.; Lecoeur, I.; et al. Random forest automated supervised classification of Hipparcos periodic variable stars. Mon. Not. R. Astron. Soc. 2011, 414, 2602–2617. [Google Scholar] [CrossRef]
- Kullarni, V.Y.; Sinha, P.K. Random Forest Classifier: A Survey and Future Research Directions. Int. J. Adv. Comput. 2013, 36, 1144–1156. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Gastwirth, J.L. The Estimation of the Lorenz Curve and Gini Index. Rev. Econ. Stat. 1972, 54, 306. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.; Townshend, J. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23.4, 725–749. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Temkin, N.R.; Holubkov, R.; Machamer, J.E.; Winn, H.R.; Dikmen, S.S. Classification and regression trees (CART) for prediction of function at 1 year following head trauma. J. Neurosurg. 1995, 82, 764–771. [Google Scholar] [CrossRef]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, D.; Yamaguchi, Y.; Singh, D. Land Cover Classification of Palsar Images By Knowledge Based Decision Tree Classi- Fier and Supervised Classifiers Based on Sar Observables. Prog. Electromagn. Res. B 2011, 30, 47–70. [Google Scholar] [CrossRef] [Green Version]
- Sohn, Y.; Rebello, N.S. Supervised and unsupervised spectral angle classifiers. Photogramm. Eng. Remote Sens. 2002, 68, 1271–1280. [Google Scholar]
- Lu, D.S.; Mausel, P.; Batistella, M.; Moran, E. Comparison of land-cover classification methods in the Brazilian Amazon Basin. Photogramm. Eng. Remote Sens. 2004, 70, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Perumal, K.; Bhaskaran, R. Supervised classification performance of multispectral images. J. Comput. 2010, 2, 124–129. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar] [CrossRef]
- Banko, G. A Review of Assessing the Accuracy of and of Methods Including Remote Sensing Data in Forest Inventory; IIASA: Luxemburgo, Austria, 1998. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-1-4200-5512-2. [Google Scholar]
- Bishop, Y.M.M.; Fienberg, S.E.; Holland, P.W. Discrete Multivariate Analyis: Theory and Pratice; The MIT Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Penny, W.; Henson, R. Analysis of Variance. In Statistical Parametric Mapping: The Analysis of Functional Brain Images; Penny, W., Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Eds.; Academic Press: Cambridge, MA, USA, 2006; ISBN 978-0-12-372560-8. [Google Scholar]
- Lane, D.M. Analysis of Variance. In Introduction to Statistics; Rice University: Houston, TX, USA, 2016; Chapter 15; pp. 517–597. [Google Scholar]
