Estimating Local Inequality from Nighttime Lights
"> Figure 1
<p>Satellite imagery of nighttime light emissions in raster format for the town Kansanshi in Zambia. (<b>Left panel</b>): The computation of the local Gini coefficient requires log-transformed nighttime light emissions at the level of cells (in yellow) and population estimates (in white). (<b>Right panel</b>): The DHS Wealth Index values of the households in the survey cluster at that location. All values are hypothetical and only displayed for illustration purposes.</p> "> Figure 2
<p>Histogram of the overall distribution of nightlight-based Gini-coefficients, computed with a buffer radius of five kilometers. The light-grey histogram shows the distribution of urban clusters, the distribution of rural clusters is shown in dark-grey.</p> "> Figure 3
<p>Histogram of the overall distribution of nightlight-based Gini-coefficients for different buffer sizes.</p> "> Figure 4
<p>Boxplot of the NTL-based Gini-coefficients for a buffer radius of 5 km for individual countries. The lower and upper hinges correspond to the 25th and 75th percentiles, and the centerline indicates the 50th percentile.</p> "> Figure 5
<p>Histogram of the overall distribution of survey-based Gini-coefficients. Distribution of urban clusters in light-grey, the dark-grey histogram shows the distribution of rural clusters.</p> "> Figure 6
<p>Boxplot of the distribution of survey-based Gini coefficients for the individual countries. The number indicates the survey wave.</p> "> Figure 7
<p>Scatterplot of NTL-based Gini coefficients (computed with a buffer size of five kilometers) and survey-based Gini coefficients, separately for urban and rural clusters.</p> "> Figure 8
<p>Scatterplot of NTL-based and survey-based Gini coefficients, for different buffer sizes.</p> "> Figure 9
<p>Scatterplot of nighttime light-based Gini coefficients (with a buffer size of five kilometers) and survey-based Gini coefficients, by country and survey wave.</p> "> Figure 10
<p>Predicting wealth from nighttime light emissions, within-country. The figure shows the median (black lines), the 25th and 75th percentile (hinges) and the full ranges of the mean absolute prediction errors across the 37 surveys in our sample. Lower values indicate better performance.</p> "> Figure 11
<p>Predicting wealth from nighttime light emissions, across countries. As above, the figure shows the distribution of the mean absolute prediction errors across the 37 surveys in our sample, with lower values indicating better performance.</p> ">
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Estimates of Local Inequality from Nighttime Lights Data
3.2. Estimates of Local Inequality from the DHS
3.3. Validation
3.4. Predicting Local Inequality from Nighttime Lights Data
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Description of the Sample
Country | Phase | Year | No. of Clusters | No. of Households |
---|---|---|---|---|
Angola | 7 | 2015 | 610 | 15,739 |
Benin | 6 | 2012 | 704 | 16,480 |
Benin | 7 | 2017 | 534 | 13,636 |
Burkina Faso | 7 | 2014 | 203 | 5187 |
Burkina Faso | 7 | 2017 | 214 | 5521 |
Burundi | 6 | 2012 | 177 | 4311 |
Burundi | 7 | 2016 | 552 | 15,921 |
Cameroon | 7 | 2018 | 425 | 11,637 |
Chad | 7 | 2014 | 557 | 15,577 |
DR Congo | 6 | 2013 | 436 | 14,780 |
Ethiopia | 7 | 2016 | 560 | 14,766 |
Gabon | 6 | 2012 | 325 | 9537 |
