Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake
<p>Study area. (<b>a</b>) Details of the Baicheng earthquake, as shown in an optical image obtained using Google Earth Engine (<a href="https://earthengine.google.com/" target="_blank">https://earthengine.google.com/</a>), and accessed on 10 October 2021. Location of the hypocenter, drawn as a white circle. The red part is the building area, and the yellow polygon is the UAV operation range; (<b>b</b>) Location of the Baicheng county, drawn as a black polygon. The blue circle represents the location of the Baicheng earthquake. The red box represents the position of (<b>a</b>) in (<b>b</b>); (<b>c</b>) UAV images.</p> "> Figure 2
<p>DInSAR processing workflow.</p> "> Figure 3
<p>Basic steps of DInSAR.</p> "> Figure 4
<p>Surface deformation projected along the radar line of sight, obtained from DInSAR analysis. Location of the hypocenter, drawn as a blue circle.</p> "> Figure 5
<p>Examples of UAV images. (<b>a</b>) Collapsed building; (<b>b</b>) Severely damaged building; (<b>c</b>) Lightly damaged building; (<b>d</b>) Undamaged building.</p> "> Figure 6
<p>Coherence coefficient diagram. (<b>a</b>) Pre-seismic coherence coefficient diagram; (<b>b</b>) Coseismic coherence coefficient diagram. Location of the hypocenter, drawn as a black circle.</p> "> Figure 7
<p>Building damage assessment map. (<b>a</b>) Damage assessment map obtained by coherent change detection; (<b>b</b>) Overlay of <a href="#remotesensing-14-03009-f005" class="html-fig">Figure 5</a>a based on optical image obtained using Google Earth Engine (<a href="https://earthengine.google.com/" target="_blank">https://earthengine.google.com/</a>), and accessed on 10 October 2021.</p> "> Figure 8
<p>RGB color synthesis results in partial colors.</p> "> Figure 9
<p>Sample diagram of coherent change detection. (<b>A</b>) Lightly damaged building; (<b>B</b>) Severely damaged building. The yellow boxes indicate areas that are not correctly identified.</p> "> Figure 10
<p>Polarimetric decomposition results. (<b>a</b>) Polarization decomposition results of pre-seismic images; (<b>b</b>) Polarization decomposition results of coseismic images; (<b>c</b>) The corresponding optical image obtained using Google Earth; (<b>d</b>) On the basis of <a href="#remotesensing-14-03009-f010" class="html-fig">Figure 10</a>c, the building area is superimposed in red. Location of the hypocenter, drawn as a white circle.</p> "> Figure 11
<p>Building damage assessment map. (<b>a</b>) Damage assessment map obtained by polarimetric decomposition; (<b>b</b>) Overlay of <a href="#remotesensing-14-03009-f011" class="html-fig">Figure 11</a>a based on optical image obtained using Google Earth Engine (<a href="https://earthengine.google.com/" target="_blank">https://earthengine.google.com/</a>), and accessed on 10 October 2021.</p> "> Figure 12
<p>Building damage assessment map. (<b>a</b>) Building damage assessment map based on the combination of coherent change detection and polarization decomposition; (<b>b</b>) Overlay of <a href="#remotesensing-14-03009-f012" class="html-fig">Figure 12</a>a based on surface deformation results and optical image obtained using Google Earth Engine (<a href="https://earthengine.google.com/" target="_blank">https://earthengine.google.com/</a>), and accessed on 10 October 2021. The dashed black line indicates the threshold of the LOS deformation field. (<b>c</b>–<b>f</b>) images are taken from UAV. (<b>c</b>) Field investigation image corresponding to area c (collapsed building) in <a href="#remotesensing-14-03009-f012" class="html-fig">Figure 12</a>a; (<b>d</b>) Field investigation image corresponding to area d (severely damaged building) in <a href="#remotesensing-14-03009-f012" class="html-fig">Figure 12</a>a; (<b>e</b>) Field investigation image corresponding to area e (lightly damaged building) in <a href="#remotesensing-14-03009-f012" class="html-fig">Figure 12</a>a; (<b>f</b>) Field investigation image corresponding to area f (undamaged building) in <a href="#remotesensing-14-03009-f012" class="html-fig">Figure 12</a>a.</p> "> Figure 13