- Conagin, A.; Barbin, D.; Demétrio, C.G.B. Modifications for the Tukey Test Procedure and Evaluation of the Power and Efficiency of Multiple Comparison Procedures. Sci. Agric. 2008, 65, 428–432. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.J.; Abdi, H. Fisher’s Least Significant Difference ( LSD ) Test 1 Overview 2 Notations 3 Least significant difference. Encycl. Res. Des. 2010, 1–6. [Google Scholar]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Sanches, I.D.; Moran, E.; Chen, Y.; Batistella, M.; Luiz, A.J.B.; da Silva, R.F.B.; de Oliveira, M.A.F.; Lu, D.; Dutra, L.V.; Huang, J. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 133–147. [Google Scholar] [CrossRef]
- Petitjean, F.; Inglada, J.; Gançarski, P. Satellite Image Time Series Analysis Under Time Warping. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3081–3095. [Google Scholar] [CrossRef]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Krishna, M.; Congalton, R.G.; Yadav, K. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- Gong, P.; Lu, H.; Zhao, J.; Zhao, F.R.; Xu, Y.; Cai, X.; Yu, L. Tracking annual cropland changes from 1984 to 2016 using time-series Landsat images with a change-detection and post-classification approach: Experiments from three sites in Africa. Remote Sens. Environ. 2018, 218, 13–31. [Google Scholar] [CrossRef]
Sensor | Provider | Bands | Description | Wavelength (nm) | Resolution (m) |
---|---|---|---|---|---|
Sentinel-2 MultiSpectral Instrument (MSI) Level-1C—Top of Atmosphere (TOA) | European Space Agency (ESA) | B2 | Blue | 458–523 | 10 |
B3 | Green | 543–578 | 10 | ||
B4 | Red | 650–680 | 10 | ||
B8 | Near-infrared | 785–900 | 10 | ||
B11 | SWIR1 | 1565–1655 | 20 | ||
QA60 | Cloud mask | - | 60 | ||
Landsat-8 Surface Reflectance Tier 1 TOA | United States Geological Survey (USGS) | B2 | Blue | 452–512 | 30 |
B3 | Green | 533–590 | 30 | ||
B4 | Red | 636–673 | 30 | ||
B5 | Near-infrared | 851–879 | 30 | ||
B6 | SWIR-1 | 1566–1651 | 30 | ||
BQA | Quality band | - | - |
Remote Sensing Indices | Formula | Ref. |
---|---|---|
Normalized Difference Vegetation Index | [52] | |
Soil Adjusted Vegetation Index | [53] | |
Land Surface Water Index | [54] | |
Green Chlorophyll Vegetation Index | [49] | |
Bare Soil Index | [55] |
Rainy Season Stack Image | Dry Season Stack Image |
---|---|
|
|
Final Classes | Original Classes | ||
---|---|---|---|
GFSAD30AFCE | ESA-CCI-LC_S2_Prototype | ESACCL-LC-L4-300 | |
Cropland | Cropland | Cropland | Cropland, rainfed; Cropland, irrigated or post-flooding; Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%) |
Forest | Non-cropland | Trees cover areas Shrubs cover areas Lichen mosses/sparse vegetation Vegetation aquatic or regularly flooded | Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland (<50%); Tree cover, broadleaved, evergreen, closed to open (>15%); Tree cover, broadleaved, deciduous, closed to open (>15%); Tree cover, needleleaved, evergreen, closed to open (>15%); Tree cover, needleleaved, deciduous, closed to open (>15%); Tree cover, mixed leaf type (broadleaved and needleleaved); Mosaic tree and shrub (>50%)/herbaceous cover (<50%); Mosaic herbaceous cover (>50%)/tree and shrub (<50%); Shrubland; Sparse vegetation (tree, shrub, herbaceous cover) (<15%); Tree cover, flooded, fresh or brakish water; Tree cover, flooded, saline water; Shrub or herbaceous cover, flooded, fresh/saline/brakish water; |