Ghana | 7 | 2014 | 416 | 11,552 |
Ghana | 7 | 2016 | 192 | 5602 |
Ghana | 8 | 2019 | 190 | 5509 |
Guinea | 6 | 2012 | 295 | 7001 |
Ivory Coast | 6 | 2012 | 325 | 8975 |
Kenya | 7 | 2014 | 2 | 47 |
Kenya | 7 | 2015 | 230 | 6189 |
Liberia | 6 | 2013 | 310 | 8987 |
Liberia | 7 | 2016 | 147 | 4158 |
Liberia | 7 | 2019 | 320 | 8950 |
Madagascar | 6 | 2013 | 274 | 8574 |
Madagascar | 7 | 2016 | 358 | 11,284 |
Malawi | 7 | 2014 | 140 | 3405 |
Malawi | 7 | 2015 | 848 | 26,323 |
Malawi | 7 | 2017 | 148 | 3679 |
Mali | 6 | 2012 | 376 | 9299 |
Mali | 7 | 2015 | 177 | 4240 |
Mali | 7 | 2018 | 313 | 8462 |
Mozambique | 7 | 2015 | 8 | 189 |
Mozambique | 7 | 2018 | 221 | 6117 |
Nigeria | 6 | 2013 | 886 | 38,108 |
Nigeria | 7 | 2015 | 301 | 7306 |
Nigeria | 7 | 2018 | 1371 | 40,035 |
Senegal | 7 | 2015 | 164 | 3550 |
Senegal | 8 | 2019 | 176 | 3808 |
Sierra Leone | 6 | 2013 | 433 | 12,592 |
Sierra Leone | 7 | 2019 | 529 | 12,498 |
Tanzania | 7 | 2015 | 388 | 8363 |
Tanzania | 7 | 2017 | 332 | 7183 |
Togo | 6 | 2013 | 329 | 9520 |
Togo | 7 | 2017 | 171 | 4909 |
Uganda | 7 | 2014 | 161 | 4197 |
Uganda | 7 | 2016 | 650 | 18,392 |
Uganda | 7 | 2018 | 309 | 8180 |
Zambia | 6 | 2013 | 533 | 12,223 |
Zambia | 7 | 2018 | 500 | 11,920 |
Zimbabwe | 7 | 2015 | 375 | 9886 |
Appendix B. Proof: Upper Bound of Gini Coefficient for DHS Wealth Index Values
Appendix C. Additional Results of the Validation Analysis
Survey-Based Inequality Index | ||||
---|---|---|---|---|
Radius | ||||
2 km | 5 km | 10 km | 20 km | |
(1) | (2) | (3) | (4) | |
Intercept | 0.036 | 0.052 | 0.059 | −0.026 |
(0.080) | (0.077) | (0.073) | (0.078) | |
NTL-based Gini | 0.062 *** | 0.116 *** | 0.151 *** | 0.201 *** |
(0.015) | (0.015) | (0.016) | (0.019) | |
Urban | −0.060 *** | −0.074 *** | −0.099 *** | −0.119 *** |
(0.008) | (0.008) | (0.007) | (0.007) | |
Household size (mean) | 0.019 *** | 0.014 *** | 0.012 *** | 0.009 *** |
(0.003) | (0.003) | (0.003) | (0.002) | |
Number of households | 0.007 *** | 0.008 *** | 0.009 *** | 0.008 *** |
(0.002) | (0.002) | (0.002) | (0.002) | |
Total NTL emissions (log) | −0.010 *** | −0.001 *** | −0.0004 *** | −0.0001 *** |
(0.001) | (0.0002) | (0.00004) | (0.00001) | |
Total population (log) | −0.009 ** | −0.009 ** | −0.004 | 0.003 |
(0.003) | (0.004) | (0.003) | (0.004) | |
Number of cells | 0.009 *** | 0.001 *** | 0.0002 *** | 0.0001 *** |
(0.002) | (0.0003) | (0.0001) | (0.00001) | |
Fixed effects (country/wave) | Yes | Yes | Yes | Yes |
Observations | 2631 | 3206 | 3824 | 4522 |
R | 0.557 | 0.538 | 0.503 | 0.442 |
Adjusted R | 0.553 | 0.534 | 0.500 | 0.439 |
Residual Std. Error | 0.146 (df = 2604) | 0.152 (df = 3179) | 0.157 (df = 3797) | 0.164 (df = 4495) |
Survey-Based Inequality Index | ||||
---|---|---|---|---|
Radius | ||||
2 km | 5 km | 10 km | 20 km | |
(1) | (2) | (3) | (4) | |
Intercept | 0.198 *** | 0.136 *** | 0.015 | −0.146 *** |
(0.035) | (0.036) | (0.036) | (0.038) | |
NTL-based Gini | 0.120 *** | 0.188 *** | 0.226 *** | 0.282 *** |
(0.009) | (0.009) | (0.011) | (0.012) | |
Urban | −0.077 *** | −0.102 *** | −0.137 *** | −0.162 *** |
(0.005) | (0.004) | (0.004) | (0.004) | |
Household size (mean) | 0.015 *** | 0.011 *** | 0.010 *** | 0.010 *** |
(0.001) | (0.001) | (0.001) | (0.001) | |
Number of households | 0.007 *** | 0.008 *** | 0.008 *** | 0.008 *** |
(0.001) | (0.001) | (0.001) | (0.001) | |
Total NTL emissions (log) | −0.008 *** | −0.001 *** | −0.0003 *** | −0.0001 *** |