<p>Comparison of the results of the three methods. The first column is an example of UAV sampling: (<b>A</b>) collapsed building; (<b>B</b>) severely damaged building; (<b>C</b>) lightly damaged building; (<b>D</b>) undamaged building. The second column is the coherent change detection result corresponding to the first column. The third column is the polarization decomposition result corresponding to the first column. The fourth column is the result of the comprehensive detection method corresponding to the first column.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. Sentinel-1A Data
2.2.2. Auxiliary Data
2.3. Methods
2.3.1. Differential Interferometry
2.3.2. Phase Coherence
2.3.3. Polarimetric Decomposition
3. Results
3.1. Coseismic Deformation Field
3.2. Building Damage Detection
3.2.1. Coherence-Based Analysis
3.2.2. Polarimetry-Based Analysis
3.2.3. Integrated Approaches
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Altan, O.; Toz, G.; Kulur, S.; Seker, D.; Volz, S.; Fritsch, D.; Sester, M. Photogrammetry and geographic information systems for quick assessment, documentation and analysis of earthquakes. ISPRS J. Photogramm. Remote Sens. 2001, 55, 359–372. [Google Scholar] [CrossRef]
- Anniballe, R.; Noto, F.; Scalia, T.; Bignami, C.; Stramondo, S.; Chini, M.; Pierdicca, N. Earthquake damage mapping: An overall assessment of ground surveys and VHR image change detection after L’Aquila 2009 earthquake. Remote Sens. Environ. 2018, 210, 0034–4257. [Google Scholar] [CrossRef]
- Metternicht, G.; Hurni, L.; Gogu, R. Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens. Environ. 2005, 98, 284–303. [Google Scholar] [CrossRef]
- Voigt, S.; Kemper, T.; Riedlinger, T.; Kiefl, R.; Scholte, K.; Mehl, H. Satellite image analysis for disaster and crisis-management support. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1520–1528. [Google Scholar] [CrossRef]
- Dong, L.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2013, 84, 85–99. [Google Scholar] [CrossRef]
- ElGharbawi, T.; Tamura, M. Estimating deformation due to soil liquefaction in Urayasu city, Japan using permanent scatterers. ISPRS J. Photogramm. Remote Sens. 2015, 109, 152–164. [Google Scholar] [CrossRef] [Green Version]
- Moya, L.; Marval Perez, L.R.; Mas, E.; Adriano, B.; Koshimura, S.; Yamazaki, F. Novel unsupervised classification of collapsed buildings using satellite imagery, ha-zard scenarios and fragility functions. Remote Sens. 2018, 10, 296. [Google Scholar] [CrossRef] [Green Version]
- Ge, P.; Gokon, H.; Meguro, K.; Koshimura, S. Study on the intensity and co-herence information of high-resolution ALOS-2 SAR images for rapid massive land-slide mapping at a pixel level. Remote Sens. 2019, 11, 2808. [Google Scholar] [CrossRef] [Green Version]
- Freire, S.; Santos, T.; Navarro, A.; Soares, F.; Silva, J.; Afonso, N.; Fonseca, A.; Tenedório, J. Introducing mapping standards in the quality assessment of buildings extracted from very high resolution satellite imagery. ISPRS J. Photogramm. Remote Sens. 2014, 90, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.G.; Zhang, L.; Balz, T.; Liao, M.S. Landslide deformation monitoring using point-like target offset tracking with multi-mode high-resolution TerraSAR-X data. ISPRS J. Photogramm. Remote Sens. 2015, 105, 128–140. [Google Scholar] [CrossRef]
