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Estimating Deformation Due To Soil Liquefaction in Urayasu City, Japan 
Using Permanent Scatterers 
 
Abstract 
 
In Japan, several cities endured severe damage due to soil liquefaction phenomenon, which was developed in 
association with the massive shaking of the 2011 Tohoku earthquake. Measuring soil liquefaction deformations 
was not an easy task, mainly because of the total loss of signal coherence in the affected regions. In this paper, 
we present our approach to estimate the deformations associated with soil liquefaction using interferometric 
synthetic aperture radar techniques. We use a stack of coseismic interferograms to identify the reliable pixels in 
the damaged areas using permanent scatterers technique. Then, we estimate and remove the preseismic mean 
velocity and DEM error components. Finally, we identify the liquefaction deformation component using least 
squares inversion and spatial phase filtering. We test the performance of the proposed approach using synthetic 
data, simulating the effects of soil liquefaction. The simulation results show a RMSE of the liquefaction defor-
mation of 5.23 mm. After that, we estimate the deformation associated with soil liquefaction in Urayasu city, 
Japan, using ALOS-PALSAR data.  The proposed approach allows a prompt estimation of the liquefaction de-
formation by utilizing the SAR images archives with only one postseismic SAR image. 
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1. Introduction 
 

The 2011 off the Pacific Coast Tohoku earthquake is the largest earthquake recorded in the history of seismic 
observation in Japan. This megathrust earthquake struck Japan with a moment magnitude of M9.0 on March 11, 
2011 at 05:46 Universal Time Coordinated (UTC). Destructive damage was caused by this earthquake and by 
the tsunami which followed it, along the Pacific Coast in Tohoku and Kanto, Japan. Imakiire and Kobayashi 
(2011) presented the coseismic displacement maps for Japan using GNSS Earth Observation Network System’s 
(GEONET). The coseismic crustal deformation was remarkably large with a maximum horizontal onshore 
movement of 5.3 meters and a subsidence of 1.2 meters.  Regarding Kanto region, ElGharbawi and Tamura 
(2014) used InSAR and GPS observations to present the coseismic crustal deformation for Tokyo bay area 
showing a maximum displacement of 0.8 meters in the Line-Of-Sight (LOS) direction. In addition to this large 
crustal motion, extensive soil liquefaction was developed causing severe damage to the super and infra-
structures over a wide area along the Pacific Coast in Tohoku and in Kanto, including the Tokyo Bay area. 
Numerous researchers reported their field investigation results of the local surface deformations due to soil liq-
uefaction in Kanto region (Bhattacharya et al., 2011; Yamaguchi  et al., 2012; Yasuda et al., 2012; Tokimatsu et 
al., 2012; Tsukamoto et al., 2012; Ishihara, 2012). 
 
Because of the extensive damage that was caused by soil liquefaction, the need for deformation assessment in 
liquefied areas has been raised. Interferometric synthetic aperture radar (InSAR) has been used successfully to 
measure and study surface deformation due to several phenomena (Burgmann et al., 2000) such as glacier 
movements (Goldstein et al., 1993), earthquakes (Massonnet et al., 1994) and land subsidence (Buckley et al., 
2003). Unfortunately, because of the total loss of coherence in liquefied areas the standard multi-look InSAR 
analysis techniques could not be successfully applied. Furthermore, it is rather unconventional to use single-look 
(Permanent Scatterers) InSAR techniques in major shock earthquake deformation analysis. Nevertheless, it is 
very tempting to investigate the possibility of using Permanent Scatterers InSAR (PS-InSAR) techniques to es-
timate liquefaction deformation because of its numerous advantages. 
 
The Permanent Scatterers (PSs) was first introduced by Ferretti et al. (2001) which refers to those pixels that 
maintain coherent over long time intervals. The PS pixels are less affected by temporal and geometrical decorre-
lations,  therefore, PS pixels are very good targets for InSAR time series analysis. Using PS pixels in defor-
mation time series analysis was a breakthrough that led to increasing the accuracy of estimated terrain velocity 
and Digital Elevation Model (DEM) up to millimeter and submeter level, respectively. Several researchers de-
veloped valuable methods to identify and analyze PS pixels e.g., (Ferretti et al., 2001; Ferretti et al., 2000; Ly-
ons et al., 2003; Kampes, 2005). These methods use a functional model to describe the temporal variation of the 
phenomenon that being analyzed which have been very successful in deformation monitoring in urban areas. 
For rural areas, Hooper et al. (2007) developed a method named StaMPS for identifying and analyzing PS pixels. 
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They proposed using temporal phase analysis to estimate the phase stability of the candidate pixels, then isolat-
ing the PS pixels based on probability estimation. Finally, they estimated the deformation signal by phase un-
wrapping and subtracting estimates of the nuisance terms. 
 
PS-InSAR techniques mainly estimate the mean crustal deformation velocity. For temporal non-linear defor-
mation analysis, an estimate of the mean deformation velocity has to be conducted first. Then the residual phas-
es are subjected to additional analysis process, such as, applying spatial and temporal filtering (Ferretti et al., 
2000), Single Value Decomposition (SVD) analysis (Mora et al., 2003) or empirical mode decomposition analy-
sis (Liu et al., 2009). The main target of this paper is estimating the deformation associated with soil liquefac-
tion in Urayasu city Japan, but the liquefaction phenomenon was developed in association with the massive 
shaking of the 2011 Tohoku earthquake, therefore it is a discrete event and can only be analyzed using a 
preseismic SAR image and postseismic one to form a coseismic interferogram. Unfortunately, due to the severe 
damage associated with liquefaction the interferogram phases appear to be decorrelated. Furthermore, the co-
seismic shock of the 2011 Tohoku earthquake (Imakiire and Kobayashi, 2011; ElGharbawi and Tamura, 2014) 
prevents an adequate estimation of the mean temporal velocity using PS-InSAR technique, even for correlated 
pixels. 
 
In this paper, we describe our approach to estimate the deformation associated with soil liquefaction in Urayasu 
city, Japan, one of the severely affected regions by this phenomenon. The main importance of this analysis 
comes from that, it is very difficult to retrieve deformations due to soil liquefaction using multi-look InSAR 
analysis because the loss of coherence in the liquefied areas, furthermore, the soil liquefaction phenomenon can 
be a real hazard in seismic active regions like Japan. 