(0.0004) | (0.0001) | (0.00002) | (0.00001) | |
Total population (log) | −0.017 *** | −0.014 *** | −0.006 *** | 0.003 |
(0.002) | (0.002) | (0.002) | (0.002) | |
Number of cells | 0.007 *** | 0.001 *** | 0.0002 *** | 0.00005 *** |
(0.001) | (0.0002) | (0.00003) | (0.00001) | |
Fixed effects (country/wave) | Yes | Yes | Yes | Yes |
Observations | 9361 | 11,046 | 12,968 | 15,221 |
R | 0.541 | 0.533 | 0.509 | 0.471 |
Adjusted R | 0.539 | 0.531 | 0.507 | 0.469 |
Residual Std. Error | 0.142 (df = 9317) | 0.149 (df = 11002) | 0.155 (df = 12924) | 0.161 (df = 15177) |
Appendix D. Results of the Prediction Analysis
Model | Mean AE | Min AE | Max AE | 95%-Confidence Interval: Lower Bound | 95%-Confidence Interval: Upper Bound | |
---|---|---|---|---|---|---|
1 | LM 2 km | 0.11 | 0.07 | 0.21 | 0.10 | 0.12 |
2 | GAM 2 km | 0.12 | 0.08 | 0.17 | 0.11 | 0.12 |
3 | LM 5 km | 0.12 | 0.08 | 0.18 | 0.12 | 0.13 |
4 | GAM 5 km | 0.14 | 0.09 | 0.20 | 0.13 | 0.15 |
5 | LM 10 km | 0.11 | 0.07 | 0.22 | 0.10 | 0.12 |
6 | GAM 10 km | 0.11 | 0.08 | 0.16 | 0.10 | 0.12 |
7 | LM 20 km | 0.12 | 0.08 | 0.18 | 0.11 | 0.13 |
8 | GAM 20 km | 0.13 | 0.09 | 0.17 | 0.12 | 0.14 |
9 | LM Urban | 0.12 | 0.08 | 0.18 | 0.12 | 0.13 |
Model | Mean AE | Min AE | Max AE | 95%-Confidence Interval: Lower Bound | 95%-Confidence Interval: Upper Bound | |
---|---|---|---|---|---|---|
1 | LM 2 km | 0.15 | 0.08 | 0.31 | 0.13 | 0.17 |
2 | GAM 2 km | 0.15 | 0.08 | 0.31 | 0.13 | 0.17 |
3 | LM 5 km | 0.15 | 0.09 | 0.27 | 0.13 | 0.17 |
4 | GAM 5 km | 0.15 | 0.09 | 0.26 | 0.13 | 0.16 |
5 | LM 10 km | 0.15 | 0.10 | 0.25 | 0.14 | 0.17 |
6 | GAM 10 km | 0.15 | 0.09 | 0.25 | 0.14 | 0.17 |
7 | LM 20 km | 0.16 | 0.10 | 0.24 | 0.14 | 0.17 |
8 | GAM 20 km | 0.16 | 0.10 | 0.24 | 0.14 | 0.17 |
9 | LM Urban | 0.15 | 0.09 | 0.33 | 0.14 | 0.16 |
References
- Cederman, L.E.; Gleditsch, K.S. Introduction to Special Issue on ’Disaggregating Civil War’. J. Confl. Resolut. 2009, 53, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between Satellite Observed Visible-Near Infrared Emissions, Population, Economic Activity and Electric Power Consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A Global Poverty Map Derived from Satellite Data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Ghosh, T.; Powell, R.L.; Elvidge, C.D.; Baugh, K.E.; Sutton, P.C.; Anderson, S. Shedding Light on the Global Distribution of Economic Activity. Open Geogr. J. 2010, 3, 148–161. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Anderson, S.J.; Sutton, P.C.; Ghosh, T. The Night Light Development Index (NLDI): A Spatially Explicit Measure of Human Development from Satellite Data. Soc. Geogr. 2012, 7, 23–35. [Google Scholar] [CrossRef]
- Weidmann, N.B.; Schutte, S. Using Night Light Emissions for the Prediction of Local Wealth. J. Peace Res. 2017, 54, 125–140. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, T.; Zhou, C.; Xu, T. Nighttime Light Derived Assessment of Regional Inequality of Socioeconomic Development in China. Remote Sens. 2015, 7, 1242–1262. [Google Scholar] [CrossRef] [Green Version]
- Bruederle, A.; Hodler, R. Nighttime Lights as a Proxy for Human Development at the Local Level. PLoS ONE 2018, 13, e0202231. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Yang, D.; Dong, J.; Zhang, L.; Xia, F. Regional Inequality in China Based on NPP-VIIRS Night-Time Light Imagery. Remote Sens. 2018, 10, 240. [Google Scholar] [CrossRef] [Green Version]
