Estimation of the Block Adjustment Error in UAV Photogrammetric Flights in Flat Areas
"> Figure 1
<p>Location of the study area in Lorca, Vía Camino de Puente Alto; the coordinates for the reference system are UTM 30N ETRS89. Points 7,8,9,10,33 have the maximum deformation in the study of [<a href="#B35-remotesensing-14-02877" class="html-bibr">35</a>].</p> "> Figure 2
<p>UAVs used in the study: (<b>a</b>) Phantom 3 Pro; (<b>b</b>) Inspire 2 with a Zenmuse X5S camera.</p> "> Figure 3
<p>GCP: (<b>a</b>) target with three blades and a central circle with a nail in the centre; (<b>b</b>) dual-frequency GNSS receiver positioned on a tripod and centred on the point mark.</p> "> Figure 4
<p>Location of the ten GCPs at the corners of each block and nine ChPs distributed within the blocks; the reference system is UTM 30N ETRS89.</p> "> Figure 5
<p>The flight programming was initially carried out with the DroneDeploy application: (<b>a</b>) Phantom 3 Pro, Block 1; (<b>b</b>) Inspire 2, Block 3; (<b>c</b>) cross strip Inspire2, Block 1.</p> "> Figure 6
<p>(<b>Upper row</b>) Study area distributed in four blocks. (<b>Bottom row</b>) Distribution of the flight lines for Scenario C.</p> "> Figure 7
<p>Processing of each scenario: (<b>A</b>) Scenario A, processing of photographs with conventional flight planning; (<b>B</b>) Scenario B, Scenario A plus the block perimeter; (<b>C</b>) Scenario C, Scenario A plus one cross strip at each edge; (<b>D</b>) Scenario D, Scenario B plus three cross strips at each edge.</p> "> Figure 8
<p>Orthophotograph of Block 1 created after the photogrammetric process; background image from Google Satellite orthophotograph. The GCPs are shown distributed at the four corners of Block 1 for the four scenarios (points 1, 2, 3, and 4); points 18 and 19 were left as ChPs.</p> "> Figure 9
<p>Distribution of the mean RMSE of the GCPs and ChPs of the four blocks for the scenarios studied (for A, B, C & D, vid. <a href="#sec2dot3-remotesensing-14-02877" class="html-sec">Section 2.3</a> and <a href="#remotesensing-14-02877-f007" class="html-fig">Figure 7</a>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. GNSS Campaign
2.2. Image Acquisition
- -
- Phantom 3 Pro: For Blocks 1,2, and 4, flight height (hf) 120 m (the maximum allowed by Spanish regulation), forward overlap 80%, side overlap 60%, and speed 9 m/s for an area of 19 ha, with a GSD of 5.1 cm. The flight duration was 14′8″, taking 326 images for Block 1, 296 for Block 2, and 310 for Block 4.
- -
- Inspire 2: Flight height 120 m (hf), forward overlap 80%, side overlap 60%, speed 10 m/s for an area of 23 ha, with a GSD of 2.1 cm. The flight duration was 14′38″, taking a total of 327 images in Block 3.
- -
- Inspire 2: Strip flight height 110 m (hf), forward overlap 80%, side overlap 60%, speed 10 m/s for an area of 0.8 ha, with a GSD of 2.4 cm. The flight duration was 4′39″, taking a total of 74 images for each block.
2.3. Photogrammetric Processing
- Scenario A: Flight mission with flight strips, (example Block 1, Figure 7A).
- Scenario B: Flight mission with flight strips, in addition to a flight strip covering the whole perimeter of each block (example Block 1, Figure 7B).
- Scenario C: Flight mission with flight strips; in addition, one cross strip at both ends of each block (example Block 1, Figure 7C).
- Scenario D: Flight mission with flight strips; an additional strip covering the whole perimeter and two cross strips at both ends of each block (example Block 1, Figure 7D).
