Super-Resolving Ocean Dynamics from Space with Computer Vision Algorithms
<p>Super-Resolution Convolutional Neural Network (SRCNN) adapted to the reconstruction of absolute dynamic topography from multiple channel inputs. (<b>A</b>) SRCNN network architecture. (<b>B</b>–<b>E</b>) Relative performance of the SRCNN reconstructions, assessed on the independent test data as the difference between the RMSD between the altimeter-like and original model output and the RMSD between the super-resolved absolute dynamic topography (ADT) and the original model ADT (red indicates smaller RMSD from model predictions). The panels show the performance of the models trained/tested considering: (<b>B</b>) the full set of predictor variables; (<b>C</b>) removing ∂SST⁄∂t from the predictors; (<b>D</b>) removing ∆ADT from the predictors; (<b>E</b>) removing both ∂SST⁄∂t and ∆ADT. ADT and related RMSD values are expressed in m.</p> "> Figure 2
<p>Enhanced Deep Super-Resolution (EDSR) baseline model tested for the reconstruction of high-resolution absolute dynamic topography from multiple channel inputs. (<b>A</b>) EDSR network architecture. EDSR is based on a specific residual block design. (<b>B</b>,<b>C</b>) Relative performance of the EDSR reconstructions, assessed on the independent test data as the difference between the RMSD between the altimeter-like and original model output and the RMSD between the super-resolved ADT and the original model ADT (red indicates smaller RMSD from model predictions). The panels show the performance of the models trained/tested considering: (<b>B</b>) EDSR and the full set of predictor variables; (<b>C</b>) EDSR removing ∆ADT from the predictors. ADT and related RMSD values are expressed in m.</p> "> Figure 3
<p>Adaptive Super-Resolution (ADR-SR) baseline model tested for the reconstruction of high-resolution absolute dynamic topography from multiple channel inputs. (<b>A</b>) ADR-SR network. ADR-SR is based on the inclusion of a squeeze-and-excitation module within its residual block design. (<b>B</b>,<b>C</b>) Relative performance of the ADR-SR reconstructions, assessed on the independent test data as the difference between the RMSD between the altimeter-like and original model output and the RMSD between the super-resolved ADT and the original model ADT (red indicates smaller RMSD from model predictions). The panels show the performance of the models trained/tested considering: (<b>B</b>) ADR-SR and the full set of predictor variables; (<b>C</b>) ADR-SR removing ∆ADT from the predictors. ADT and related RMSD values are expressed in m.</p> "> Figure 4
<p>The dilated Adaptive Super-Resolution (dADR-SR) model developed to reconstruct high-resolution absolute dynamic topography from multiple channel inputs. (<b>A</b>) The dADR-SR network architecture; dADR-SR is based on the inclusion of dilated, convolution-based learning inception modules in the core layers of ADR-SR. (<b>B</b>,<b>C</b>) Relative performance of the dADR-SR reconstructions, assessed on the independent test data as the difference between the RMSD between the altimeter-like and original model output and the RMSD between the super-resolved ADT and the original model ADT (red indicates smaller RMSD from model predictions). The panels show the performance of the models trained/tested considering: (<b>B</b>) dADR-DR and the full set of predictor variables; (<b>C</b>) dADR-SR removing ∆ADT from the predictors. ADT and related RMSD values are expressed in m.</p> "> Figure 5
