Estimation of Soil Organic Carbon Contents in Croplands of Bavaria from SCMaP Soil Reflectance Composites
<p>Overview of the study area in Bavaria and the distribution of the soil dataset (LfU—Bavarian Environmental Agency; LfL—Bavarian State Research Center for Agriculture; LUCAS—Land Use/Cover Area frame statistical survey).</p> "> Figure 2
<p>A flowchart of the SOC modeling approach (SRC—soil reflectance composite; MLR—Multiple Linear Regression; PLSR—Partial Least Square Regression; RF—Random Forest; RMSE—Root Mean Square Error; RPD—Ratio of Performance to Deviation).</p> "> Figure 3
<p>Frequency distribution of SOC contents of the (<b>a</b>) training, (<b>b</b>) test portion of the model calibration (cal) dataset and (<b>c</b>) a comparison of the model calibration dataset and the external independent validation (val) datasets.</p> "> Figure 4
<p>SRC reflectances of the center pixel (dark grey), the eight neighboring pixels (grey), the average reflectance (blue solid), the STDs per pixel cluster (blue dashed) for (<b>a</b>) a homogenous pixel cluster and (<b>b</b>) a heterogenous pixel cluster.</p> "> Figure 5
<p>Frequency distribution of the STDs of all pixel clusters per band. Twice, the STD per band was selected as the threshold for the identification of deviating pixel clusters.</p> "> Figure 6
<p>The correlation matrix (Pearson’s correlation) between the reflectances, the indices and the modeling variable SOC. The definition of significant features for SOC modeling and further independent features for the RI_sel dataset are based on the correlations (the hypothesis test by the <span class="html-italic">p</span>-values showed for all significant feature combinations a correlation close or equal to zero).</p> "> Figure 7
<p>Feature selection for RF and PLSR. (<b>a</b>) VIP diagram of the PLSR to select the relevant features for the PLSR RI_sel run. Features with a VIP score higher than 1.0 are selected for the RI_sel database. (<b>b</b>) The feature importance score for the RF selection of relevant features. Features with a score higher 0.04 (4%) are selected for the RI_sel database.</p> "> Figure 8
<p>A comparison of predicted and measured SOC contents using the 30% validation data from LfU, LfL and LUCAS not used for model calibration. Depicted are MLR (<b>upper row</b>), PLSR (<b>middle row</b>) and RF (<b>bottom row</b>) based on reflectances (R), reflectances and all indices (RI_all) and reflectances and per algorithm selected indices (RI_sel). The accuracies (R², RPD, RMSE) per algorithm and dataset, the regression (black line) and the 1:1 line (orange) are given.</p> "> Figure 9
<p>A comparison of the differences between the 308 predicted and the measured SOC contents of the external validation dataset using the best set of input data for (<b>a</b>) MLR, (<b>b</b>) PLSR and (<b>c</b>) RF.</p> "> Figure 10
<p>Spatial prediction of the SOC contents based on the RF (RI_all) model.</p> "> Figure 11
<p>The distribution of the number of cloudless scenes per pixel of the calibration (<b>a</b>) and external validation (<b>b</b>) dataset. Plot (<b>c</b>) of the error in predicted (based on the external validation dataset) and measured SOC (%) as a function of cloudless scenes per pixel.</p> "> Figure 12
<p>The spatial distribution of SOC contents for a subset of the investigation data. The prediction possibilities of field scale are visible.</p> "> Figure A1