2.4. Accuracy of the Results
2.4.1. A Priori Accuracy of the Block
- σB,L = estimated planimetric accuracy of the block (L = XY);
- σo = sigma naught of the bundle block adjustment;
- ns = number of strips;
- σM,L = estimated planimetric accuracy of a single model.
- σo = sigma naught of the bundle block adjustment can be taken as the mean reprojection error of the adjustment.
- μxyz = weight coefficients depending on the layout of both the GCP and the image network.
2.4.2. RMSE
- XYZ = photogrammetric coordinates;
- Control = reference data (GCP and ChP) taken in the field with GNSS;
- n = number of verification points.
3. Results
3.1. Results of the Global Navigation Satellite System (GNSS)
3.2. Photogrammetric Flight Results
3.2.1. Block 1 Results
3.2.2. Block 2 Results
3.2.3. Block 3 Results
3.2.4. Block 4 Results
3.3. Accuracy of the Photogrammetric Survey
3.4. Calculation of the A Priori Accuracy Parameters for the Block
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef] [Green Version]
- Varbla, S.; Ellmann, A.; Puust, R. Centimetre-Range Deformations of Built Environment Revealed by Drone-Based Photogrammetry. Autom. Constr. 2021, 128, 103787. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Moe, K.T.; Owari, T.; Furuya, N.; Hiroshima, T. Comparing Individual Tree Height Information Derived from Field Surveys, LiDAR and UAV-DAP for High-Value Timber Species in Northern Japan. Forests 2020, 11, 223. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Ablanedo, E.; Chandler, J.H.; Rodríguez-Pérez, J.R.; Ordóñez, C. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. Remote Sens. 2018, 10, 1606. [Google Scholar] [CrossRef] [Green Version]
- Doorn, A.J.; Van Koenderink, J.J. Affine Structure from Motion. JOSA A 1991, 8, 377–385. [Google Scholar] [CrossRef]
- Giordan, D.; Hayakawa, Y.; Nex, F.; Remondino, F.; Tarolli, P. Review Article: The Use of Remotely Piloted Aircraft Systems (RPASs) for Natural Hazards Monitoring and Management. Nat. Hazards Earth Syst. Sci. 2018, 18, 1079–1096. [Google Scholar] [CrossRef] [Green Version]
- Nettis, A.; Saponaro, M.; Nanna, M. RPAS-Based Framework for Simplified Seismic Risk Assessment of Italian RC-Bridges. Buildings 2020, 10, 150. [Google Scholar] [CrossRef]
- Contreras-De-villar, F.; García, F.J.; Muñoz-Perez, J.J.; Contreras-De-villar, A.; Ruiz-Ortiz, V.; Lopez, P.; Garcia-López, S.; Jigena, B. Beach Leveling Using a Remotely Piloted Aircraft System (Rpas): Problems and Solutions. J. Mar. Sci. Eng. 2021, 9, 19. [Google Scholar] [CrossRef]
- Monteiro, J.G.; Jiménez, J.L.; Gizzi, F.; Přikryl, P.; Lefcheck, J.S.; Santos, R.S.; Canning-Clode, J. Novel Approach to Enhance Coastal Habitat and Biotope Mapping with Drone Aerial Imagery Analysis. Sci. Rep. 2021, 11, 574. [Google Scholar] [CrossRef]
- Siebert, S.; Teizer, J. Mobile 3D Mapping for Surveying Earthwork Projects Using an Unmanned Aerial Vehicle (UAV) System. Autom. Constr. 2014, 41, 1–14. [Google Scholar] [CrossRef]
- Galeana Pérez, V.M.; Chávez Alegría, O.; Medellín Aguilar, G. On the Measure of Land Subsidence throughout DEM and Orthomosaics Using GPS and UAV. Ing. Investig. Tecnol. 2021, 22, 1–12. [Google Scholar] [CrossRef]