<p>The dADR-SR model performance compared to simulated standard altimetry. (<b>A</b>) RMSD between the altimeter-like and original model output and (<b>B</b>) RMSD between the super-resolved absolute dynamic topography (ADT) obtained with dADR-SR (using full predictors set) and the original model ADT. ADT and related RMSD values are expressed in m.</p> "> Figure 6
<p>The dADR-SR prediction from real satellite-derived absolute dynamic topography (ADT) and sea surface temperature data (SST) for one example date (17-07-2016). (<b>A</b>) Original altimeter-based surface geostrophic currents (obtained from the ADT gradients); (<b>B</b>) super-resolved surface geostrophic currents; (<b>C</b>) satellite SST field. The cyan box in (<b>C</b>) identifies the area plotted in <a href="#remotesensing-14-01159-f007" class="html-fig">Figure 7</a>.</p> "> Figure 7
<p>Dynamical structures reconstructed by dADR-SR prediction from real satellite-derived absolute dynamic topography (ADT) and sea surface temperature data (SST) (zoomed from <a href="#remotesensing-14-01159-f006" class="html-fig">Figure 6</a>). (<b>A</b>) Original altimeter-based surface geostrophic currents; (<b>B</b>) super-resolved surface geostrophic currents; (<b>C</b>,<b>D</b>) satellite SST field with overplot of the eddy contours identified through AMEDA detection algorithm (red = cyclonic, blue = anticyclonic, black dots stand for automatically detected eddy centres) applied to original altimeter currents (<b>C</b>) and to super-resolved field (<b>D</b>). A–F letters serve to more easily locate the dynamical features that are recovered by dADR-SR and missed/misplaced by standard altimetry products (discussed in the text).</p> "> Figure 8
<p>Impact of cloud cover on satellite SST interpolated data. Interpolated field; (<b>A</b>,<b>B</b>), related nominal interpolation error; (<b>C</b>,<b>D</b>), MODIS Terra pseudo-true colour images; (<b>E</b>,<b>F</b>) from NASA Worldview (<a href="https://worldview.earthdata.nasa.gov" target="_blank">https://worldview.earthdata.nasa.gov</a>, last accessed on 14 January 2022). On the first date, clear-sky conditions (<b>E</b>) lead to extremely clear and distinct SST patterns and low interpolation errors in all the Mediterranean (<b>A</b>,<b>C</b>). Three days later, clouds arriving from Morocco (<b>F</b>) prevent the reconstruction of small-scale dynamical features in the SST field and lead to increased interpolation errors (<b>B</b>,<b>D</b>). The thin cyan box identifies the area zoomed in <a href="#remotesensing-14-01159-f009" class="html-fig">Figure 9</a>.</p> "> Figure 9
<p>Impact of the smoothing introduced by SST data interpolation on the dynamical reconstruction (zoomed from <a href="#remotesensing-14-01159-f008" class="html-fig">Figure 8</a>). (<b>A</b>,<b>B</b>) original altimeter-based surface geostrophic currents; (<b>C</b>,<b>D</b>) super-resolved surface geostrophic currents; (<b>E</b>–<b>H</b>) SST L4 field with overplot of the eddy contours identified through AMEDA detection algorithm (red = cyclonic, blue = anticyclonic, black dots stand for automatically detected eddy centres) applied to original altimeter currents (<b>E</b>,<b>F</b>) and to super-resolved field (<b>G</b>,<b>H</b>). Current vectors are overplot in (<b>A</b>–<b>D</b>) plots.</p> "> Figure 10
<p>Performance of dADR-SR reconstruction of the geostrophic currents with respect to standard altimeter L4 data along drifter trajectories. The plots show the difference between the absolute error of altimetry and that of super-resolved currents, estimated vs the drifter velocities: (<b>A</b>) zonal component; (<b>B</b>) meridional component. Positive values indicate an improvement with respect to altimetry.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Primitive Equation Model Data