Before proceeding with deformation analysis, we first conduct a simulation analysis for PS behavior in liquefied 
regions. The target of this simulation is to assure the reliability of using PS pixels in this type of analysis. After 
the simulation, we start our analysis by generating a stack of single master interferograms. We use a postseismic 
image as a master and a stack of preseismic images as slaves. In this interferometric stack the coseismic shock 
of the earthquake is presented in every interferogram and the near linear velocity requirement for PS analysis is 
preserved. Then, we select an initial pixels subset based on amplitude analysis and refine that selection by esti-
mating the temporal phase stability. After that, we use a functional model to estimate the relative mean velocity 
and DEM error between neighboring pixels. After removing the estimated parameters from the observed phases, 
we identify the master image contribution, which contains the liquefaction effect among others. Finally, to iso-
late the liquefaction effect, we apply spatial filtering to the master contribution using only the pixels that are 
located in non-liquefied areas. 
 
In this paper, we prove that PS analysis can be applied successfully in areas affected by major earthquakes like 
the 2011 Tohoku earthquake. Also, we identify reliable pixels within heavily damaged areas due to soil lique-
faction phenomenon. We estimate and remove the effects of preseismic mean velocity and DEM error from the 
PSs observed phase. And finally, we present the deformation due to soil liquefaction effect in Urayasu city, Ja-
pan. We test our approach using synthetic data then we apply it to our study area using ALOS-PALSAR data. 
 
This paper is organized as follows: Section 2 describes the study area and liquefaction effect on InSAR analysis. 
Section 3 presents the analysis approach. Section 4 presents the application of the proposed method using syn-
thetic. Section 5 presents the estimation of liquefaction deformation in Urayasu city and finally section 6 is ded-
icated to conclusions. 

2. Study Area and Problem Identification 
 

2.1 Study Area and Data Used 
 
Urayasu city, Japan (Fig. 1) was built on reclaimed land during the 1960’s to 1980’s (Tokimatsu et al., 2012). 
During the 2011 Tohoku earthquake, the city suffered from severe damage due to soil liquefaction, this damage 
was reported by Kanto Regional Development Bureau (KRDB) and the Japanese Geotechnical Society (JGS) 
(Fig. 2.c). The deformation associated with soil liquefaction effect in Urayasu city is the main focus of this anal-
ysis; therefore, the study area was restricted to 11.4 × 9.6 km in range and azimuth directions, respectively. In 
this analysis, we use 18 ALOS-PALSAR, ascending, SAR images spanning from August 8, 2006 to April 6, 
2011 (Table 2). For our study area, only one postseismic image is available, because ALOS-PALSAR went out 
of service shortly after the main shock of the 2011 Tohoku earthquake. 
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Fig.1. Urayasu city, Kanto region , Japan. Arieal image from Google Earth. 

2.2 Problem Identification 
 

The main problem in measuring the deformation associated with soil liquefaction is the total loss of coherence 
in the affected areas. This coherence loss inspired Ishitsuka et al., (2012) and Tamura and Li, (2013) to identify 
the pixels that were affected by soil liquefaction by subtracting a preseismic coherence map from the coseismic 
coherence map then setting a suitable threshold. Nevertheless, a measure of the deformation associated with soil 
liquefaction could not be estimated using InSAR technique yet.  
 
To demonstrate the severity of the problem, we generate a preseismic coherence map using two ALOS-
PALSAR images acquired on January 4, 2011 and February 19, 2011 (Fig. 2.a). We also generate a coseismic 
coherence map using images acquired on February 19, 2011 and April 6, 2011 (Fig. 2.b). A comparison between 
these two figures demonstrates the liquefaction damage extent and severity around Tokyo bay area. The Kanto 
Regional Development Bureau (KRDB) and the Japanese Geotechnical Society (JGS) conducted an extensive 
field survey to map the damaged areas due to soil liquefaction (Fig. 2.c). The surveyed areas were classified to 
(Liquefaction place) and (Non-liquefaction place).And because of the laboring surveying process, some assump-
tions had to be made to save time and resources, therefore, additional categories were added to the classification, 
(Assumed liquefaction area) and (Assumed non-liquefaction area). By comparing the coseismic coherence map 
(Fig. 2.b) and the field survey map (Fig. 2.c), a good agreement can be observed. 
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Fig.2. (a) Preseismic coherence map [January 4, 2011- February 19, 2011], (b) Coseismic coherence map 
[February 19, 2011- April 6, 2011] and (c) Field survey for liquefaction areas conducted by KRDB and JGS 
(2011). 

2.3 Permanent Scatterers in Liquefied Regions.  
 
We study the coherence, 𝛾𝛾𝑐𝑐 , and temporal correlation, 𝛾𝛾𝑡𝑡 , for PS pixels that were affected by soil liquefaction 
using simulation analysis. The target of this simulation is to prove that, in areas that were subjected to large de-
formation causing total coherence loss, PSs can still be identified and provide valuable information.  
 
To study the coherence eq. (1.a) (Guarnieri and Prati, 1997) and temporal correlation eq. (1.b) (Ferretti et al., 
2001) simultaneously, we simulate 31 SAR images with dimensions of 8-by-3 pixels. For every pixel in the 
simulated images, we assume that it contains a number of scatterers, and the final observed phase for each pixel 
is the summation of the complex return of all the scatterers contained in that pixel. We assume that every pixel 
contains only one dominating scatterer (a PS) and five dominated scatterers (Fig. 3.a).  
 
The complex observation of each pixel can be simulated by eq. (1.c). In this simulation, we assign the magni-
tude of the dominated scatterers as one-tenth the magnitude of the dominating scatterer (PS). To simulate the 
situation before the earthquake, we assume a constant observed phase for each pixel during the entire 
slave images stack, the phases are chosen randomly for each scatterer and maintained the same value 
for the entire slave images stack, and in order to simulate the effect of soil liquefaction, we add a random 
phase component, based on uniform distribution, to the chosen slave phase of every scatterer to form the master 
image phase eq. (1.d) (Fig. 3.b). We also add a circular Gaussian phase noise to the real and imaginary compo-
nents of the complex observation with gradually incremented standard deviation, σn, from 0.05 to 0.8 (rad.).  
 
𝛾𝛾𝑐𝑐 = |𝐸𝐸[𝑠𝑠1∙𝑠𝑠2

∗]|
�𝐸𝐸[|𝑠𝑠1|2]∙𝐸𝐸[|𝑠𝑠2|2]

  ,                                     (1.a) 
 
𝛾𝛾𝑡𝑡 = � 1

𝑁𝑁𝑠𝑠
∑ 𝑒𝑒𝑗𝑗Φ𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑖𝑖𝑁𝑁𝑠𝑠
𝑖𝑖=1 �         (1.b) 

 
SSlave,pixel = 1 ∙ ej�φ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� + ∑ �0.1 ∙ ej�φ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
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SMaster,pixel = 1 ∙ ej�φ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+rand∙2π� + ∑ �0.1 ∙ ej(φ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+rand∙2π)�
𝑖𝑖

+ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁5
𝑖𝑖=1                 (1.d) 

 
where 𝑠𝑠1 and 𝑠𝑠2 are the master and slave complex phase,  j = √−1, 𝑁𝑁𝑠𝑠 is the number of simulated interferomet-
ric phase, in this analysis equals 30, and   φ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = rand ∙ 2π  which is applied only once for each scatterer 
in the slave images stack. 
 