- Miró Moncho, A. Optimización de La Geometría Alar de Un UAS/RPAS Para La Vigilancia Antiincendios; Polytechnic University of Valencia: Valencia, Spain, 2018. [Google Scholar]
- Ahmad, A.; Ordoñez, J.; Cartujo, P.; Martos, V. Remotely Piloted Aircraft (RPA) in Agriculture: A Pursuit of Sustainability. Agronomy 2020, 11, 7. [Google Scholar] [CrossRef]
- Araujo, R.F.; Chambers, J.Q.; Celes, C.H.S.; Muller-Landau, H.C.; dos Santos, A.P.F.; Emmert, F.; Ribeiro, G.H.P.M.; Gimenez, B.O.; Lima, A.J.N.; Campos, M.A.A.; et al. Integrating High Resolution Drone Imagery and Forest Inventory to Distinguish Canopy and Understory Trees and Quantify Their Contributions to Forest Structure and Dynamics. PLoS ONE 2020, 15, e0243079. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.; Hill, D.J. Monitoring Grassland Invasion by Spotted Knapweed (Centaurea maculosa) with RPAS-Acquired Multispectral Imagery. Remote Sens. Environ. 2020, 249, 112008. [Google Scholar] [CrossRef]
- Gabara, G.; Sawicki, P. Multi-Variant Accuracy Evaluation of UAV Imaging Surveys: A Case Study on Investment Area. Sensors 2019, 19, 5229. [Google Scholar] [CrossRef] [Green Version]
- Polat, N.; Uysal, M. An Experimental Analysis of Digital Elevation Models Generated with Lidar Data and UAV Photogrammetry. J. Indian Soc. Remote Sens. 2018, 46, 1135–1142. [Google Scholar] [CrossRef]
- Acevo Herrera, R. Sistemas de Teledetección Activos y Pasivos Embarcados en Sistemas Aéreos No Tripulados para la Monitorización de la Tierra. Ph.D. Thesis, Universitat Politécnica Catalunya, Barcelona, Spain, 2011. [Google Scholar]
- Boletín Oficial del Estado (BOE). Real Decreto 1036/2017 de 15 de Diciembre. Bol. Estado 2017, 316, 129609–129641. [Google Scholar]
- Gómez-López, J.M.; Pérez-García, J.L.; Mozas-Calvache, A.T.; Delgado-García, J. Mission Flight Planning of RPAS for Photogrammetric Studies in Complex Scenes. ISPRS Int. J. Geo-Inf. 2020, 9, 392. [Google Scholar] [CrossRef]
- Lerma, J.L.G. Fotogrametria Moderna: Analitica y Digital; Universitat Politècnica de València: Valencia, Spain, 2002; 560p, ISBN 978-84-9705-210-8. [Google Scholar]
- Akturk, E.; Altunel, A.O. Accuracy Assesment of a Low-Cost UAV Derived Digital Elevation Model (DEM) in a Highly Broken and Vegetated Terrain. Meas. J. Int. Meas. Confed. 2019, 136, 382–386. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of Photogrammetric Mapping Accuracy Based on Variation Ground Control Points Number Using Unmanned Aerial Vehicle. Meas. J. Int. Meas. Confed. 2017, 98, 221–227. [Google Scholar] [CrossRef]
- Uysal, M.; Toprak, A.S.; Polat, N. DEM Generation with UAV Photogrammetry and Accuracy Analysis in Sahitler Hill. Meas. J. Int. Meas. Confed. 2015, 73, 539–543. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Ontiveros-Capurata, R.E.; Flores-Velázquez, J.; Marcial-Pablo, M.d.J.; Robles-Rubio, B.D. Quantification of the Error of Digital Terrain Models Derived from Images Acquired with UAV Cuantificación del Error de Modelos Digitales de Terreno Derivados de Imágenes Adquiridas Con UAV. Ing. Agríc. Biosist. 2017, 9, 85–100. [Google Scholar] [CrossRef]