- Ivan, K.; Holobâcă, I.H.; Benedek, J.; Török, I. Potential of Night-Time Lights to Measure Regional Inequality. Remote Sens. 2020, 12, 33. [Google Scholar] [CrossRef] [Green Version]
- Ivan, K.; Holobâcă, I.H.; Benedek, J.; Török, I. VIIRS Nighttime Light Data for Income Estimation at Local Level. Remote Sens. 2020, 12, 2950. [Google Scholar] [CrossRef]
- Piketty, T. Capital in the 21st Century; Harvard University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Cederman, L.E.; Weidmann, N.B.; Gleditsch, K.S. Horizontal Inequalities and Ethno-nationalist Civil War: A Global Comparison. Am. Political Sci. Rev. 2011, 105, 478–495. [Google Scholar] [CrossRef] [Green Version]
- Cederman, L.E.; Weidmann, N.B.; Bormann, N.C. Triangulating Horizontal Inequality: Toward Improved Conflict Analysis. J. Peace Res. 2015, 52, 806–821. [Google Scholar] [CrossRef] [Green Version]
- Alesina, A.; Michalopoulos, S.; Papaioannou, E. Ethnic Inequality. J. Political Econ. 2016, 124, 428–488. [Google Scholar] [CrossRef] [Green Version]
- Bormann, N.C.; Pengl, Y.I.; Cederman, L.E.; Weidmann, N.B. Globalization, Institutions, and Ethnic Inequality. Int. Organ. 2021, 75, 665–697. [Google Scholar] [CrossRef]
- Kuhn, P.; Weidmann, N.B. Unequal We Fight: Between- and Within-Group Inequality and Ethnic Civil War. Political Sci. Res. Methods 2015, 3, 543–568. [Google Scholar] [CrossRef] [Green Version]
- Neman, T.S. Does Your Neighborhood’s Income Distribution Matter? A Multi-scale Study of Financial Well-Being in the U.S. Soc. Indic. Res. 2020, 152, 951–970. [Google Scholar] [CrossRef]
- Newman, B.J. Breaking the Glass Ceiling: Local Gender-Based Earnings Inequality and Women’s Belief in the American Dream. Am. J. Political Sci. 2016, 60, 1006–1025. [Google Scholar] [CrossRef]
- Newman, B.J.; Hayes, T.J. Durable Democracy? Economic Inequality and Democratic Accountability in the New Gilded Age. Political Behav. 2019, 41, 5–30. [Google Scholar] [CrossRef]
- Newman, B.J.; Johnston, C.D.; Lown, P.L. False Consciousness or Class Awareness? Local Income Inequality, Personal Economic Position, and Belief in American Meritocracy. Am. J. Political Sci. 2015, 59, 326–340. [Google Scholar] [CrossRef]
- Newman, B.J.; Shah, S.; Lauterbach, E. Who Sees an Hourglass? Assessing Citizens’ Perception of Local Economic Inequality. Res. Politics 2018, 5, 2053168018793974. [Google Scholar] [CrossRef] [Green Version]
- Sands, M.L.; de Kadt, D. Local Exposure to Inequality Raises Support of People of Low Wealth for Taxing the Wealthy. Nature 2020, 586, 257–261. [Google Scholar] [CrossRef]
- Larsen, M.V.; Hjorth, F.; Dinesen, P.T.; Sønderskov, K.M. When Do Citizens Respond Politically to the Local Economy? Evidence from Registry Data on Local Housing Markets. Am. Political Sci. Rev. 2019, 113, 499–516. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Peng, J.; Liu, Y.; Du, Y.; Li, H.; Wu, J. Mapping Development Pattern in Beijing-Tianjin-Hebei Urban Agglomeration Using DMSP/OLS Nighttime Light Data. Remote Sens. 2017, 9, 760. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, A.; Urzainqui, D.G.; The Dynamics of Spatial and Local Inequalities in India. UN-WIDER Working Paper. 2019. Available online: https://www.wider.unu.edu/publication/dynamics-spatial-and-local-inequalities-india (accessed on 30 July 2021).