We generate 30 single-master interferograms using the simulated images. We use the 8-by-3 SLC patch of 
every interferogram to estimate its coherence eq. (1.a) and by averaging the coherence stack, we esti-
mate the mean coherence value.As for the temporal correlation, it is estimated for each pixel in the patch eq. 
(1.b). We repeat this analysis 5000 times for each value of σn and calculate the corresponding coherence 
and temporal correlation mean values, the results are shown in (Fig. 4).  
 
The results of this simulation demonstrate that, the temporal correlation of PS can be higher than 0.8 if the noise 
standard deviation is below 0.4 (rad.) (Fig. 4.a), even if the pixels were affected by random decorrelating defor-
mation in a single event, conditioning that the postseismic image is used as a common master. On the other hand, 
the coherence mean values are very low. It is noticed that the mean coherence value in the simulation analysis is 
constant and have a non-zero value, regardless of the simulation assumption of total loss of spatial phase coher-
ence. This result is attributed to the fact that the estimation of spatial coherence using eq. (1.a) is biased, and it 
requires using many pixels to avoid coherence overestimation, (multi-look interferograms). In this study, we aim 
at fine spatial classification of PS pixels; therefore, we use a small window to estimate coherence to be con-
sistent with the target of the proposed methodology, therefore, this constant value is equivalent to the total co-
herence loss. A scatter plot between the temporal correlation and coherence is presented in (Fig. 4.b), it is clear 
that the coherence values are following Gaussian distribution centered on the 0.2 value, this is mainly because 
the random phase noise that were added to the simulated observed phase were chosen based on Gaussian distri-
bution. For PS analysis in area that contains liquefied and non-liquefied regions, and after selecting PS pixels 
using temporal phase stability analysis, a coherence threshold of 0.6 for the mean coherence map can be used to 
identify PSs in non-liquefied regions (Fig. 4.b). 
 

 

Fig.3. (a) Pixel contains a PS before soil liquefaction, and (b) after soil liquefaction. 
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Fig.4. Numerical simulation results for PS in liquified reagions, (a) mean coherence and temporal correlation 
versus noise standard deviation, the analysis was repeated 5000 times for each value of  𝛔𝛔𝐧𝐧, (b) scatter plot 
between coherence and temporal correlation. 

 
3. Methodology 
 
3.1 InSAR Analysis 

 
In this analysis, we start by generating a stack of single-master-single-look interferograms. Assume the number 
of available SAR images and generated interferograms to be N+1 and N, respectively. We use a postseismic 
image as a common master and a stack of preseismic images as slaves. In this interferometric stack the main 
coseismic shock of the earthquake is presented in every interferogram, therefore, the near linear velocity re-
quirement for PS analysis is preserved. After interferograms generation, a spatial filtering is applied to enhance 
the signal-to-noise ratio, SNR, of the interferometric phase (Perissin and Wang, 2012). 

The interferometric phase generated using two single look complex (SLC) images is presented in eq. (2). Where 
𝑊𝑊{∙} is the wrapping operator and 𝜙𝜙𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑅𝑅𝑅𝑅𝑅𝑅  is the residual topographic component after removing the topography 
effects using Digital Elevation Model (DEM). In this research, we use the Shuttle Radar Topography Mission 
(SRTM-3) DEM to remove the topography effects presented in interferograms. The interferometric phase also 
contains deformation effects 𝜙𝜙𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, atmospheric delay effects 𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴, baseline error effects 𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  and noise 
effects 𝜙𝜙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 . In this analysis, the deformation component, in any interferogram, can be further decomposed to 
the preseismic mean velocity component 𝜙𝜙𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 , the earthquake main coseismic shock component 
𝜙𝜙𝐸𝐸𝐸𝐸 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 and the liquefaction component 𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 eq. (3). 

Φ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑊𝑊�𝜙𝜙𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜙𝜙𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜙𝜙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�       (2) 

𝜙𝜙𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜙𝜙𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝜙𝜙𝐸𝐸𝐸𝐸 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿       (3) 
 
Our main target is estimating the deformation due to liquefaction 𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, which is only presented in the 
master image and expected to have very short correlation distance that can be assumed as spatially uncorrelated. 
On the other hand, the other components are either spatially correlated (𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴 , 𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 , 𝜙𝜙𝐸𝐸𝐸𝐸 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜), or can be 
estimated using a periodogram (𝜙𝜙𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  , 𝜙𝜙𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑅𝑅𝑅𝑅𝑅𝑅 ). Based on these observations, the analysis strategy is 
constructed. First, limiting the analysis to those pixels that are most likely contain a PS, this will increase the 
SNR and the reliability of the observed phase. Second, estimating and removing the mean velocity, 
𝜙𝜙𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, and DEM error, 𝜙𝜙𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑅𝑅𝑅𝑅𝑅𝑅 , from the observed phase. Third, identifying the master image contribu-
tion, and fourth, removing the spatially correlated phase to isolate the liquefaction deformation effect, 
𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. 
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3.2 Identify PS Pixels 
 
To identify pixels that contain PSs, we use the method proposed by Hooper et al. (2007). Initially, a subset of 
pixels were selected based on their amplitude dispersion index, 𝐷𝐷𝒜𝒜 , which is defined by Ferretti et al. (2001) as 
eq. (4), where 𝜎𝜎𝒜𝒜  and 𝜇𝜇𝒜𝒜 are the standard deviation and the mean of a series of amplitude values, respectively.  

𝐷𝐷𝒜𝒜 ≅ 𝜎𝜎𝒜𝒜
𝜇𝜇𝒜𝒜

            (4) 
 
For pixels that contain a PS, the noise effect, 𝜙𝜙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , is small enough not to obscure the signal, more precise 
identification for those pixels can be done by estimating the phase stability for each pixel using phase analysis. 
Recalling eq. (2), the contribution of the first four terms dominates the noise term, making it difficult to identify 
PS pixels. Therefore, in order to get an estimate for the noise term 𝜙𝜙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒 , these four terms should be estimated 
and removed from the interferometric phase Φ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 . The first four terms in eq. (2) are spatially correlated, ex-
cept for the liquefaction effect 𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and the DEM error 𝜙𝜙𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑅𝑅𝑅𝑅𝑅𝑅  which tends to be partly spatially corre-
lated.  