2.2. Satellite Absolute Dynamic Topography
2.3. Satellite Sea Surface Temperature Data
2.4. Sea Surface Drifter Data
2.5. Simulating Altimeter-like ADT Maps
2.6. Preparation of Training and Test Datasets for Deep Convolutional Learning
2.7. Deep Convolutional Models Learning Strategy and Configuration
2.8. Automatic Eddy Detection
3. Results
3.1. Testing Single-Image, Super-Resolution Configurations and Designing a Multi-Scale Adaptive Model
3.2. Applying Dilated Adaptive Residual Super-Resolution Trained on Simulated Data to Real Satellite Observations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schultz, M.G.; Betancourt, C.; Gong, B.; Kleinert, F.; Langguth, M.; Leufen, L.H.; Mozaffari, A.; Stadtler, S. Can deep learning beat numerical weather prediction? Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2021, 379, 20200097. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Lan, S.; Stuart, A.; Teixeira, J. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations. Geophys. Res. Lett. 2017, 44, 12396–12417. [Google Scholar] [CrossRef] [Green Version]
- Mulet, S.; Rio, M.-H.; Mignot, A.; Guinehut, S.; Morrow, R. A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements. Deep Sea Res. Part II: Top. Stud. Oceanogr. 2012, 77–80, 70–81. [Google Scholar] [CrossRef]
- Moore, A.M.; Martin, M.J.; Akella, S.; Arango, H.G.; Balmaseda, M.A.; Bertino, L.; Ciavatta, S.; Cornuelle, B.; Cummings, J.; Frolov, S.; et al. Synthesis of Ocean Observations Using Data Assimilation for Operational, Real-Time and Reanalysis Systems: A More Complete Picture of the State of the Ocean. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Bolton, T.; Zanna, L. Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization. J. Adv. Model. Earth Syst. 2019, 11, 376–399. [Google Scholar] [CrossRef] [Green Version]
- Brajard, J.; Carrassi, A.; Bocquet, M.; Bertino, L. Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model. J. Comput. Sci. 2020, 44, 101171. [Google Scholar] [CrossRef]
- Ruckstuhl, Y.; Janjić, T.; Rasp, S. Training a convolutional neural network to conserve mass in data assimilation. Nonlinear Process. Geophys. 2021, 28, 111–119. [Google Scholar] [CrossRef]
- Storto, A.; De Magistris, G.; Falchetti, S.; Oddo, P. A Neural Network-Based Observation Operator for Coupled Ocean-Acoustic Variational Data Assimilation. Mon. Weather Rev. 2021, 149, 1967–1985. [Google Scholar] [CrossRef]
- Vandal, T.; Kodra, E.; Ganguly, S.; Michaelis, A.; Nemani, R.; Ganguly, A.R. DeepSD: Generating high resolution climate change projections through single image super-resolution. arXiv 2017, arXiv:1703.03126. [Google Scholar]
- Barth, A.; Alvera-Azcárate, A.; Licer, M.; Beckers, J.-M. DINCAE 1.0: A convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations. Geosci. Model Dev. 2020, 13, 1609–1622. [Google Scholar] [CrossRef] [Green Version]
- Sammartino, M.; Nardelli, B.B.; Marullo, S.; Santoleri, R. An Artificial Neural Network to Infer the Mediterranean 3D Chlorophyll-a and Temperature Fields from Remote Sensing Observations. Remote Sens. 2020, 12, 4123. [Google Scholar] [CrossRef]
- Nardelli, B.B. A Deep Learning Network to Retrieve Ocean Hydrographic Profiles from Combined Satellite and In Situ Measurements. Remote Sens. 2020, 12, 3151. [Google Scholar] [CrossRef]
- Han, Z.; He, Y.; Liu, G.; Perrie, W. Application of DINCAE to Reconstruct the Gaps in Chlorophyll-a Satellite Observations in the South China Sea and West Philippine Sea. Remote Sens. 2020, 12, 480. [Google Scholar] [CrossRef] [Green Version]