Grassland | Non-cropland | Grassland | Grassland |
Urban areas | Non-cropland | Built up areas | Urban areas |
Water bodies | Water | Open water | Water bodies |
Agreement | Class | Nc | C | Total | OA % |
---|---|---|---|---|---|
C | 131 | 763 | 894 | 85.4 | |
Full agreement | Nc | 1865 | 194 | 2059 | 90.6 |
Total | 1996 | 957 | 2953 | 89.0 | |
Median agreement | C | 235 | 748 | 983 | 76.1 |
No-agreement | C | 365 | 338 | 703 | 48.1 |
Random Forest | Support V. Machine | CART | Minimum Distance | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference Data | ||||||||||||||||||||||||||
C | F | G | U | W | UA | C | F | G | U | W | UA | C | F | G | U | W | UA | C | F | G | U | W | UA | |||
Tropical Cool Sub-humid | Classified data | C | 45 | 0 | 0 | 0 | 0 | 100 | 42 | 0 | 4 | 0 | 0 | 91.3 | 37 | 0 | 1 | 0 | 0 | 97 | 39 | 0 | 2 | 0 | 0 | 95 |
F | 2 | 42 | 6 | 0 | 0 | 84 | 4 | 42 | 8 | 0 | 0 | 77.8 | 5 | 42 | 12 | 0 | 0 | 71 | 2 | 42 | 4 | 0 | 0 | 88 | ||
G | 1 | 0 | 25 | 0 | 0 | 96 | 2 | 0 | 19 | 0 | 0 | 90.5 | 6 | 0 | 18 | 0 | 0 | 75 | 7 | 0 | 25 | 0 | 0 | 78 | ||
U | 0 | 0 | 0 | 7 | 3 | 70 | 0 | 0 | 0 | 6 | 1 | 85.7 | 0 | 0 | 0 | 4 | 1 | 80 | 0 | 0 | 0 | 8 | 2 | 80 | ||
W | 0 | 0 | 1 | 1 | 12 | 86 | 0 | 0 | 1 | 2 | 14 | 82.4 | 0 | 0 | 1 | 4 | 14 | 74 | 0 | 0 | 1 | 0 | 13 | 93 | ||
PA | 94 | 100 | 78 | 88 | 80 | * 90.3 | 88 | 100 | 59 | 75 | 93 | * 84.8 | 77 | 100 | 56 | 50 | 93 | * 87.6 | 81 | 100 | 78 | 100 | 87 | * 71.3 | ||
Tropical Warm Sub-humid | C | 52 | 3 | 27 | 4 | 2 | 59 | 38 | 14 | 14 | 3 | 0 | 55 | 42 | 5 | 22 | 2 | 1 | 58 | 38 | 0 | 18 | 0 | 0 | 68 | |
F | 5 | 47 | 8 | 0 | 0 | 78 | 6 | 30 | 5 | 0 | 0 | 73 | 8 | 40 | 7 | 0 | 0 | 73 | 5 | 46 | 6 | 0 | 0 | 81 | ||
G | 5 | 1 | 7 | 0 | 0 | 54 | 16 | 7 | 20 | 1 | 1 | 44 | 12 | 6 | 13 | 3 | 1 | 37 | 10 | 5 | 15 | 0 | 2 | 47 | ||
U | 0 | 0 | 0 | 4 | 0 | 100 | 0 | 0 | 0 | 4 | 1 | 80 | 0 | 0 | 0 | 3 | 0 | 100 | 9 | 0 | 3 | 8 | 1 | 38 | ||
W | 0 | 0 | 0 | 0 | 21 | 100 | 2 | 0 | 3 | 0 | 21 | 81 | 0 | 0 | 0 | 0 | 21 | 100 | 0 | 0 | 0 | 0 | 20 | 100 | ||
PA | 84 | 92 | 17 | 50 | 91 | * 70.4 | 61 | 59 | 48 | 50 | 91 | * 60.8 | 68 | 78 | 31 | 38 | 91 | * 68.3 | 61 | 90 | 36 | 100 | 87 | * 64 | ||
Tropical Warm Semiarid | C | 56 | 2 | 15 | 3 | 1 | 73 | 53 | 14 | 25 | 2 | 0 | 56 | 40 | 5 | 13 | 0 | 1 | 68 | 50 | 1 | 10 | 0 | 1 | 81 | |
F | 5 | 46 | 8 | 0 | 0 | 78 | 4 | 44 | 5 | 0 | 0 | 83 | 5 | 42 | 6 | 0 | 0 | 79 | 6 | 46 | 13 | 0 | 0 | 71 | ||