To estimate the spatially correlated component of the phase, Hooper et al. (2007) proposed to apply a band-pass-
filter that adapts to any phase gradient present in the data. They implemented a band-pass filter as an adaptive 
phase filter combined with a low-pass filter, applied in the frequency domain. A comprehensive description for 
approach proposed by Hooper et al. (2007) is given for completeness. 

First, each pixel is weighted by setting the amplitude in all interferograms to an estimate of the SNR for the pix-
el, which in the first iteration it is set as 1 𝐷𝐷𝒜𝒜⁄ . Second, the complex phase of the weighted PS pixels is sampled 
to a grid with spacing of 100 m to enable using 2-D fast Fourier transform. Third, 2-D FFT is applied to a grid 
size of 32-by-32 cells and the intensity is smoothed by convolution with a 7-by-7 pixel Gaussian window eq. (5). 
Fourth, the adaptive phase filter response, H(𝑢𝑢, 𝑣𝑣), is combined with a narrow low-pass filter response, L(𝑢𝑢, 𝑣𝑣), 
to form the new filter response, G(𝑢𝑢, 𝑣𝑣) eq. (6), and by applying the new filter to the resampled observed phase 
in  frequency domain, 𝐹𝐹𝐹𝐹𝐹𝐹[Φ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼], the spatially correlated phase component, Φ�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, will be obtained after 2-
D inverse FFT eq. (7), where L(𝑢𝑢, 𝑣𝑣) is the fifth-order Butterworth filter, with a typical cutoff wavelength of 
800 m, and H�(𝑢𝑢, 𝑣𝑣) is the median value of H(𝑢𝑢, 𝑣𝑣). 

H(𝑢𝑢, 𝑣𝑣) = |Gaussian(𝑢𝑢, 𝑣𝑣) ∗ 𝐹𝐹𝐹𝐹𝐹𝐹[Φ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼]|         (5) 
 

G(𝑢𝑢, 𝑣𝑣) = L(𝑢𝑢, 𝑣𝑣) + 0.3 �H(𝑢𝑢,𝑣𝑣)
H�(𝑢𝑢,𝑣𝑣)

− 1�          (6) 
 
Φ�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�G(𝑢𝑢, 𝑣𝑣) ∗ 𝐹𝐹𝐹𝐹𝐹𝐹[Φ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼]�         (7) 
 
Fifth, subtracting the filtered phase, Φ�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 , from the observed phase, Φ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 , and rewrapping. This will give 
an estimation of the spatially uncorrelated phase eq. (8). The first term in the right hand side of eq. (8) is ex-
pected to be small, therefore we will replace this term by δ. As for the second term, the combined effects of the 
spatially uncorrelated component of the DEM error, 𝜙𝜙𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝑅𝑅𝑅𝑅𝑅𝑅.𝑢𝑢 , and the PS slant range location within the pixel 

(Ferretti et al., 2001) can be estimated as an error in the look angle, 𝜃𝜃𝑢𝑢, �𝜙𝜙𝜃𝜃𝑢𝑢 = 4𝜋𝜋
𝜆𝜆
𝐵𝐵⊥ ∙  𝜃𝜃𝑢𝑢�, using a periodogram 

eq. (9) where, 𝐵𝐵⊥ is the perpendicular baseline and 𝜆𝜆 is the signal wavelength. Meanwhile, the effect of liquefac-
tion, 𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, can be considered as a constant bias. 

𝑊𝑊{Φ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − Φ�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼}  =  𝑊𝑊 �𝜙𝜙𝑢𝑢
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝜙𝜙𝑢𝑢

𝐸𝐸𝐸𝐸 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜙𝜙𝑢𝑢
𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜙𝜙𝑢𝑢

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�  +  𝑊𝑊� 𝜙𝜙𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑅𝑅𝑅𝑅𝑅𝑅.𝑢𝑢 +

𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  +  𝜙𝜙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�           (8) 
  

𝑎𝑎𝑎𝑎𝑎𝑎max
𝜃𝜃�𝑢𝑢

�𝛾𝛾𝑥𝑥 = �1
𝑁𝑁
∑ 𝑒𝑒𝑗𝑗(Φ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼−Φ�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼). 𝑒𝑒−𝑗𝑗�

4𝜋𝜋
𝜆𝜆 𝐵𝐵⊥𝑖𝑖 ∙ 𝜃𝜃

�𝑢𝑢�𝑁𝑁
𝑖𝑖=1 ��       (9) 
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Sixth, subtracting the estimated phase due to look angle error, 𝜙𝜙�𝜃𝜃𝑢𝑢, from eq. (8), and assuming that δ ≈ 0, makes 
eq. (10) the first estimation of the noise component 𝜙𝜙�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 . 

𝑊𝑊�Φ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − Φ�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝜙𝜙�𝜃𝜃𝑢𝑢� = 𝑊𝑊�δ + 𝜙𝜙�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�        (10) 
 
Seventh, using the estimated noise phase 𝜙𝜙�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  to calculate the SNR for every pixel using eq. (11), where 𝑔𝑔 is 
the signal amplitude which assumed to be constant, 𝐴𝐴 is the observed amplitude and 𝜎𝜎�𝑛𝑛2 is the noise variance. 
Finally, to get a better estimate for the noise phase, the process is repeated using the estimated SNR as a weight 
factor. The system converges when the difference of 𝛾𝛾𝑥𝑥 between iterations cease of decreasing. In this analysis, 
we select PS pixels by setting a threshold to the final estimation of 𝛾𝛾𝑥𝑥. 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑔𝑔2

2𝜎𝜎𝑛𝑛2
                    (11.a) 

 
𝑔𝑔� = 1

𝑁𝑁
∑ 𝐴𝐴𝑖𝑖 cos𝜙𝜙�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑖𝑖
𝑁𝑁
𝑖𝑖=1                    (11.b) 

 

𝜎𝜎�𝑛𝑛2 = 1
2
�∑ 𝐴𝐴𝑖𝑖2

𝑁𝑁
𝑖𝑖=1
𝑁𝑁

− 𝑔𝑔�2�                   (11.c) 
 

3.3 PS Analysis 
 
In this analysis, we use the phase difference between neighboring pixels as the basic observation. This should 
reduce the effect of spatially correlated errors during the process of estimating the mean velocity and DEM error 
for PS pixels. This technique was proved to be efficient by several researchers e.g., (Ferretti et al., 2000; Mora et 
al., 2003; Liu et al., 2009; Zhang et al., 2014) 
 
After identifying the PS pixels, a network is constructed to connect PS pairs; each connection is called an arc. 
For that purpose, we use Delaunay triangulation network to connect all PSs in an interferogram. A maximum arc 
length of 800 m is set to reduce the effect of atmospheric component (Williams et al., 1998). Assume the num-
ber of arcs to be M and the number of PS pixels to be K. 
 