<p>The number of cloudless scenes per pixel for the total composite time (1984–2014) in the investigation area.</p> "> Figure A2
<p>Standardized residuals of the model validation (30% of data points).</p> "> Figure A3
<p>Autocorrelation of the prediction residuals of the model validation (30% of data points).</p> ">
Abstract
:1. Introduction
Study Area (Size (km²)) | Earth Observation Data/Soil Data: Number of Samples (Samples/km²) | SOC Range (%) | Machine Learning Algorithm | R² | RMSE (%) | RPD | Reference |
---|---|---|---|---|---|---|---|
Albany Ticket, South Africa (320) | HyMap (hy, A)/125 (0.39) spectra | 0.21–5.85 | Feature based MLR (1) | 0.62 | 0.43 | 1.57 | [39] |
Loam belt, Belgium (BE) (462)/Luxembourg (LUX) (146) | APEX (hy, A)/84 (1.58) (LUX), 54 (0.12) (BE) spectra/LUCAS spectra | 1.69–31.8 | PLSR (1) | - | field spec: 0.49 (LUX)/0.15 (BE) LUCAS: 0.49 (LUX)/0.15 (BE) | field spec: 1.7 (LUX)/1.4 (BE) LUCAS: 1.7 (LUX)/1.4 (BE) | [40] |
Demmin, Germany (GER) (200)/Loam Belt, BE (426) BE/Gutland-Oesling, LUX (204) | Sentinel-2 (S-2) (ms, A) APEX (hy, A), S-2 resampled (ms, A)/170 (0.8) (BE)/194 (0.4) (LUX)/231 (0.12) (GER) samples | 0.6–1.6 | PLSR/RF (1) | - | PLSR: 0.10–0.17 (S-2)/0.11–0.17 (hy)/0.08–0.14 (S-2 res) RF: 0.2–1.86 (S-2)/0.2–1.84 (hy)/0.2–1.86 (S-2 res) | PLSR: 1.0–1.7 (S-2)/1.1–1.7 (hy)/1.0–1.5 (S-2 res) RF: 1.0–1.5 (S-2)/1.0–2.1 (hy)/1.0–2.1 (S-2 res) | [22] |
Demmin, GER (10.000) | S-2B (ms, A)/35 LUCAS spectra | 0.5–38.4 | RF (1) | - | 0.68–2.67 | 0.9–4.4 | [41] |
Demmin, GER | S-2 (ms, A), HySpex (hy, A), EnMAP simulated (hy, A)/181 samples | 0.6–19.4 | RF (1) | - | 8.7–17.8 (S-2)/11.0–18.8 (EnMAP) | 1.2–2.5 (S-2)/1.2–2.0 (EnMAP) | [42] |
Wallonia, BE (3.630) | Sentinel-2 (ms, B)/137 (0.038) samples | 0.67–2.1 | PLSR (2) | 0.14 ± 0.03–0.54 ± 0.12 | 0.209 ± 0.039–0.363 ± 0.036 | 1.06 ± 0.06–1.68 ± 0.45 | [43] |
4 fields, Czech Republic (CZK) (0.7–7.76) | CASI (hy, A), Sentinel-2 (ms, A)/200 samples) | 0.56–2.62 | support vector machine regression (1) | - | 0.12–7.95 (hy)/0.14–9.15 (S-2) | 1.03–2.05 (hy)/0.89–1.92 (S-2) | [44] |
4 fields, Lower Rhine Basin (GER) (0.0025–0.09) | HyMap (hy, A)/204 samples | 0.8–1.85 | PLSR (2) | 0.34–8.83 | 0.76–1.13 | 1.14–2.32 | [45] |
Europe | Landsat-4, -5, -7, -8 composite (1982–2018) (ms, B)/LUCAS spectra | 0.0–43.84 | gradient boosting trees (1) | 0.06–0.13 | 1.52–1.68 | 0.52–0.58 | [25] |
Wulfen, GER (200) GER | HyMap (hy, A)/73 (0.73) samples | 0.7–3.85 | MLR/PLSR (2) | 0 90 (PLSR)/0.86 (MLR) | 0.29 (PLSR)/0.22 (MLR) | - | [46] |
Versailles Plains (VP), (221)/Peyne Valley (PV), France (FRA) (48) | S-2 (ms, A)/72 (0.33) (VP), 143 (2.98) (PV) samples | 0.7–3.19 (VP)/0.4–2.18 (PV) | PLSR (2) | 0.56 (VP)/0.02 (PV) | 0.123 (VP)/0.371 (PV) | 1.51 (VP)/1.00 (PV) | [23] |
Versailles Plain, FRA (221) | S-2 (ms, A)/329 (1.49) samples | 0.62–3.59 | PLSR (2) | 0.16–0.58 | 0.302–0.586 | 1.0–1.5 | [47] |
Versailles Plain, FRA (221) | S-2 (ms, B)/329 (1.49) samples | 0.62–3.59 | PLSR (2) | −0.02–0.56 | 0.253–0.545 | 0.99–1.53 | [37] |
Sardice, Czech Republic (1.45) | Sentinel-2 (ms, A), S-2 composite (03/2017–05/2019) (ms, B), Landsat-8 (ms, A), CASI (hy, A) (50 (34.5) samples | 0.85–2.62 | RF/PLSR (2) | 0.56–0.68 (S-2)/0.81 (S-2 comp)/0.65 (L-8)/0.76 (CASI) | 0.27–0.28 (S-2)/0.34 (S-2 comp)/0.28 (L-8)/0.20 (CASI) | 1.4–1.52 (S-2)/1.4 (S-2 comp)/1.41 (L-8)/1.81 (CASI) | [48] |
- Develop a spatial/spectral filtering technique to prepare the point dataset of the Bavarian test site for modeling purpose using the novel SCMaP SRC.