- Sauzède, R.; Claustre, H.; Uitz, J.; Jamet, C.; Dall’Olmo, G.; D’Ortenzio, F.; Gentili, B.; Poteau, A.; Schmechtig, C. A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: Retrieval of the particulate backscattering coefficient. J. Geophys. Res. Oceans 2016, 121, 2552–2571. [Google Scholar] [CrossRef] [Green Version]
- Sauzède, R.; Bittig, H.; Claustre, H.; De Fommervault, O.P.; Gattuso, J.-P.; Legendre, L.; Johnson, K.S. Estimates of Water-Column Nutrient Concentrations and Carbonate System Parameters in the Global Ocean: A Novel Approach Based on Neural Networks. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef]
- Sinha, A.; Abernathey, R. Estimating Ocean Surface Currents With Machine Learning. Front. Mar. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Zheng, G.; Li, X.; Zhang, R.-H.; Liu, B. Purely satellite data–driven deep learning forecast of complicated tropical instability waves. Sci. Adv. 2020, 6, eaba1482. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Q.; Li, X. Characteristics of Global Ocean Abnormal Mesoscale Eddies Derived From the Fusion of Sea Surface Height and Temperature Data by Deep Learning. Geophys. Res. Lett. 2021, 48, e2021GL094772. [Google Scholar] [CrossRef]
- Fablet, R.; Amar, M.; Febvre, Q.; Beauchamp, M.; Chapron, B. End-to- end physics-informed representation learning from and for satellite ocean remote sensing data. In Proceedings of the XXIV ISPRS 2021: Intenational Society for Photogrammetry and Remote Sensing Congress, Nice, France, 4–10 July 2021; p. hal-03189218. [Google Scholar]
- Pannekoucke, O.; Fablet, R. PDE-NetGen 1.0: From symbolic partial differential equation (PDE) representations of physical processes to trainable neural network representations. Geosci. Model Dev. 2020, 13, 3373–3382. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2018, 378, 686–707. [Google Scholar] [CrossRef]
- Ouala, S.; Nguyen, D.; Drumetz, L.; Chapron, B.; Pascual, A.; Collard, F.; Gaultier, L.; Fablet, R. Learning latent dynamics for partially observed chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 103121. [Google Scholar] [CrossRef] [PubMed]
- Fablet, R.; Beauchamp, M.; Drumetz, L.; Rousseau, F. Joint Interpolation and Representation Learning for Irregularly Sampled Satellite-Derived Geophysical Fields. Front. Appl. Math. Stat. 2021, 7, 655224. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Hoi, S.C.H. Deep Learning for Image Super-Resolution: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3365–3387. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Ducournau, A.; Fablet, R. Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived SST data. In Proceedings of the 9th IAPR Workshop on Pattern Recogniton in Remote Sensing (PRRS), Cancun, Mexico, 4 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Höhlein, K.; Kern, M.; Hewson, T.; Westermann, R. A comparative study of convolutional neural network models for wind field downscaling. Meteorol. Appl. 2020, 27, e1961. [Google Scholar] [CrossRef]
- Rio, M.-H.; Santoleri, R.; Bourdalle-Badie, R.; Griffa, A.; Piterbarg, L.; Taburet, G. Improving the Altimeter-Derived Surface Currents Using High-Resolution Sea Surface Temperature Data: A Feasability Study Based on Model Outputs. J. Atmospheric Ocean. Technol. 2016, 33, 2769–2784. [Google Scholar] [CrossRef]
- Lopez-Dekker, P.; Biggs, J.; Chapron, B.; Hooper, A.; Kääb, A.; Masina, S.; Mouginot, J.; Buongiorno Nardelli, B.; Pasquero, C. The Harmony Mission: End of Phase-0 Science Overview. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 7752–7755. [Google Scholar]