The phase difference between two PSs, [a, b], in the ith interferogram can be expressed as in eq. (12). 
 
∆ Φ𝑎𝑎,𝑏𝑏

𝑖𝑖 = 𝑊𝑊�∆𝜙𝜙𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑎𝑎,𝑏𝑏
𝑅𝑅𝑅𝑅𝑅𝑅,𝑖𝑖 + ∆𝜙𝜙𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉,𝑎𝑎,𝑏𝑏

𝑖𝑖  + ∆𝜙𝜙𝐸𝐸𝐸𝐸 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑎𝑎,𝑏𝑏
𝑖𝑖 + ∆𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑎𝑎,𝑏𝑏

𝑖𝑖  + ∆𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴,𝑎𝑎,𝑏𝑏
𝑖𝑖 +

∆𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑎𝑎,𝑏𝑏
𝑖𝑖  +  ∆𝜙𝜙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑎𝑎,𝑏𝑏

𝑖𝑖 �  ,         𝑖𝑖 = 1:𝑁𝑁           (12) 
 
For neighboring pixels with distance less than 800 m, the spatially correlated errors, (∆𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴,𝑎𝑎,𝑏𝑏

𝑖𝑖 , ∆𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑎𝑎,𝑏𝑏
𝑖𝑖 ), 

are significantly reduced. As for the master effect, (∆𝜙𝜙𝐸𝐸𝐸𝐸 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝑎𝑎,𝑏𝑏
𝑖𝑖  , ∆𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑎𝑎,𝑏𝑏

𝑖𝑖 ), it is represented in every 
interforgram and can be treated as a constant bias. Therefore, eq. (12) can be rewritten as eq. (13) 
 
∆ Φ𝑎𝑎,𝑏𝑏

𝑖𝑖 = 𝑊𝑊 �4𝜋𝜋
𝜆𝜆

 𝐵𝐵⊥𝑖𝑖
𝑟𝑟𝑖𝑖∙𝑠𝑠𝑠𝑠𝑠𝑠 𝜗𝜗𝑖𝑖

∆ℎ𝑎𝑎,𝑏𝑏 + 4𝜋𝜋
𝜆𝜆

 𝑡𝑡𝑖𝑖 ∆𝑣𝑣𝑎𝑎,𝑏𝑏 + ∆𝑤𝑤𝑎𝑎,𝑏𝑏
𝑖𝑖 �  ,      𝑖𝑖 = 1:𝑁𝑁      (13) 

 
where, ∆ Φ𝑎𝑎,𝑏𝑏

𝑖𝑖  is the differential phase observation between pixels a and b in the ith interferogram, ∆𝑣𝑣𝑎𝑎,𝑏𝑏 and 
∆ℎ𝑎𝑎,𝑏𝑏 are the mean velocity difference and DEM error difference for the arc, respectively , 𝑡𝑡𝑖𝑖 is the time differ-
ence between the master and slave images that form the interferogram , 𝜆𝜆 is the signal wavelength, ∆𝑤𝑤𝑎𝑎,𝑏𝑏

𝑖𝑖  is the 
residual component for the arc in the ith interferogram, 𝐵𝐵⊥𝑖𝑖 , 𝑟𝑟𝑖𝑖 and 𝜗𝜗𝑖𝑖 are the perpendicular baseline, the sensor 
target distance and the incident angle, respectively. 
 
To estimate the mean velocity difference, ∆𝑣𝑣𝑎𝑎,𝑏𝑏, and DEM error difference, ∆ℎ𝑎𝑎,𝑏𝑏, for an arc, we use the peri-
odogram presented in eq. (14) 
 

𝑎𝑎𝑎𝑎𝑎𝑎 max
∆ℎ𝑎𝑎,𝑏𝑏,∆𝑣𝑣𝑎𝑎,𝑏𝑏

�𝛾𝛾 = �1
𝑁𝑁
∑ 𝑒𝑒𝑗𝑗�∆ Φ𝑎𝑎,𝑏𝑏

𝑖𝑖 �. 𝑒𝑒
−𝑗𝑗�4𝜋𝜋𝜆𝜆  

𝐵𝐵⊥𝑖𝑖
𝑟𝑟𝑖𝑖∙𝑠𝑠𝑠𝑠𝑠𝑠𝜗𝜗𝑖𝑖

∆ℎ𝑎𝑎,𝑏𝑏+
4𝜋𝜋
𝜆𝜆  𝑡𝑡𝑖𝑖 ∆𝑣𝑣𝑎𝑎,𝑏𝑏�𝑁𝑁

𝑖𝑖=1 ��     (14) 
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After estimating the mean velocity difference, ∆𝑣𝑣, and the DEM error difference, ∆ℎ, for the whole arcs network, 
the residual component for the arcs network in every interferogram , ∆𝑤𝑤𝑖𝑖 , can be estimated. After discarding 
arcs with 𝛾𝛾 below a preset threshold, the mean velocity and DEM error for each pixel, with respect to an arbi-
trary reference PS pixel, can be estimated using least squares inversion. eq. (15) 
 
𝑳𝑳 =  𝑨𝑨 ∙  𝑷𝑷           (15) 
 
with 
 

𝑨𝑨 =  �
1 0 ⋯
1 −1 ⋯
⋮ ⋮ ⋱

�
𝑀𝑀 ×𝐾𝐾

  ,𝑳𝑳 = �
∆𝑣𝑣1
⋮

∆𝑣𝑣𝑀𝑀
�  𝑎𝑎𝑎𝑎𝑎𝑎  𝑷𝑷 = �

𝑣𝑣1
⋮
𝑣𝑣𝐾𝐾
� 

 
Where, 𝑨𝑨 is the design matrix relating the arcs, 𝑀𝑀, with the PS pixels 𝐾𝐾, 𝑳𝑳 contains the estimated mean velocity 
difference for the arcs and 𝑷𝑷 is the unknown mean velocity vector for the PS pixels. The DEM error can be es-
timated using the same approach. 
 
It should be noted that eq. (15) is a large sparse linear system and it can be resolved by an iterative method 
based on bidiagonalization procedure that appears in Matlab as a built-in LSQR function (Paige and Saunders, 
1982). 
 