- Apply the 30-year SCMaP SRC to derive SOC contents in Bavaria using different machine learning algorithms.
- Validate the SOC map using an additional independent external dataset not included in the model calibration and validation.
2. Materials and Methods
2.1. Study Area
2.2. Soil Organic Carbon Modeling
2.3. SCMaP SRC and Spectral Indices
2.4. Spectral/Spatial Filtering Technique
2.5. Soil Modeling Methods
2.6. Soil Samples
2.7. External Validation
3. Results
3.1. Spectral/Spatial Filtering
3.2. Feature Selection
3.3. Model Results—Calibration
3.4. External Validation
3.5. Spatial SOC Prediction
4. Discussion
4.1. Spectral/Spatial Filtering
4.2. Data and Modeling
4.3. External Validation
4.4. SCMaP SRC as Database for Modeling SOC Contents with High Spatial Resolution Covering Large Geographical Areas
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lal, R.; Follett, R.F.; Stewart, B.A.; Kimble, J.M. Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci. 2007, 172, 943–956. [Google Scholar] [CrossRef]
- Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S. Persistence of Soil Organic Carbon Caused by Functional Complexity. Nat. Geosci. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Loveland, P.; Webb, J. Is there a critical level of organic mattes in the agricultural soils of temperate regions: A review. Soil Tillage Res. 2003, 70, 1–18. [Google Scholar] [CrossRef]
- Lal, R. Soil Health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Carter, M.R.; Angers, D.A.; Monreal, C.M.; Ellert, B. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 1994, 74, 367–385. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Chang. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R.; Ehlers, K. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degrad. Dev. 2019, 30, 824–838. [Google Scholar] [CrossRef]
- Gollany, H.T.; Venterea, R.T. Measurements and models to identify agroecosystem practices that enhance soil organic carbon under changing climate. J. Environ. Qual. 2018, 47, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Collier, S.; Baldock, J.; Burgess, R.; Creque, J.; DeLonge, M.; Dungait, J.; Ellert, B.; Frank, S.; Goddard, T.; et al. Quantifying carbon for agricultural soil management: From the current status toward a global soil information system. Carbon Manag. 2019, 10, 567–587. [Google Scholar] [CrossRef] [Green Version]
- Jandl, R.; Rodeghiero, M.; Martinez, C.; Cotrufo, M.F.; Bampa, F.; van Wesemael, B.; Harrison, R.B.; Guerrini, I.A.; Richter, D.D.; Rustad, L.; et al. Current status, uncertainty and future needs in soil organic carbon monitoring. Sci. Total. Environ. 2014, 468–469, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.A.; Schaetzl, R.J. The historical role of base maps in soil geography. Geoderma 2014, 230–231, 329–339. [Google Scholar] [CrossRef]
- Jones, R.J.A.; Hiederer, R.; Rusco, E.; Montanarella, L. Estimating organic carbon in the soils of Europe for policy support. Eur. J. Soil Sci. 2005, 56, 655–671. [Google Scholar] [CrossRef] [Green Version]
- de Brogniez, D.; Ballabio, C.; Stevens, A.; Jones, R.J.A.; Montanarella, L.; van Wesemael, B. A Map of the Topsoil Organic Carbon Content of Europe Generated by a Generalized Additive Model. Eur. J. Soil Sci. 2015, 66, 121–134. [Google Scholar] [CrossRef]
- Crucil, G.; Castaldi, F.; Aldana-Jague, E.; van Wesemael, B.; Macdonald, A.; Van Oost, K. Assessing the performance of UAS-compatible multispectral and hyperspectral sensors for soil organic carbon prediction. Sustainability 2019, 11, 1889. [Google Scholar] [CrossRef] [Green Version]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using imaging spectroscopy to study soil properties. Remote. Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Bartholomeus, H.; Kooistra, L.; Stevens, A.; van Leeuwen, M.; van Wesemael, B.; Ben-Dor, E.; Tychon, B. Soil organic carbon mapping of partially vegetated agricultural fields with imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 81–88. [Google Scholar] [CrossRef]