- Cisneros, S.; García, É.; Montoya, K.; Sinde, I. Study of the Configurations of Ground Control Points for Photogrammetry with Drone. Rev. Geoespac. 2019, 16, 43–57. [Google Scholar] [CrossRef]
- Casella, V.; Chiabrando, F.; Franzini, M.; Manzino, A.M. Accuracy Assessment of a UAV Block by Different Software Packages, Processing Schemes and Validation Strategies. ISPRS Int. J. Geo-Inf. 2020, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Candón, D.; De Castro, A.I.; López-Granados, F. Assessing the Accuracy of Mosaics from Unmanned Aerial Vehicle (UAV) Imagery for Precision Agriculture Purposes in Wheat. Precis. Agric. 2014, 15, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Reshetyuk, Y.; Mårtensson, S.G. Generation of Highly Accurate Digital Elevation Models with Unmanned Aerial Vehicles. Photogramm. Rec. 2016, 31, 143–165. [Google Scholar] [CrossRef]
- Zimmerman, T.; Jansen, K.; Miller, J. Analysis of UAS Flight Altitude and Ground Control Point Parameters on DEM Accuracy along a Complex, Developed Coastline. Remote Sens. 2020, 12, 2305. [Google Scholar] [CrossRef]
- Martínez-Carricondo, P.; Agüera-Vega, F.; Carvajal-Ramírez, F.; Mesas-Carrascosa, F.J.; García-Ferrer, A.; Pérez-Porras, F.J. Assessment of UAV-Photogrammetric Mapping Accuracy Based on Variation of Ground Control Points. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 1–10. [Google Scholar] [CrossRef]
- Arévalo-Verjel, A.N.; Lerma, J.L.; Fernández, J. Análisis Comparativo de Software Para Obtener MDT Con Fotogrametría RPAS. In Proceedings of the Tercer Congreso en Ingeniería Geomática, Valencia, Spain, 7–8 July 2021; pp. 209–215. [Google Scholar]
- Tomaštík, J.; Mokroš, M.; Surový, P.; Grznárová, A.; Merganič, J. UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sens. 2019, 11, 721. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, J.; Prieto, J.F.; Escayo, J.; Camacho, A.G.; Luzón, F.; Tiampo, K.F.; Palano, M.; Abajo, T.; Pérez, E.; Velasco, J.; et al. Modeling the Two- and Three-Dimensional Displacement Field in Lorca, Spain, Subsidence and the Global Implications. Sci. Rep. 2018, 8, 14782. [Google Scholar] [CrossRef] [PubMed]
- González, P.J.; Fernández, J. Drought-Driven Transient Aquifer Compaction Imaged Using Multitemporal Satellite Radar Interferometry. Geology 2011, 39, 551–554. [Google Scholar] [CrossRef]
- Bonì, R.; Herrera, G.; Meisina, C.; Notti, D.; Béjar-Pizarro, M.; Zucca, F.; González, P.J.; Palano, M.; Tomás, R.; Fernández, J.; et al. Twenty-Year Advanced DInSAR Analysis of Severe Land Subsidence: The Alto Guadalentín Basin (Spain) Case Study. Eng. Geol. 2015, 198, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; Fernández-Merodo, J.A.; Guardiola-Albert, C.; Staller, A.; Sánchez-Sobrino, J.A.; Herrera, G. Improving Multi-Technique Monitoring Using Sentinel-1 and Cosmo-SkyMed Data and Upgrading Groundwater Model Capabilities. Sci. Total Environ. 2020, 703, 134757. [Google Scholar] [CrossRef] [Green Version]
- Drone Mapping Software. Available online: https://www.dronedeploy.com/ (accessed on 3 June 2021).