3.4 Estimating Liquefaction Effect 
 
The liquefaction effect is part of the master image contribution to the residual phase, ∆𝑤𝑤𝑖𝑖 . In single master in-
terferometric stack, the master image contribution, for an arc ∆𝑤𝑤𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , can be estimated by calculating the 
mean value of residual stack of that arc eq. (16). Then, the master residual phase component of each PS pixel 
can be estimated using least squares inversion. eq. (15) 
 
∆𝑤𝑤𝑘𝑘𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑁𝑁
∑ ∆𝑤𝑤𝑘𝑘𝑖𝑖𝑁𝑁
𝑖𝑖=1   , 𝑘𝑘 = 1:𝑀𝑀        (16) 

 
The residual phase component of the PS pixels in master image, 𝑊𝑊�𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�, is identified using the same ap-
proach as eq. (15). As a result of using least squares inversion, the extracted phase is expected to be partially 
unwrapped. To avoid the errors in this rough phase unwrapping process, such as phase aliasing, we rewrap the 
extracted phase and use Delaunay Minimum Cost Flow (DMCF) (Costantini and Rosen, 1999) for phase un-
wrapping instead. The result of this process is the unwrapped residual phase of the master image,   𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 .  
 
In our study area, the identified PS pixels can be categorized into two groups, PS pixels located in liquefied re-
gions and PS pixels located in non-liquefied regions. The residual master phase of the first group, liquefied pix-
els 𝑤𝑤𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , is presented in eq. (17), which contains the liquefaction effect, 𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, and the spatially cor-
related components, (𝜙𝜙𝐸𝐸𝐸𝐸 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 , 𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴, 𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵). As for the second group, non-liquefied pixels, the residual 
master phase, 𝑤𝑤𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , is presented in eq. (18), those pixels contain only the spatially correlated components.   
 
𝑤𝑤𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜙𝜙𝐸𝐸𝐸𝐸 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜙𝜙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵        (17) 
 
𝑤𝑤𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜙𝜙𝐸𝐸𝐸𝐸 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜙𝜙𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵          (18) 

 
The spatially correlated components can be removed using spatial phase filtering; this process should isolate the 
liquefaction deformation component. To avoid contaminating the liquefaction component during the spatial 
phase filtering, we use only the PS pixels that are most likely in non-liquefied regions.  
 
In order to identify PS pixels in non-liquefied regions, we set a threshold to the mean coherence map, which is 
the mean of the coherence of all interferograms. To avoid coherence overestimation, we calculate the coherence 
using a 9-by-3 pixels window, in azimuth and range directions, respectively. The window is centered over each 
PS pixel, and the estimated coherence value is assigned to that PS pixel. This coherence estimation reflects the 
stability of the PS surrounding pixels. Finally, we can identify the PS pixels in non-liquefied areas by using a 
coherence threshold of > 0.6, based on the simulation analysis in section 2.3. 
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The residual phases of PS pixels located in non-liquefied areas are expected to contain only the spatially corre-
lated component eq. (18), therefore, we use those pixels to estimate and remove the low-pass component of the 
phase. First, we interpolate phase values to a regular grid using cubic 2-D interpolation. Second, we smooth the 
interpolated phase by 2-D Gaussian filter, and finally, we subtract the smoothed phase from the master image 
residual phase,  𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 . The resulting phase is expected to contain the coseisimc spatially uncorrelated 
deformation, i.e. deformations due to soil liquefaction. 
 
4. Testing with Synthetic Data 
 
To assess the performance of the analysis method, a test with synthetic data is conducted first. Using synthetic 
data allows a quantitative analysis of the proposed method’s accuracy. In this test, we simulate the phase of 
2000 PS pixels in 31 SLC images with time interval of 30 days and dimensions of 5 km × 4 km in the range and 
azimuth directions, respectively, using ALOS-PALSAR parameters. The simulated phases include linear defor-
mation rate, topography error, atmospheric delay, baseline error, noise and the expected earthquake effects. 
 
The linear deformation rate is simulated as a bowl with maximum velocity of 5 cm/year (Fig. 5.a). The simulat-
ed topography error has a uniform distribution between -10 m and 10 m (Fig. 5.b). Atmospheric delay, baseline 
error and noise are simulated for each SLC image. The atmospheric signal is simulated using fractal surfaces 
with dimension of 2.67 (Hanssen, 2001), the maximum variation of the simulated atmospheric delay is about 2.5 
rad (Fig. 5.e). The baseline error is simulated as 2-D surface, and the maximum and minimum values are as-
signed randomly for each image between the values -9 and 9 rad (Fig. 5.f). The noise effect is randomly set to a 
mean of 20 ̊  with standard deviation of 10 ̊ (Fig. 5.g). The earthquake coseismic shock is simulated as 2-D sur-
face ranging from -20 rad to -30 rad (Fig. 5.c), and the liquefaction effect is simulated as local deformation with 
different patterns ranging from -6 cm to 7 cm (Fig. 5.d), these contributions are added to the master image only 
(Fig. 5.h).  The simulated phases sample presented in (Fig. 5) is used to form the master SLC image.  
 
In this test, a total number of 30 interferograms, with perpendicular baseline ranging from -2 km to 2 km and 
temporal baseline up to 900 days, are generated using 31 simulated SLC images (Fig. 6). We start the analysis 
by estimating the interferometric phase for the 2000 PS pixels which are randomly distributed over the study 
area. Then, we construct Delaunay triangulation network to connect the pixels, a total of 11652 arcs were gener-
ated. Using periodogram, we estimate the relative mean velocity, DEM error and residual component for each 
arc. After discarding the arcs that give temporal coherence, 𝛾𝛾, less than 0.8 eq. (14) and removing the isolated 
PS pixels, we use eq. (15) to estimate the mean velocity and DEM error for the 1963 remaining pixels.  
 
To estimate the liquefaction effect, first, we use eq. (16) to identify the contribution of master image and eq. 
(15) to estimate the residual phase component of every PS pixel. Then we remove the pixels located in liquefied 
regions, simulating the process of the spatial coherence threshold. Finally, we use only 30% of the remaining 
pixels in spatial phase filtering.  
 
It is noticed that, when the spatially correlated error, such as baseline error, are significantly large, it may affect 
the estimated mean velocity and DEM error by an imposed phase gradient. To avoid this effect, an estimation of 
the phase gradient using a periodogram can be added to the analysis. Considering the fact that in this analysis 
we are not interested in the spatially correlated component of the phase, applying a simple ramp removal to the 
estimated mean velocity and DEM error would be sufficient. 
 