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.C.; Taneja, J. Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.C. Why VIIRS Data are Superior to DMSP for Mapping Nighttime Lights. Proc.-Asia-Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Nordhaus, W. A Test of the New VIIRS Lights Data Set: Population and Economic Output in Africa. Remote Sens. 2015, 7, 4937–4947. [Google Scholar] [CrossRef] [Green Version]
- Gibson, J.; Olivia, S.; Boe-Gibson, G. Night Lights in Economics: Sources and Uses. J. Econ. Surv. 2020, 34, 955–980. [Google Scholar] [CrossRef]
- Tatem, A.J. WorldPop, Open data for Spatial Demography. Sci. Data 2017, 4, 170004. [Google Scholar] [CrossRef]
- Lloyd, C.T.; Chamberlain, H.; Kerr, D.; Yetman, G.; Pistolesi, L.; Stevens, F.R.; Gaughan, A.E.; Nieves, J.J.; Hornby, G.; MacManus, K.; et al. Global Spatio-temporally Harmonised Datasets for Producing High-resolution Gridded Population Distribution Datasets. Big Earth Data 2019, 3, 108–139. [Google Scholar] [CrossRef] [Green Version]
- Sønderskov, K.M.; Dinesen, P.T.; Finkel, S.E.; Hansen, K.M. Crime Victimization Increases Turnout: Evidence from Individual-level Administrative Panel Data. Br. J. Political Sci. 2020. [Google Scholar] [CrossRef]
- Rutstein, S.O.; Johnson, K.; The DHS Wealth Index. DHS Comparative Reports No. 6. 2004. Available online: http://dhsprogram.com/pubs/pdf/CR6/CR6.pdf (accessed on 30 July 2021).
- ICF International. Demographic and Health Survey Sampling and Household Listing Manual. Technical Documentation. 2012. Available online: https://dhsprogram.com/pubs/pdf/DHSM4/DHS6_Sampling_Manual_Sept2012_DHSM4.pdf (accessed on 30 July 2021).
- Wood, S.N. Generalized Additive Models: An Introduction with R; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Chi, G.; Fang, H.; Chatterjee, S.; Blumenstock, J.E. Micro-Estimates of Wealth for all Low- and Middle-Income Countries. CEGA Working Paper Series No. WPS-165. 2021. Available online: https://escholarship.org/uc/item/3fv3h12q (accessed on 30 July 2021).