- Gommenginger, C.; Chapron, B.; Hogg, A.; Buckingham, C.; Fox-Kemper, B.; Eriksson, L.; Soulat, F.; Ubelmann, C.; Ocampo-Torres, F.; Burbidge, G. SEASTAR: A Mission to Study Ocean Submesoscale Dynamics and Small-Scale Atmosphere-Ocean Processes in Coastal, Shelf and Polar Seas. Front. Mar. Sci. 2019, 6, 457. [Google Scholar] [CrossRef] [Green Version]
- Taburet, G.; Sanchez-Roman, A.; Ballarotta, M.; Pujol, M.-I.; Legeais, J.-F.; Fournier, F.; Faugere, Y.; Dibarboure, G. DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Sci. 2019, 15, 1207–1224. [Google Scholar] [CrossRef] [Green Version]
- Ballarotta, M.; Ubelmann, C.; Pujol, M.-I.; Taburet, G.; Fournier, F.; Legeais, J.-F.; Faugère, Y.; Delepoulle, A.; Chelton, D.; Dibarboure, G.; et al. On the resolutions of ocean altimetry maps. Ocean Sci. 2019, 15, 1091–1109. [Google Scholar] [CrossRef] [Green Version]
- Amores, A.; Jordà, G.; Arsouze, T.; Le Sommer, J. Up to What Extent Can We Characterize Ocean Eddies Using Present-Day Gridded Altimetric Products? J. Geophys. Res. Ocean. 2018, 123, 7220–7236. [Google Scholar] [CrossRef]
- Stegner, A.; Le Vu, B.; Dumas, F.; Ghannami, M.A.; Nicolle, A.; Durand, C.; Faugere, Y. Cyclone-Anticyclone Asymmetry of Eddy Detection on Gridded Altimetry Product in the Mediterranean Sea. J. Geophys. Res. Oceans 2021, 126, e2021JC017475. [Google Scholar] [CrossRef]
- Mahadevan, A.; Tandon, A. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Model. 2006, 14, 241–256. [Google Scholar] [CrossRef]
- Nardelli, B.B.; Tronconi, C.; Pisano, A.; Santoleri, R. High and Ultra-High resolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project. Remote Sens. Environ. 2013, 129, 1–16. [Google Scholar] [CrossRef]
- Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. A multi-scale high-resolution analysis of global sea surface temperature. Remote Sens. Environ. 2017, 200, 154–169. [Google Scholar] [CrossRef]
- Bowen, M.M.; Emery, W.; Wilkin, J.; Tildesley, P.C.; Barton, I.J.; Knewtson, R. Extracting Multiyear Surface Currents from Sequential Thermal Imagery Using the Maximum Cross-Correlation Technique. J. Atmospheric Ocean. Technol. 2002, 19, 1665–1676. [Google Scholar] [CrossRef] [Green Version]
- Ciani, D.; Rio, M.-H.; Menna, M.; Santoleri, R. A Synergetic Approach for the Space-Based Sea Surface Currents Retrieval in the Mediterranean Sea. Remote Sens. 2019, 11, 1285. [Google Scholar] [CrossRef] [Green Version]
- Ciani, D.; Rio, M.-H.; Nardelli, B.B.; Etienne, H.; Santoleri, R. Improving the Altimeter-Derived Surface Currents Using Sea Surface Temperature (SST) Data: A Sensitivity Study to SST Products. Remote Sens. 2020, 12, 1601. [Google Scholar] [CrossRef]
- Isern-Fontanet, J.; García-Ladona, E.; González-Haro, C.; Turiel, A.; Rosell-Fieschi, M.; Company, J.B.; Padial, A. High-Resolution Ocean Currents from Sea Surface Temperature Observations: The Catalan Sea (Western Mediterranean). Remote Sens. 2021, 13, 3635. [Google Scholar] [CrossRef]
- Rio, M.-H.; Santoleri, R. Improved global surface currents from the merging of altimetry and Sea Surface Temperature data. Remote Sens. Environ. 2018, 216, 770–785. [Google Scholar] [CrossRef]
- Ciani, D.; Charles, E.; Nardelli, B.B.; Rio, M.-H.; Santoleri, R. Ocean Currents Reconstruction from a Combination of Altimeter and Ocean Colour Data: A Feasibility Study. Remote Sens. 2021, 13, 2389. [Google Scholar] [CrossRef]
- Clementi, E.; Pistoia, J.; Escudier, R.; Delrosso, D.; Drudi, M.; Grandi, A.; Lecci, R.; Cretí, S.; Ciliberti, S.; Coppini, G.; et al. Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents 2016–2019) (Version 1) [Data Set]; Copernicus Monitoring Environment Marine Service (CMEMS): Ramonville-Saint-Agne, France, 2021. [Google Scholar] [CrossRef]