The estimated linear velocity, DEM error, liquefaction effect and the associated estimation error are presented in 
Fig. 7. Also, a statistical analysis of the estimation error is given in (Table 1), showing RMSE of the estimated 
linear velocity, DEM error and liquefaction effect of 1.68 mm/year, 0.73 m and 5.23 mm, respectively.  
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Fig.5. Sample of the simulated phases,(a) Linear deformation rate, (b) DEM error, (c) Main coseismic shock of 
the earthquake “in master image only”, (d) Local deformation simulating liquefaction effect “in master image 
only”, (e) Tropospheric delay effect, (f) Baseline error, (g) Simulated noise, (h) The simulated master SLC.  

 
 

 

Fig.6. Generated interferograms using the simulated SLC images. 
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Fig.7. (a) Estimated linear deformation rate, (b) Error in the estimated linear deformation rate, (c) Estimated 
DEM error, (d) Error in the estimated DEM error, (e) Estimated local deformation, (f) Error in the estimated 
local deformation. 

Table 1 
Statistical analysis results for the simulation test 

 Mean Standard 
Deviation  RMSE 

Error in the estimated deformation rate  (mm/year) -0.26 1.66 1.68 
Error in the estimated DEM error  (m) -0.35 0.64 0.73 
Error in the estimated local deformation  (mm) -0.5 5.21 5.23 

 
5. Estimating Liquefaction Deformation in Urayasu City 
 
5.1 Data Preparation 
 
In this analysis we use 18 SAR images which were acquired by ALOS-PALSAR covering the period from 8 
August 2006 to 6 April 2011. Data were provided by the Japan Aerospace Exploration Agency, JAXA. Single 
looked interferograms are generated using SARscape software as shown in (Table 2), the effect of topography is 
removed using SRTM-3 DEM, and Goldstein method (Goldstein and Werner, 1998) is used for filtering  

5.2 Analysis 
 
We start the analysis by calculating the dispersion index map using a series of ALOS-PALSAR amplitude im-
ages, and by setting a dispersion index threshold of, 𝐷𝐷𝒜𝒜 ≤ 0.5, a first subset of 643,623 pixels are chosen. Then, 
the phase stability of each pixel is estimated using the procedure proposed by Hooper et al. (2007) and after set-
ting a threshold of, 𝛾𝛾𝑥𝑥 ≥ 0.8, only 192,062 pixels remain. The remaining pixels are connected using Delaunay 
triangulation network with maximum arc length of 800 m. a total number of 1,150,956 arcs are generated. Next, 
we estimate the relative mean velocity and DEM error for each arc using eq. (14), and by setting an arc thresh-
old of,  γ ≥ 0.8, and removing the isolated PS pixels, 190,329 pixels remain. The estimated mean velocity and 
DEM error for each pixel is calculated using eq. (15) and presented in (Fig. 8.a) and (Fig. 8.b), respectively. 
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After estimating the residual component for each arc, the master image contribution is identified using eq. (16), 
eq. (15) and unwrapped using (DMCF) method. For phase filtering, we estimate the mean coherence map (Fig. 
8.c) using the procedure described in section 3.4. We use a spatial coherence threshold of 0.8, a total number of 
21,838 pixels are identified and used for spatial phase filtering. The remaining deformation phase, which is be-
lieved to be due to soil liquefaction, are geocoded and presented in (Fig. 8.d). 
 

Table 2 
Details of SAR images and interferograms. 

Image No. B┴ (m.) ∆ t (days) Satellite/Sensor 
/Direction 

2006-08-08 1 -5066 -1702  
ALOS –  
PALSAR 

 
L-band 

 
Fine Beam Sin-
gle polarization 

(FBS) (HH) 
 

Ascending 
 

Critical Normal 
Baseline   

(12500 m.) 
 

2006-09-23 2 -4580 -1656 
2006-12-24 3 -5470 -1564 
2007-05-11 4 -3708 -1426 
2007-12-27 5 -3122 -1196 
2008-02-11 6 -2494 -1150 
2008-03-28 7 -1988 -1104 
2008-08-13 8 -7004 -966 
2008-11-13 9 -5712 -874 
2008-12-29 10 -5964 -828 
2009-02-13 11 -5100 -782 
2009-11-16 12 -4219 -506 
2010-02-16 13 -3530 -414 
2010-04-03 14 -2792 -368 
2010-08-19 15 -2332 -230 
2011-01-04 16 -2194 -92 
2011-02-19 17 -401 -46 
2011-04-06 18 0 0 
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Fig.8. (a) Estimated mean velocity, (b) Estimated DEM error, (c) Mean coherence, (d) Liquefaction deformation. 
Data are overlayed on Google Earth image. 

5.3 Results 
 
In areas where liquefaction occurred, many sand boils, ground settlements as well as settlements and tilts of 
buildings and houses on spread foundation were observed. Vertical gaps were created around pile-supported 
structures due to ground settlements, causing damage to piping and other facilities (Tokimatsu et al., 2012). The 
effect of soil liquefaction on bare land and roads was severe, causing a total loss of signal coherence; therefore, 
the main idea of this research is detecting the deformation of the most stable scatterers that can provide a signal 
with minimum decorrelation, i.e. man-made structures. 
 
Detecting the deformation of man-made structures (PSs) gives an estimation of the amount of tilt and subsid-
ence of buildings, projected in the line-of-sight direction of the sensor. This estimation gives a clear indication 
of the damage severity of buildings, if exist. It is worth noting that, the full observation signature of the study 
area hardly showing any uplift or positive LOS values (ALOS-PALSAR, ascending direction) because of the 
2011 Tohoku earthquake main coseismic shock effect. Nevertheless, after removing the spatially correlated 
component of the phase, the local deformation signature can have a positive or negative LOS values. A simple 
interpretation of the observed LOS deformation for PS pixels is given in (Fig. 9), where a positive LOS defor-
mation value indicates tilting towards the sensor and negative LOS deformation value indicates tilting away 
from the sensor or vertical subsidence.  
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Fig.9. Signature of local deformation (a) Tilt away from sensor, negative value, (b) Vertical subsidence, 
negative value, (c) Tilt towards the sensor, positive value. 

Because ground truth data of PS pixels deformation is not available, only a qualitative assessment can be con-
ducted. Tokimatsu et al., (2012) created a damage map (Fig. 10.b) based on field performance of soils and build-
ings. They included ground settlements as well as the settlements and tilting of the houses. They classified the 
extent of soil liquefaction into four categories, namely, no liquefaction, slight liquefaction, moderate liquefac-
tion and extensive liquefaction. In (Fig. 10.c), we present part of the soil liquefaction’s damage map created by 
KRDB and JGS, which is demonstrated in (Fig. 2.c). The distribution of the average inclination angle of resi-
dential houses supported on spread foundations is presented in (Fig. 10.d) based on survey of about 9000 houses 
conducted by Urayasu city government and reported by (Tokimatsu and Katsumata, 2012). To facilitate the dis-
cussion of the results, we subdivide Urayasu city to several regions identified by letters, (Fig. 10.a) (Table 3), 
and, when needed, the region is further subdivided into districts identified by numbers.  
 