- Mellander, C.; Lobo, J.; Stolarick, K.; Matheson, Z. Night-time Light Data: A Good Proxy Measure for Economic Activity? PLoS ONE 2015, 10, e0139779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Survey-Based Inequality Index | ||||
---|---|---|---|---|
Radius | ||||
2 km | 5 km | 10 km | 20 km | |
(1) | (2) | (3) | (4) | |
Intercept | 0.638 *** | 0.626 *** | 0.507 *** | 0.327 *** |
(0.027) | (0.028) | (0.029) | (0.030) | |
NTL-based Gini | 0.098 *** | 0.165 *** | 0.211 *** | 0.265 *** |
(0.009) | (0.009) | (0.009) | (0.009) | |
Urban | −0.088 *** | −0.116 *** | −0.152 *** | −0.177 *** |
(0.005) | (0.004) | (0.004) | (0.004) | |
Household size (mean) | 0.002 * | −0.001 | −0.002 * | −0.001 |
(0.001) | (0.001) | (0.001) | (0.001) | |
Number of households | 0.0003 | −0.0005 | −0.001 *** | −0.002 *** |
(0.0003) | (0.0003) | (0.0003) | (0.0003) | |
Total NTL emissions (log) | −0.003 *** | −0.001 *** | −0.0002 *** | −0.0001 *** |
(0.0004) | (0.0001) | (0.00002) | (0.00001) | |
Total population (log) | −0.042 *** | −0.031 *** | −0.016 *** | −0.003 |
(0.002) | (0.002) | (0.002) | (0.002) | |
Number of cells | 0.005 *** | 0.002 * | 0.001 | 0.001 |
(0.001) | (0.001) | (0.001) | (0.001) | |
Observations | 9343 | 11,029 | 12,946 | 15,211 |
R | 0.423 | 0.437 | 0.421 | 0.398 |
Adjusted R | 0.423 | 0.437 | 0.421 | 0.398 |
Residual Std. Error | 0.158 (df = 9335) | 0.163 (df = 11,021) | 0.168 (df = 12,938) | 0.172 (df = 15,203) |
Survey-Based Inequality Index | ||||
---|---|---|---|---|
Radius | ||||
2 km | 5 km | 10 km | 20 km | |
(1) | (2) | (3) | (4) | |
Intercept | 0.218 *** | 0.164 *** | 0.042 | −0.115 *** |
(0.034) | (0.035) | (0.035) | (0.037) | |
NTL-based Gini | 0.105 *** | 0.171 *** | 0.207 *** | 0.257 *** |
(0.009) | (0.009) | (0.009) | (0.011) | |
Urban | −0.079 *** | −0.103 *** | −0.137 *** | −0.162 *** |
(0.005) | (0.004) | (0.004) | (0.004) | |
Household size (mean) | 0.015 *** | 0.011 *** | 0.010 *** | 0.010 *** |
(0.001) | (0.001) | (0.001) | (0.001) | |
Number of households | 0.007 *** | 0.008 *** | 0.008 *** | 0.008 *** |
(0.001) | (0.001) | (0.001) | (0.001) | |
Total NTL emissions (log) | −0.008 *** | −0.001 *** | −0.0003 *** | −0.0001 *** |
(0.0004) | (0.0001) | (0.00002) | (0.00001) | |
Total population (log) | −0.018 *** | −0.014 *** | −0.005 *** | 0.004 * |
(0.002) | (0.002) | (0.002) | (0.002) | |
Number of cells | 0.007 *** | 0.001 *** | 0.0002 *** | 0.00005 *** |
(0.001) | (0.0002) | (0.00003) | (0.00001) | |
Fixed effects (country/wave) | Yes | Yes | Yes | Yes |
Observations | 9343 | 11,029 | 12,946 | 15,211 |
R | 0.539 | 0.532 | 0.508 | 0.470 |
Adjusted R | 0.537 | 0.530 | 0.507 | 0.469 |
Residual Std. Error | 0.142 (df = 9299) | 0.149 (df = 10,985) | 0.155 (df = 12,902) | 0.161 (df = 15,167) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weidmann, N.B.; Theunissen, G. Estimating Local Inequality from Nighttime Lights. Remote Sens. 2021, 13, 4624. https://doi.org/10.3390/rs13224624
Weidmann NB, Theunissen G. Estimating Local Inequality from Nighttime Lights. Remote Sensing. 2021; 13(22):4624. https://doi.org/10.3390/rs13224624
Chicago/Turabian StyleWeidmann, Nils B., and Gerlinde Theunissen. 2021. "Estimating Local Inequality from Nighttime Lights" Remote Sensing 13, no. 22: 4624. https://doi.org/10.3390/rs13224624