- Bayer, A.D.; Bachmann, M.; Rogge, D.; Muller, A.; Kaufmann, H. Combining field and imaging spectroscopy to map soil organic carbon in a semiarid environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2016, 9, 3997–4010. [Google Scholar] [CrossRef]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging spectroscopy for soil mapping and monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van Wesemael, B. Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote. Sens. 2019, 147, 267–282. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems. Remote. Sens. Environ. 2019, 223, 21–33. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Atkinson, P.M.; Yao, H. Predicting soil organic carbon content in Spain by combining landsat TM and ALOS PALSAR images. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102182. [Google Scholar] [CrossRef]
- Safanelli, J.L.; Chabrillat, S.; Ben-Dor, E.; Demattê, J.A.M. Multispectral models from bare soil composites for mapping topsoil properties over Europe. Remote Sens. 2020, 12, 1369. [Google Scholar] [CrossRef]
- Diek, S.; Fornallaz, F.; Schaepman, M.E.; De Jong, R. Barest pixel composite for agricultural areas using Landsat time series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef] [Green Version]
- Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Safanelli, J.L.; Poppiel, R.R.; Rizzo, R.; Silvero, N.E.Q.; de Sousa Mendes, W.; Bonfatti, B.R.; Dotto, A.C.; Salazar, D.F.U.; de Oliveira Mello, F.A.; et al. Bare Earth’s surface spectra as a proxy for soil resource monitoring. Sci. Rep. 2020, 10, 4461. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Egorov, A.; Roy, D.P.; Potapov, P.; Ju, J.; Turubanova, S.; Kommareddy, I.; Loveland, T.R. Continuous fields of land cover for the conterminous United States using Landsat data: First results from the Web-Enabled Landsat Data (WELD) project. Remote Sens. Lett. 2011, 2, 279–288. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A.; Hobart, G.W.; Luther, J.E.; Hermosilla, T.; Griffiths, P.; Coops, N.C.; Hall, R.J.; Hostert, P.; Dyk, A.; et al. Pixel-based image compositing for large-area dense time series applications and science. Can. J. Remote Sens. 2014, 40, 192–212. [Google Scholar] [CrossRef] [Green Version]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote. Sens. Environ. 2015, 158, 220–234. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Loiseau, T.; Chen, S.; Mulder, V.L.; Dobarco, M.R.; Richer-de-Forges, A.C.; Lehmann, S.; Bourennane, H.; Saby, N.P.; Martin, M.P.; Vaudour, E. Satellite data integration for soil clay content modelling at a national scale. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101905. [Google Scholar] [CrossRef]
- Adams, B.; Iverson, L.; Matthews, S.; Peters, M.; Prasad, A.; Hix, D.M. Mapping forest composition with Landsat time series: An evaluation of seasonal composites and harmonic regression. Remote Sens. 2020, 12, 610. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Rogge, D.; Bauer, A.; Zeidler, J.; Mueller, A.; Esch, T.; Heiden, U. Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote. Sens. Environ. 2018, 205, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Vaudour, E.; Fomez, C.; Lagacherie, P.; Loiseau, T.; Baghdadi, N.; Urbina-Salazar, D.; Loubet, B.; Arrouays, D. Temporal mosaicking approaches of Sentinel-2 images for extending organic carbon content mapping in croplands. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102277. [Google Scholar] [CrossRef]