- Li, Y.; Martinis, S.; Wieland, M. Urban flood mapping with an active self-learning convolutional neural network based on TerraSAR-X intensity and interferometric coherence. ISPRS J. Photogramm. Remote Sens. 2019, 152, 178–191. [Google Scholar] [CrossRef]
- Monserrat, O.; Criosetto, M.; Luzi, G. A review of ground-based SAR interferometry for deformation measurement. ISPRS J. Photogramm. Remote Sens. 2014, 93, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Raucoules, D.; Ristori, B.; Michele, M.; Briole, P. Surface displacement of the Mw 7 Machaze earthquake (Mozambique): Complementary use of multiband InSAR and radar amplitude image correlation with elastic modelling. Remote Sens. Environ. 2010, 114, 2211–2218. [Google Scholar] [CrossRef] [Green Version]
- Arciniegas, G.A.; Bijker, W.; Kerle, N.; Tolpekin, V.A. Coherence- and amplitude-based analysis of seismogenic damage in Bam, Iran, using ENVISAT ASAR data. IEEE Trans. Geosci. Remote Sens. 2007, 5, 1571–1581. [Google Scholar] [CrossRef]
- Watanabe, M.; Thapa, R.B.; Ohsumi, T.; Fujiwara, H.; Yonezawa, C.; Tomii, N.; Suzuki, S. Detection of damaged urban areas using interferometric SAR coherence change with PALSAR-2. Earth Planets Space 2016, 68, 131. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applica-tions of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Sato, A.; Boerner, W.M.; Sato, R.; Yamada, H. Four component scattering power decomposition with rotation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2011, 9, 2251–2258. [Google Scholar] [CrossRef]
- Li, N.; Wang, R.; Deng, Y.; Liu, Y.; Li, B.; Wang, C.; Balz, T. Unsupervised polarimetric synthetic aperture radar classification of large-scale landslides caused by Wenchuan earthquake in hue-saturation-intensity color space. J. Appl. Remote Sens. 2014, 8, 083595. [Google Scholar] [CrossRef]
- Guo, H.; Liu, L.; Fan, X.; Li, X.; Zhang, L. Earth Observation for Earthquake Disaster Monitoring and Assessment. In Earthquake Research and Analysis-Statistical Studies, Observations and Planning; Intech: Houston, TX, USA, 2012; pp. 293–312. [Google Scholar]
- Matsuoka, M.; Nojima, N. Building damage estimation by integration of seismic intensity information and satellite l-band Sar imagery. Remote Sens. 2010, 2, 2111–2126. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yamazaki, F.; Gokon, H.; Koshimura, S. Extraction of tsunami-flooded areas and damaged buildings in the 2011 Tohoku-Oki earthquake from terrasar-x intensity images. Earthq. Spectra 2013, 29 (Suppl. S1), S183–S200. [Google Scholar] [CrossRef] [Green Version]
- Gokon, H.; Koshimura, S.; Matsuoka, M. Object-based method for estimating tsunami-induced damage using TerraSAR-X data. J. Disaster Res. 2016, 11, 225–235. [Google Scholar] [CrossRef]
- Miura, H.; Midorikawa, S.; Matsuoka, M. Building damage assessment using high-resolution satellite Sar images of the 2010 Haiti earthquake. Earthq. Spectra 2016, 32, 591–610. [Google Scholar] [CrossRef]