- Dach, R.; Schaer, S.; Arnold, D.; Kalarus, M.S.; Prange, L.; Stebler, P.; Villiger, A.; Jäggi, A. CODE Final Product Series for the IGS; Astronomical Institute, University of Bern: Bern, Switzerland, 2016. [Google Scholar]
- Teunissen, P.J.G.; Montenbruck, O. Springer Handbook of Global Navigation Satellite Systems; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere Mapping Functions for GPS and Very Long Baseline Interferometry from European Centre for Medium-Range Weather Forecasts Operational Analysis Data. J. Geophys. Res. Solid Earth 2006, 111, 2406. [Google Scholar] [CrossRef]
- Velasco, J.; Herrero, T.; Molina, I.; López, J.; Pérez-Martín, E.; Prieto, J. Methodology for Designing, Observing and Computing of Underground Geodetic Networks of Large Tunnels for High-Speed Railways. Inf. Constr. 2015, 67, e076. [Google Scholar] [CrossRef] [Green Version]
- Velasco-Gómez, J.; Prieto, J.F.; Molina, I.; Herrero, T.; Fábrega, J.; Pérez-Martín, E. Use of the Gyrotheodolite in Underground Networks of Long High-Speed Railway Tunnels. Surv. Rev. 2016, 48, 329–337. [Google Scholar] [CrossRef] [Green Version]
- ArcGIS for Desktop. Available online: https://desktop.arcgis.com/es/arcmap/10.3/manage-data/kml/what-is-kml-.htm (accessed on 3 June 2021).
- Agisoft PhotoScan User Manual—Professional Edition, Version 1.2. 2016. Available online: https://www.agisoft.com/pdf/photoscan-pro_1_2_en.pdf (accessed on 2 June 2021).
- Kraus, K. Volume 2, Advanced Methods and Applications. In Photogrammetry; Jansa, J., Kager, H., Eds.; Dümmler: Bonn, Germany, 1997; p. 459. ISBN 3427786943. [Google Scholar]
- FGDC-STD-007.3-1998; Geospatial Positioning Accuracy Standards, Part 3: National Standard for Spatial Data Accuracy. Subcommittee for Base Cartographic Data, Federal Geographic Data Committee: Reston, VA, USA, 1998.
- Kraus, K. Volume 1, Fundamentals and Standard Processes. In Photogrammetry; Dümmler: Bonn, Germany, 1993; p. 389. ISBN 3427786846. [Google Scholar]
- James, M.R.; Robson, S. Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-Based Image Networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
Reference | GCP | AREA (ha) | Ratio GCP/ha | RMSE (cm) |
---|---|---|---|---|
[2] | 3 | 0.02 | 150 | 52 |
[29] | 45 | 1 | 45 | 0.23 |
[27] | 5 | 0.83 | 6 | 6.2 |
[25] | 27 | 5.0 | 5.4 | 6.6 |
[23] | 7 | 1.5 | 4.6 | 51 |
[30] | 5 | 2.73 | 1.83 | 3 |
[31] | 15 | 12 | 1.25 | 14.3 |
[32] | 20 | 17.6 | 1.13 | 3.6 |
[24] | 15 | 17.6 | 0.85 | 5.8 |
[26] | 11 | 37.4 | 0.29 | 5.9 |
[33] | 6 | 38 | 0.15 | 1.3 |