- Weigand, M.; Staab, J.; Wurm, M.; Taubenböck, H. Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102065. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombi, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaludation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Jones, A.; Vreys, K.; Bomans, B.; van Wesemael, B. Soil organic carbon estimation in croplands by hyperspectral remote APEX data using the LUCAS topsoil database. Remote Sens. 2018, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Chabrillat, S.; Don, A.; van Wesemael, B. Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: An approach to reduce soil moisture and crop residue effects. Remote Sens. 2019, 11, 2121. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Chabrillat, S.; van Wesemael, B. Sampling strategies for soil property mapping using multispectral Sentinel-2 and hyperspectral EnMAP satellite data. Remote Sens. 2019, 11, 309. [Google Scholar] [CrossRef] [Green Version]
- Dvorakova, K.; Heiden, U.; van Wesemael, B. Sentinel-2 exposed soil composite for soil organic carbon prediction. Remote Sens. 2021, 13, 1791. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Hbirkou, C.; Pätzold, S.; Mahlein, A.-K.; Welp, G. Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale. Geoderma 2012, 175–176, 21–28. [Google Scholar] [CrossRef]
- Selige, T.; Böhner, J.; Schmidhalter, U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma 2006, 136, 235–244. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Loiseau, T.; Baghdadi, N.; Loubet, B.; Arrouays, D.; Ali, L.; Lagacherie, P. The impact of acquisition date on the prediction performance of topsoil organic carbon from Sentinel-2 for croplands. Remote Sens. 2019, 11, 2143. [Google Scholar] [CrossRef] [Green Version]
- Žížala, D.; Minařík, R.; Zádorová, T. Soil organic carbon mapping using multispectral remote sensing data: Prediction ability of data with different spatial and spectral resolutions. Remote Sens. 2019, 11, 2947. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Hübner, R.; Barthold, F.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; von Lützow, M.; Kögel-Knabner, I. Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of Southeast Germany (Bavaria). Agric. Ecosyst. Environ. 2013, 176, 39–52. [Google Scholar] [CrossRef]
- Wrb, I.W.G. World reference base for soil resources 2015. World Soil Resour. Rep. 2015, 103, 128. [Google Scholar]
- Zepp, S.; Jilge, M.; Metz-Marconcini, A.; Heiden, U. The influence of vegetation index thresholding on EO-based assessments of exposed soil masks in Germany between 1984 and 2019. ISPRS J. Photogramm. Remote. Sens. 2021, 178, 366–381. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 89–98. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detectionn for Landsat 4-7, 8 and Sentinel-2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Satellite Imagery/ATCOR-2/3 User Guide, Version 8.3.1; ReSe Applications Schläpfer Langeggweg: Wil, Switzerland, 2014; Volume 3. [Google Scholar]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Escadafal, R. Remote sensing of arid soil surface color with Landsat thematic mapper. Adv. Space Res. 1989, 9, 159–163. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment (LA). In FIREMON: Fire Effects Monitoring and Inventory System; Gen. Tech. Rep. RMRS-GTR-164-CD; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; p. LA-1-55 2006, 164. [Google Scholar]
- Qi, J.; Kerr, Y.; Chehbouni, A. External factor consideration in vegetation index development. Proc. Phys. Meas. Signat. Remote Sens. ISPRS 1994, 723, 730. [Google Scholar]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore III, B.; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Rogers, A.S.; Kearney, M.S. Reducing signature variability in unmixing coastal marsh thematic mapper scenes using spectral indices. Int. J. Remote. Sens. 2004, 25, 2317–2335. [Google Scholar] [CrossRef]
- Pouget, M.; Madeira, J.; Le Floch, E.; Kamal, S. Caracteristiques spectrales des surfaces sableuses de la Region Cotiere Nord-Ouest de l’Egypte. Appl. Aux Donnees Satell. SPOT 1990, 4–6. [Google Scholar]
- Chen, W.; Liu, L.; Zhang, C.; Wang, J.; Wang, J.; Pan, Y. Monitoring the seasonal bare soil areas in Beijing using multitemporal TM images. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 5, pp. 3379–3382. [Google Scholar]