- Liu, W.; Yamazaki, F. Extraction of collapsed buildings in the 2016 Kumamoto earthquake using multi-temporal palsar-2 data. J. Disaster Res. 2017, 12, 241–250. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, C.; Singh, S.; Koch, M.; Adriano, B.; Mas, E.; Koshimura, S. A framework of rapid regional tsunami damage recognition from post-event TerraSAR-X imagery using deep neural networks. IEEE Trans. Geosci. Remote Sens. 2018, 15, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Zhao, L.L.; Yang, J.; Li, P.X.; Zhang, L.P.; Shi, L.; Lang, F.K. Damage assessment in urban areas using post-earthquake airborne PolSAR imagery. Int. J. Remote Sens. 2013, 34, 8952–8966. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Matsuoka, M.; Miyajima, M.; Adriano, B.; Fallahi, A.; Karashi, J. Sequential SAR Coherence Method for the Monitoring of Buildings in Sarpole-Zahab, Iran. Remote Sens. 2018, 10, 1255. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Wen, S.; Yang, L.; Wu, C.; Sun, X.; Wang, L.; Zhang, Z. A Shallow and left-lateral rupture event of the 2021 Mw 5.3 Baicheng earthquake: Implications for the diffuse deformation of Southern Tianshan. Earth Space Sci. 2022, 9, e2021EA001995. [Google Scholar] [CrossRef]
- Jiang, H.J.; Feng, G.C.; Wang, T.; Bürgmann, R. Toward Full Exploitation of Coherent and Incoherent Information in Sentinel-1 TOPS Data for Retrieving Surface Displacement: Application to the 2016 Kumamoto (Japan) Earthquake. Geophys. Res. Lett. 2017, 44, 1758–1767. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Liu, X.W.; Zhang, Y.J.; Zhao, J.; Xu, Q.; Yang, Y.; Liu, G.X. A nonlinear inversion of InSAR-observed coseismic surface deformation for estimating variable fault dips in the 2008 Wenchuan earthquake. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 179–192. [Google Scholar] [CrossRef]
- Fielding, E.J.; Liu, Z.; Stephenson, O.L.; Zhong, M.; Liang, C.; Moore, A. Surface Deformation Related to the 2019 Mw 7.1 and 6.4 Ridgecrest Earthquakes in California from GPS, SAR Interferometry, and SAR Pixel Offsets. Seismol. Res. Lett. 2020, 91, 2035–2046. [Google Scholar] [CrossRef]
- He, Z.; Chen, T.; Wang, M.; Li, Y. Multi-Segment Rupture Model of the 2016 Kumamoto Earthquake Revealed by InSAR and GPS Data. Remote Sens. 2020, 12, 3721. [Google Scholar] [CrossRef]
- Matsuoka, M.; Yamazaki, F. Use of SAR imagery for monitoring areas damaged due to the 2006 Mid Java, Indonesia earthquake. In Proceedings of the 4th International Workshop on Remote Sensing for Post-Disaster Response 2006, Cambridge, UK, 25–26 September 2006. [Google Scholar]
- Zhang, X.; Liu, W.; He, S. Urban change detection in TerraSAR image using the difference method and SAR coherence coefficient. J. Eng. Sci. Technol. Rev. 2018, 11, 18–23. [Google Scholar]
- Matsuoka, M.; Estrada, M. Development of earthquake-induced building damage estimation model based on ALOS/PALSAR observing the 2007 Peru earthquake. J. Disaster Res. 2013, 8, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Karimzadeh, S.; Mastuoka, M. Building damage assessment using multisensor dual-polarized synthetic aperture radar data for the 2016 M6.2 Amatrice earthquake, Italy. Remote Sens. 2017, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 10 October 2021).
- Yonezawa, C.; Takeuchi, S. Decorrelation of SAR data by urban damages caused by the 1995 Hyogoken-Nanbu earthquake. Int. J. Remote Sens. 2001, 22, 1585–1600. [Google Scholar] [CrossRef]
- Zebker, H.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Zebker, H.; Chen, K. Accurate estimation of correlation in InSAR observations. IEEE Trans. Geosci. Remote Sens. 2005, 2, 124–127. [Google Scholar] [CrossRef]
- Sharma, R.C.; Tateishi, R.; Hara, K.; Nguyen, H.T.; Gharechelou, S.; Nguyen, L.V. Earthquake damage visualization (EDV) technique for the rapid detection of earthquake-induced damages using SAR data. Sensors 2017, 17, 235. [Google Scholar] [CrossRef]