[28] | 102 | 1200 | 0.1 | 1 |
[34] | 9 | 270 | 0.03 | 3.2 |
Block | Strips Type | Area (ha) | UAV | Flight Height |
---|---|---|---|---|
Block 1 | Forward strips | 19.11 | Phantom 3 Pro | hf = 120 m |
Block 1 | Cross strip 1 | 0.8 | Inspire 2 | hc = 110 m |
Block 1 and 2 | Cross strip 2 | 0.8 | Inspire 2 | hc = 110 m |
Block 2 | Forward strips | 19.11 | Phantom 3 Pro | hf = 120 m |
Block 2 and 3 | Cross strip 3 | 0.8 | Inspire 2 | hc = 110 m |
Block 3 | Forward strips | 22.95 | Inspire 2 | hf = 120 m |
Block 3 and 4 | Cross strip 4 | 0.8 | Inspire 2 | hc = 110 m |
Block 4 | Forward strips | 18.86 | Phantom 3 Pro | hf = 120 m |
Block 4 | Cross strip 5 | 0.8 | Inspire 2 | hc = 110 m |
Total | 84.03 |
Drone | Phantom 3 Pro | Inspire 2 |
---|---|---|
Resolution | 4000 × 3000 pixels | 5280 × 3956 pixels |
DJI | FC300X | Zenmuse X5S |
F-stop | f/2.8 | f/1.7 |
Focal distance | 4 mm | 15 mm |
Equivalent 35 mm focal length | 20 | 30 |
Coordinates (m) | Std (m) | |||||
---|---|---|---|---|---|---|
Point | East | North | Altitude | East | North | Altitude |
1 GCP | 619,066.137 | 4,167,121.713 | 290.788 | 0.007 | 0.005 | 0.012 |
2 GCP | 619,228.593 | 4,167,279.381 | 291.107 | 0.006 | 0.004 | 0.010 |
3 GCP | 618,657.880 | 4,167,476.026 | 293.247 | 0.006 | 0.005 | 0.011 |
4 GCP | 618,807.284 | 4,167,654.158 | 293.218 | 0.006 | 0.005 | 0.010 |
5 GCP | 618,439.352 | 4,168,023.346 | 295.627 | 0.006 | 0.005 | 0.012 |
6 GCP | 618,252.834 | 4,167,885.737 | 296.434 | 0.005 | 0.004 | 0.011 |
7 GCP | 617,869.899 | 4,168,444.438 | 301.216 | 0.008 | 0.007 | 0.012 |
8 GCP | 617,725.688 | 4,168,267.210 | 301.212 | 0.005 | 0.004 | 0.008 |
9 GCP | 617,556.991 | 4,168,820.869 | 306.724 | 0.008 | 0.007 | 0.012 |
10 GCP | 617,373.720 | 4,168,634.016 | 305.914 | 0.007 | 0.006 | 0.011 |
11 ChP | 617,949.400 | 4,168,139.298 | 299.812 | 0.013 | 0.010 | 0.025 |
12 ChP | 618,565.778 | 4,167,644.981 | 294.215 | 0.009 | 0.007 | 0.017 |
13 ChP | 617,639.593 | 4,168,465.141 | 303.490 | 0.012 | 0.010 | 0.020 |
14 ChP | 617,775.094 | 4,168,586.984 | 301.914 | 0.010 | 0.008 | 0.018 |
15 ChP | 617,496.083 | 4,168,564.809 | 305.395 | 0.011 | 0.011 | 0.018 |
16 ChP | 618,259.189 | 4,168,060.380 | 296.895 | 0.005 | 0.004 | 0.009 |
17 ChP | 618,525.229 | 4,167,874.276 | 294.169 | 0.006 | 0.005 | 0.012 |
18 ChP | 618,839.705 | 4,167,325.172 | 292.311 | 0.009 | 0.007 | 0.016 |
19 ChP | 618,805.372 | 4,167,568.696 | 293.171 | 0.006 | 0.005 | 0.012 |
ALHA | 636,738.931 | 4,185,231.011 | 201.790 | 0.003 | 0.003 | 0.004 |
LORC | 615,840.139 | 4,168,225.450 | 313.952 | 0.003 | 0.002 | 0.003 |