- Nellis, M.D.; Briggs, J.M. Transformed vegetation index for measuring spatial variation in drought impacted biomass on Konza Prairie, Kansas. Trans. Kans. Acad. Sci. 1992, 95, 93. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R. Remote sensing for grassland management in the arid southwest. Rangel. Ecol. Manag. 2006, 59, 530–540. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS proceeding. In Proceedings of the Third Earth Reserves Technology Satellite Symposium, Washington, DC, USA, 10–14 December 1973; Volume 30103017. [Google Scholar]
- Tian, Y.; Yan, Z.; Weixing, C. Monitoring soluble sugar, total nitrogen & its ratio in wheat leaves with canopy spectral reflectance. Zuo Wu Xue Bao 2005, 31, 355–360. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Huete, A.; Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- da Silva Chagas, C.; de Carvalho Junior, W.; Bhering, S.B.; Calderano Filho, B. Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. Catena 2016, 139, 232–240. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Y.; Guo, L.; Fei, T.; Qi, K. Estimating soil organic carbon of cropland soil at different levels of soil moisture using VIS-NIR spectroscopy. Remote Sens. 2016, 8, 755. [Google Scholar] [CrossRef] [Green Version]
- Ward, K.J.; Chabrillat, S.; Neumann, C.; Foerster, S. A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database. Geoderma 2019, 353, 297–307. [Google Scholar] [CrossRef]
- Xie, X.; Wu, T.; Zhu, M.; Jiang, G.; Xu, Y.; Wang, X.; Pu, L. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 2021, 120, 106925. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chang, C.-W.; Laird, D.A. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Sci. 2002, 167, 110–116. [Google Scholar] [CrossRef]
- Lin, L.I.-K. A Concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Chong, I.-G.; Jun, C.-H. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 2005, 78, 103–122. [Google Scholar] [CrossRef]
- Hobley, E.; Wilson, B.; Wilkie, A.; Gray, J.; Koen, T. Drivers of soil organic carbon storage and vertical distribution in Eastern Australie. Plant. Soil 2015, 390, 111–127. [Google Scholar] [CrossRef]
- Hobley, E.U.; Baldock, J.; Wilson, B. Environmental and human influences on organic carbon fractions down the soil profile. Agric. Ecosyst. Environ. 2016, 223, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Kühnel, A.; Wiesmeier, M.; Kögel-Knabner, I.; Spörlein, P. Veränderungen der Humusqualität und -Quantität Bayerischer Böden im Klimawandel; Umwelt Spezial; Bayerisches Landesamt für Umwelt: Hof, Germany, 2020. [Google Scholar]
- Tóth, G.; Jones, A.; Montanarella, L. LUCAS Topsoil Survey: Methodology, Data and Results; Publications Office: Luxembourg, 2013; ISBN 92-79-32542-6. [Google Scholar]
- Wiesmeier, M.; Spörlein, P.; Geuß, U.W.E.; Hangen, E.; Haug, S.; Reischl, A.; Schilling, B.; von Lützow, M.; Kögel-Knabner, I. Soil organic carbon stocks in Southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Glob. Chang. Biol. 2012, 18, 2233–2245. [Google Scholar] [CrossRef]
- Origazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS soil, the largest expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Wiesmeier, M.; Schad, P.; von Lützow, M.; Poeplau, C.; Spörlein, P.; Geuß, U.; Hagen, E.; Reischl, A.; Schilling, B.; Kögel-Knabner, I. Quantification of functional soil organic carbon pools for majow soil units and land uses in southeast Germany (Bavaria). Agric. Ecosyst. Environ. 2014, 185, 208–220. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Moisture effects on soil reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722–727. [Google Scholar] [CrossRef]