- Sinclair, G. The transmission and reception of elliptically polarized waves. Proc. IRE 1950, 38, 148–151. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R.; Pottier, E. Quantitative comparison of classification capability: Fully polarimetric versus dual and single-polarization SAR. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2343–2351. [Google Scholar]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Tamkuan, N.; Nagai, M. Sentinel-1A Analysis for Damage Assessment: A Case Study of Kumamoto Earthquake in 2016. MATTER Int. J. Sci. Technol. 2019, 5, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Niu, C.; Zhang, H.; Liu, W.; Li, R.; Hu, T. Using a fully polarimetric SAR to detect landslide in complex surroundings: Case study of 2015 Shenzhen landslide. ISPRS J. Photogramm. Remote Sens. 2021, 174, 0924–2716. [Google Scholar] [CrossRef]
- Pinglan, G.; Hideomi, G.; Kimiro, M. A review on synthetic aperture radar-based building damage assessment in disasters. Remote Sens. Environ. 2020, 240, 0034–4257. [Google Scholar]
- Xu, X.; Sandwell, D.T.; Smith, K.B. Coseismic Displacements and Surface Fractures from Sentinel-1 InSAR: 2019 Ridgecrest Earthquakes. Seismol. Res. Lett. 2020, 91, 1979–1985. [Google Scholar] [CrossRef]
- Stilla, U.; Soergel, U.; Thoennessen, U. Potential and limits of InSAR data for building reconstruction in built-up areas. ISPRS J. Photogramm. Remote Sens. 2003, 58, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Talledo, D.A.; Miano, A.; Bonano, M.; Carlo, F.D.; Lanari, R.; Manunta, M.; Meda, A.; Mele, A.; Prota, A.; Saetta, A.; et al. Satellite radar interferometry: Potential and limitations for structural assessment and monitoring. J. Build. Eng. 2022, 46, 103756. [Google Scholar] [CrossRef]
Acquisition Date | Product Type | Polarization Mode | Band | Space Baseline/m | Time Baseline/d |
---|---|---|---|---|---|
1 March 2021 | SLC | VV + VH | C | 27.27 30.36 | 12 12 |
13 March 2021 | SLC | VV + VH | C | ||
25 March 2021 | SLC | VV + VH | C |
Categories | Coherent Change Detection | |||
---|---|---|---|---|
Damaged/m2 | Undamaged/m2 | Total/m2 | ||
Actual results | Damaged/m2 | 40,921 | 2515 | 43,436 |
Undamaged/m2 | 25,415 | 41,512 | 66,927 | |
Total/m2 | 66,336 | 44,027 | 110,363 |
Categories | Polarimetric Decomposition | |||
---|---|---|---|---|
Damaged/m2 | Undamaged/m2 | Total/m2 | ||
Actual results | Damaged/m2 | 28,998 | 14,438 | 43,436 |
Undamaged/m2 | 5025 | 61,902 | 66,927 | |
Total/m2 | 34,023 | 76,340 | 110,363 |
Categories | Building Damage Detection | |||
---|---|---|---|---|
Damaged/m2 | Undamaged/m2 | Total/m2 | ||
Actual results | Damaged/m2 | 37,434 | 6002 | 43,436 |
Undamaged/m2 | 10,455 | 56,472 | 66,927 | |
Total/m2 | 47,889 | 62,474 | 110,363 |
Categories | Damaged | Undamaged | Overall Accuracy | Kappa Coefficient |
---|---|---|---|---|
Coherent change detection | 94% | 62% | 75% | 0.51 |
Polarimetric decomposition | 67% | 92% | 82% | 0.62 |
Integration method | 86% | 84% | 85% | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Chen, X.; Yang, L.; Wang, W.; Zhou, X.; Wang, L.; Yao, Y. Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake. Remote Sens. 2022, 14, 3009. https://doi.org/10.3390/rs14133009
Sun X, Chen X, Yang L, Wang W, Zhou X, Wang L, Yao Y. Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake. Remote Sensing. 2022; 14(13):3009. https://doi.org/10.3390/rs14133009
Chicago/Turabian StyleSun, Xiaolin, Xi Chen, Liao Yang, Weisheng Wang, Xixuan Zhou, Lili Wang, and Yuan Yao. 2022. "Using InSAR and PolSAR to Assess Ground Displacement and Building Damage after a Seismic Event: Case Study of the 2021 Baicheng Earthquake" Remote Sensing 14, no. 13: 3009. https://doi.org/10.3390/rs14133009