LRCA | 614,704.897 | 4,168,655.120 | 332.211 | 0.003 | 0.002 | 0.004 |
MAZA | 649,154.772 | 4,162,049.757 | 55.060 | 0.002 | 0.002 | 0.003 |
Scenario | Type | Point | East | North | Altitude | RMSE | Mean RMSE |
---|---|---|---|---|---|---|---|
A | GCP | 1 | 4.9 | 2.9 | −0.2 | 5.7 | 5.4 |
2 | −0.9 | −4.2 | 0.2 | 4.3 | |||
3 | −1.5 | 6.5 | 0.2 | 6 | |||
4 | −2.5 | −5.1 | −0.2 | 5.7 | |||
ChP | 18 | 7.5 | 15.1 | 5.5 | 17.7 | 11.4 | |
19 | −2.9 | −3.7 | −1.8 | 5.1 | |||
B | GCP | 1 | 5.1 | 2.1 | −0.1 | 5.5 | 5.2 |
2 | −1.7 | −3.9 | 0.03 | 4.3 | |||
3 | −0.4 | 5.9 | 0.07 | 5.9 | |||
4 | −3 | −4.1 | −0.1 | 5.1 | |||
ChP | 18 | 9.9 | 12.3 | 0.7 | 15.8 | 11 | |
19 | −5.3 | −2.7 | −1.6 | 6.2 | |||
C | GCP | 1 | 3.5 | 1.8 | −0.1 | 3.9 | 3.6 |
2 | −1.1 | −2.9 | 0.05 | 3.1 | |||
3 | −0.7 | 3.9 | 0.08 | 3.9 | |||
4 | −1.7 | −2.8 | −0.08 | 3.3 | |||
ChP | 18 | 7 | 13.7 | 4.2 | 16 | 11.4 | |
19 | −6.2 | −2.5 | 1.1 | 6.8 | |||
D | GCP | 1 | 5.5 | 2.8 | 0.1 | 6.1 | 5.3 |
2 | −1.9 | −4.4 | −0.1 | 4.7 | |||
3 | −1.3 | 5.6 | −0.1 | 5.7 | |||
4 | −2.3 | −3.9 | 0.1 | 4.5 | |||
ChP | 18 | 8.1 | 12.6 | 1.2 | 14.9 | ||
19 | −13.2 | 0.3 | −2.1 | 13.4 | 14.2 |
SCENARIO | GSD (cm) | PROJ. ERROR (σo) | |
---|---|---|---|
BLOCK 1 | A | 5.2 | 0.7 |
B | 5.2 | 0.7 | |
C | 4.7 | 0.7 | |
D | 4.5 | 0.9 | |
BLOCK 2 | A | 6.2 | 0.7 |
B | 5.2 | 0.8 | |
C | 5.5 | 0.8 | |
D | 4.3 | 1.1 | |
BLOCK 3 | A | 3.1 | 0.6 |
B | 3.3 | 0.7 | |
C | 3 | 0.7 | |
D | 3.3 | 0.9 | |
BLOCK 4 | A | 6.1 | 0.7 |
B | 6.1 | 0.8 | |
C | 5.5 | 0.7 | |
D | 4.5 | 0.9 |
SCENARIO | μxyz GCP | μxyz ChP | std μxyz GCP | std μxyz ChP |
---|---|---|---|---|
A | 1.2 | 2.6 | 0.2 | 0.5 |
B | 1.2 | 2.3 | 0.2 | 0.6 |
C | 1.0 | 2.1 | 0.3 | 0.8 |
D | 1.2 | 2.8 | 0.1 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arévalo-Verjel, A.N.; Lerma, J.L.; Prieto, J.F.; Carbonell-Rivera, J.P.; Fernández, J. Estimation of the Block Adjustment Error in UAV Photogrammetric Flights in Flat Areas. Remote Sens. 2022, 14, 2877. https://doi.org/10.3390/rs14122877
Arévalo-Verjel AN, Lerma JL, Prieto JF, Carbonell-Rivera JP, Fernández J. Estimation of the Block Adjustment Error in UAV Photogrammetric Flights in Flat Areas. Remote Sensing. 2022; 14(12):2877. https://doi.org/10.3390/rs14122877
Chicago/Turabian StyleArévalo-Verjel, Alba Nely, José Luis Lerma, Juan F. Prieto, Juan Pedro Carbonell-Rivera, and José Fernández. 2022. "Estimation of the Block Adjustment Error in UAV Photogrammetric Flights in Flat Areas" Remote Sensing 14, no. 12: 2877. https://doi.org/10.3390/rs14122877