Table 3 
Regions of Urayasu city 

ID Region ID Region 
A Maihama I Irifune 
B Higashina J Chidori 
C Kairaku K Minato 
D Benten L Takasu 
E Tomioka M Akemi 
F Mihama N Hinode 
G Tekkodon O Tokyo Disney Land 

H Imagawa P Hilton and Sheraton Grande 
Tokyo bay Hotels 
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Fig.10. (a) Regions of Urayasu city (Table 3), (b) Soil liquefaction damage map (Tokimatsu et al., 2012), (c) 
Field survey for liquefaction areas conducted by KRDB and JGS (2011), (d) Average inclination angle map 
(Tokimatsu and Katsumata, 2012). (e) Soil liquefaction based on the proposed analysis,  
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1. Region B, Higashina. 
 

In Higahina region, districts no.1 & 2, we detect a coseismic subsidence (Fig. 10.e), which was not reported by 
KRDB and JGS (Fig. 10.c) or Tokimatsu et al., (2012) (Fig. 10.b). A slight inclination angle of the buildings 
was detected by Urayasu city government (Fig. 10.d). This proves that, this region was subjected to a coseismic 
ground subsidence that did not damage the infrastructure but caused the buildings to subside and tilt. 
 
In district no.3, we detect some deformation in the central part, which confirms the results of the field survey 
conducted by KRDB and JGS, Tokimatsu et al., (2012) and Urayasu city government. For the eastern and west-
ern parts the field surveys presented by KRDB and JGS and Tokimatsu et al., (2012) are contradicting to each 
other, therefore, the data of these parts are not dependable for results verification. 
 
2. Region D, Benten. 

 
In Benten region, districts no.1, 2 and 4, we detect variant deformation patterns that can be caused by soil lique-
faction. In district no.3, the eastern part of the district shows no deformations, on the other hand, the western 
part shows large deformations (Fig. 10.e). These results confirm well with the field surveys conducted by 
KRDB and JGS (Fig. 10.c), Tokimatsu et al., (2012) (Fig. 10.b) and Urayasu city government (Fig. 10.d). 

3. Region K, Minato. 
 

In Minato region, we detect slight to no deformation signatures with the exception of the central part which 
shows large deformation (Fig. 10.e). These results confirm well with the field surveys conducted by Tokimatsu 
et al., (2012) (Fig. 10.b). The field survey conducted by KRDB and JGS (Fig. 10.c) (Fig. 2.c) for Minato region 
shows an assumed no-liquefaction classification, therefore, we discard this result in the verification. 

4. Region L, Takasu. 
 

In Takasu region, we detect some deformation in the central and western part that confirms with the field sur-
veys. Nevertheless, in the below central region, we could not detect the deformation because it was bare land at 
the time of SAR acquisitions; therefore, no PS pixels are identified (Fig. 10.e). 

5. Regions M, Akemi and N, Hinode  
 

In Akemi and Hinode region, we detect deformations in the central and northern parts, but the eastern and 
southern parts shows no deformation signatures (Fig. 10.e). These results confirm well with the field surveys 
conducted by KRDB and JGS (Fig. 10.c) and Tokimatsu et al., (2012) (Fig. 10.b). 

6. Region O, Tokyo Disneyland  
 

In Tokyo Disneyland region, we did not detect any deformation signature (Fig. 10.e). This region was not in-
cluded in the field surveys (Fig. 10.b), (Fig. 10.c) or (Fig. 10.d).  

7. Region P, Hilton and Sheraton Grande Tokyo bay Hotels 
 
We detect uniform deformations in the region of the Hilton and Sheraton Grande Tokyo bay Hotels (Fig. 10.e). 
The detected deformation ranges from -2 cm to -4 cm and indicates the occurrence of coseismic ground subsid-
ence in the hotels’ area. 

8. Regions A , C, E , F , G , H , I , J 

In Maihama, Kairaku, Tomioka, Mihama, Tekkodon, Imagawa, Irifune and Chidori regions, we detect variant 
deformation patterns that can be caused by soil liquefaction (Fig. 10.e). These results confirm well with the field 
surveys conducted by KRDB and JGS (Fig. 10.c), Tokimatsu et al., (2012) (Fig. 10.b) and Urayasu city gov-
ernment (Fig. 10.d). 
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5.4 Conclusions 

In this paper, we present our approach to estimate deformations due to soil liquefaction phenomenon, which was 
developed in several Japanese cities during the 2011 Tohoku earthquake. We propose generating single-master 
coseismic stack of interferograms using a postseismic SAR image as master and a stack of preseismic SAR im-
ages as slaves. This interferogram structure facilitate the PS-InSAR analysis in the presence of major shock de-
formation, in addition, it allows a prompt estimation of the liquefaction deformation by utilizing the SAR imag-
es archives with only one postseismic SAR image. 
 
In this approach, we use the interferogram stack to identify the reliable pixels in the study area (PSs) using 
phase stability analysis, and then we estimate and remove the preseismic mean velocity and DEM error compo-
nents. Finally, we isolate the liquefaction effects using least squares inversion and spatial phase filtering. 
In order to assess the accuracy of the proposed approach, quantitatively, we test it using synthetic data simulat-
ing the effects of the 2011 Tohoku earthquake. The estimated mean velocity, DEM error and local deformation 
show RMSE of 1.68 mm/year, 0.73 m and 5.23 mm, respectively.  
 
Then, we estimate and present the liquefaction deformation in Urayasu city, Japan using 18 ALOS-PALSAR 
images. A qualitative assessment of the final results shows a good agreement with a damage and inclination 
maps generated by field surveys. We detect a coseismic ground subsidence in Higashina region, which cause the 
buildings to subside and tilt. We also detect a coseismic ground subsidence in the region of the Hilton and Sher-
aton Grande Tokyo bay Hotels ranges from -2 cm to -4 cm. 
 
It is worth mentioning that, the proposed approach gives an accurate qualitative measurement of the damage 
severity of structures, on the other hand, the quantitative accuracy of the deformation measurements depends on 
the density of the identified PS pixels and the accuracy of the phase unwrapping process, which is a classical 
problem in PS-InSAR analysis. 
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