G | 7 | 11 | 24 | 2 | 0 | 55 | 11 | 1 | 17 | 0 | 1 | 57 | 23 | 12 | 27 | 3 | 0 | 42 | 11 | 12 | 23 | 1 | 0 | 49 | ||
U | 0 | 0 | 0 | 9 | 0 | 100 | 0 | 0 | 0 | 12 | 0 | 100 | 0 | 0 | 1 | 11 | 0 | 92 | 1 | 0 | 1 | 13 | 0 | 87 | ||
W | 0 | 0 | 0 | 0 | 30 | 100 | 0 | 0 | 0 | 0 | 30 | 100 | 0 | 0 | 0 | 0 | 30 | 100 | 0 | 0 | 0 | 0 | 30 | 100 | ||
PA | 82 | 78 | 51 | 64 | 97 | * 75.3 | 78 | 75 | 36 | 86 | 97 | * 71.2 | 59 | 71 | 57 | 79 | 97 | * 74 | 74 | 78 | 49 | 93 | 97 | * 68.5 | ||
Tropical Cool Semiarid | C | 112 | 2 | 28 | 2 | 0 | 78 | 107 | 11 | 24 | 6 | 0 | 72 | 90 | 2 | 14 | 2 | 0 | 83 | 90 | 0 | 8 | 0 | 0 | 92 | |
F | 4 | 90 | 22 | 0 | 0 | 78 | 1 | 80 | 10 | 1 | 0 | 87 | 6 | 86 | 24 | 0 | 0 | 74 | 8 | 82 | 21 | 0 | 0 | 74 | ||
G | 0 | 0 | 22 | 1 | 0 | 96 | 8 | 5 | 37 | 0 | 0 | 74 | 9 | 5 | 22 | 1 | 0 | 59 | 15 | 15 | 42 | 2 | 0 | 57 | ||
U | 5 | 0 | 2 | 38 | 0 | 84 | 5 | 1 | 3 | 34 | 0 | 79 | 8 | 4 | 14 | 38 | 0 | 59 | 8 | 0 | 3 | 39 | 0 | 78 | ||
W | 0 | 0 | 0 | 0 | 16 | 100 | 0 | 0 | 0 | 0 | 16 | 100 | 1 | 0 | 0 | 0 | 16 | 94 | 0 | 0 | 0 | 0 | 16 | 100 | ||
PA | 93 | 98 | 30 | 93 | 100 | * 80.8 | 88 | 82 | 50 | 83 | 100 | * 78.5 | 79 | 89 | 30 | 93 | 100 | * 77.1 | 74 | 85 | 57 | 95 | 100 | * 73.7 |
Classifier | Overall Accuracy | Kappa Coefficient | ||
---|---|---|---|---|
Mean | Test Results | Mean | Test Results | |
Random Forest | 0.8739 | a | 0.7202 | a |
Minimum Distance | 0.7938 | ab | 0.5603 | ab |
Support Vector Machine | 0.7816 | b | 0.5195 | ab |
Classification and Regression Tree | 0.7687 | b | 0.4734 | b |
Honestly Significant Difference (HSD) | 0.0881 | 0.2382 | ||
Minimal Level of Significance | 5% (0.05) |
Reference Data | |||||
---|---|---|---|---|---|
Classes | Non-Cropland | Cropland | Raw Sum | User Accuracy | |
Classified Data | Non-cropland | 2284 | 312 | 2596 | 88.0 |
Cropland | 439 | 1604 | 2043 | 78.5 | |
Column sum | 2723 | 1916 | 4639 | ||
Producer accuracy | 83.9 | 83.7 | |||
Overall Accuracy: | 84% | ||||
Kappa: | 0.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bofana, J.; Zhang, M.; Nabil, M.; Wu, B.; Tian, F.; Liu, W.; Zeng, H.; Zhang, N.; Nangombe, S.S.; Cipriano, S.A.; et al. Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin. Remote Sens. 2020, 12, 2096. https://doi.org/10.3390/rs12132096
Bofana J, Zhang M, Nabil M, Wu B, Tian F, Liu W, Zeng H, Zhang N, Nangombe SS, Cipriano SA, et al. Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin. Remote Sensing. 2020; 12(13):2096. https://doi.org/10.3390/rs12132096
Chicago/Turabian StyleBofana, José, Miao Zhang, Mohsen Nabil, Bingfang Wu, Fuyou Tian, Wenjun Liu, Hongwei Zeng, Ning Zhang, Shingirai S. Nangombe, Sueco A. Cipriano, and et al. 2020. "Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin" Remote Sensing 12, no. 13: 2096. https://doi.org/10.3390/rs12132096