- Poulain, P.-M.; Menna, M.; Mauri, E. Surface Geostrophic Circulation of the Mediterranean Sea Derived from Drifter and Satellite Altimeter Data. J. Phys. Oceanogr. 2012, 42, 973–990. [Google Scholar] [CrossRef]
- Hansen, D.V.; Poulain, P.-M. Quality Control and Interpolations of WOCE-TOGA Drifter Data. J. Atmospheric Ocean. Technol. 1996, 13, 900–909. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Menna, M.; Poulain, P.-M.; Bussani, A.; Gerin, R. Detecting the drogue presence of SVP drifters from wind slippage in the Mediterranean Sea. Measurement 2018, 125, 447–453. [Google Scholar] [CrossRef]
- Carrère, L.; Lyard, F. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—comparisons with observations. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Gaultier, L.; Ubelmann, C.; Fu, L.-L. The Challenge of Using Future SWOT Data for Oceanic Field Reconstruction. J. Atmospheric Ocean. Technol. 2016, 33, 119–126. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; pp. 1–15. Available online: https://hdl.handle.net/11245/1.505367 (accessed on 1 March 2021).
- Ghiasi, G.; Lin, T.Y.; Le, Q.V. Dropblock: A regularization method for convolutional networks. Adv. Neural Inf. Process. Syst. 2018, arXiv:1810.12890v1 [cs.CV], 10727–10737. [Google Scholar]
- Le Vu, B.; Stegner, A.; Arsouze, T. Angular Momentum Eddy Detection and Tracking Algorithm (AMEDA) and Its Application to Coastal Eddy Formation. J. Atmospheric Ocean. Technol. 2018, 35, 739–762. [Google Scholar] [CrossRef]
- Bagaglini, L.; Falco, P.; Zambianchi, E. Eddy Detection in HF Radar-Derived Surface Currents in the Gulf of Naples. Remote Sens. 2019, 12, 97. [Google Scholar] [CrossRef] [Green Version]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-ResNet and the impact of residual connections on learning. In Proceedings of the 31st AAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4278–4284. [Google Scholar]
- Liu, S.; Gang, R.; Li, C.; Song, R. Adaptive deep residual network for single image super-resolution. Comput. Vis. Media 2019, 5, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Jiang, F.; Zhao, D. Single image super-resolution with dilated convolution based multi-scale information learning inception module. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 977–981. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Li, Y.; Urtasun, R.; Zemel, R. Understanding the effective receptive field in deep convolutional neural networks. In Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5–10 December 2016; pp. 4905–4913. [Google Scholar]
- Malanotte-Rizzoli, P.; Artale, V.; Borzelli-Eusebi, G.L.; Brenner, S.; Crise, A.; Gacic, M.; Kress, N.; Marullo, S.; D’Alcalà, M.R.; Sofianos, S.; et al. Physical forcing and physical/biochemical variability of the Mediterranean Sea: A review of unresolved issues and directions for future research. Ocean Sci. 2014, 10, 281–322. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.; Park, J.; Lee, J.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buongiorno Nardelli, B.; Cavaliere, D.; Charles, E.; Ciani, D. Super-Resolving Ocean Dynamics from Space with Computer Vision Algorithms. Remote Sens. 2022, 14, 1159. https://doi.org/10.3390/rs14051159
Buongiorno Nardelli B, Cavaliere D, Charles E, Ciani D. Super-Resolving Ocean Dynamics from Space with Computer Vision Algorithms. Remote Sensing. 2022; 14(5):1159. https://doi.org/10.3390/rs14051159
Chicago/Turabian StyleBuongiorno Nardelli, Bruno, Davide Cavaliere, Elodie Charles, and Daniele Ciani. 2022. "Super-Resolving Ocean Dynamics from Space with Computer Vision Algorithms" Remote Sensing 14, no. 5: 1159. https://doi.org/10.3390/rs14051159