- Haubrock, S.-N.; Chabrillat, S.; Lemmnitz, C.; Kaufmann, H. Surface soil moisture quantification models from reflectance data under field conditions. Int. J. Remote. Sens. 2008, 29, 3–29. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using vis-NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Pascucci, S.; Pignatti, S.; Santini, F.; Casa, R. Reducing the influence of soil moisture on the estimation of clay from hyperspectral data: A case study using simulated PRISMA data. Remote Sens. 2015, 7, 15561–15582. [Google Scholar] [CrossRef] [Green Version]
- Mzid, N.; Pignatti, S.; Huang, W.; Casa, R. An analysis of bare soil occurrence in arable croplands for remote sensing topsoil applications. Remote Sens. 2021, 13, 474. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotíc, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Säurich, A.; Tiemeyer, B.; Don, A.; Fiedler, S.; Bechtold, M.; Amelung, W.; Freibauer, A. Drained organic soils under agriculture —The more degraded the soil the higher the specific basal respiration. Geoderma 2019, 355, 113911. [Google Scholar] [CrossRef]
Spectral Index | Description | Expression | Reference |
---|---|---|---|
BI | Brightness Index | [57] | |
BI2 | Second Brightness Index | [57] | |
EVI | Enhanced Vegetation Index | [58] | |
NBR2 | Normalized Burn Ratio | [59] | |
SCMaP I | SCMaP Index | - | |
MSAVI2 | Modified Soil Adjusted Vegetation Index | [60] | |
LSWI | Land Surface Water Index | [61] | |
NDSI | Normalized Difference Soil Index | [62] | |
RI | Redness Index | [63] | |
BSI | Bare Soil Index | [64] | |
CI | Color Index | [63] | |
TVI | Transformed Vegetation Index | [65] | |
GRVI | Green-Red-Vegetation-Index | [66] | |
V | Vegetation Index | [67] | |
GNDVI | Green Normalized Vegetation Index | [68] | |
SATVI | Soil Adjusted Total Vegetation Index | [69] | |
NDVI | Normalized Difference Vegetation Index | [70] | |
GSAVI | Green Soil Adjusted Vegetation Index | [71] | |
GOSAVI | Green Optimized Soil Adjusted Vegetation Index | [72] | |
SAVI | Soil Adjusted Vegetation Index | [73] |
LfL (93) | LfU (885) | LUCAS (237) | LfL (308) (Independent Validation) | |
---|---|---|---|---|
(Model Calibration & Validation) | ||||
minimum SOC content (%) | 0.84 | 0.26 | 0.57 | 0.55 |
maximum SOC content (%) | 5.96 | 18.30 | 6.81 | 4.65 |
mean SOC content (%) | 1.74 | 2.28 | 2.02 | 1.58 |
STD SOC (%) | 0.70 | 2.24 | 1.06 | 0.57 |
median SOC (%) | 1.63 | 1.57 | 1.71 | 1.89 |
IQR SOC (%) | 1.74 | 1.03 | 1.11 | 0.72 |
Algorithm | Inputdatasetup | R² | RMSE (%) | RPD | CCC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
cal | cv | val | cal | cv | val | cal | cv | val | val | ||
MLR | R | 0.40 | 0.80 | 0.48 | 1.48 | 1.5 | 1.5 | 1.27 | 1.27 | 1.39 | 0.61 |
RI_all | 0.60 | 0.55 | 0.59 | 1.2 | 1.29 | 1.44 | 1.44 | 1.44 | 1.57 | 0.73 | |
RI_sel | 0.52 | 0.48 | 0.57 | 1.32 | 1.37 | 1.37 | 1.39 | 1.39 | 1.52 | 0.70 | |
PLSR | R | 0.40 | 0.38 | 0.47 | 1.48 | 1.50 | 1.51 | 1.29 | 1.27 | 1.38 | 0.60 |
RI_all | 0.51 | 0.48 | 0.56 | 1.34 | 1.37 | 1.38 | 1.43 | 1.40 | 1.51 | 0.69 | |
RI_sel | 0.51 | 0.48 | 0.56 | 1.34 | 1.37 | 1.39 | 1.43 | 1.39 | 1.50 | 0.68 | |
RF | R | 0.91 | 0.53 | 0.67 | 0.59 | 1.31 | 1.25 | 3.25 | 1.46 | 1.74 | 0.78 |
RI_all | 0.86 | 0.58 | 0.67 | 0.71 | 1.24 | 1.24 | 2.67 | 1.54 | 1.77 | 0.78 | |
RI_sel | 0.86 | 0.58 | 0.67 | 0.72 | 1.23 | 1.35 | 2.65 | 1.55 | 1.62 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zepp, S.; Heiden, U.; Bachmann, M.; Wiesmeier, M.; Steininger, M.; van Wesemael, B. Estimation of Soil Organic Carbon Contents in Croplands of Bavaria from SCMaP Soil Reflectance Composites. Remote Sens. 2021, 13, 3141. https://doi.org/10.3390/rs13163141
Zepp S, Heiden U, Bachmann M, Wiesmeier M, Steininger M, van Wesemael B. Estimation of Soil Organic Carbon Contents in Croplands of Bavaria from SCMaP Soil Reflectance Composites. Remote Sensing. 2021; 13(16):3141. https://doi.org/10.3390/rs13163141
Chicago/Turabian StyleZepp, Simone, Uta Heiden, Martin Bachmann, Martin Wiesmeier, Michael Steininger, and Bas van Wesemael. 2021. "Estimation of Soil Organic Carbon Contents in Croplands of Bavaria from SCMaP Soil Reflectance Composites" Remote Sensing 13, no. 16: 3141. https://doi.org/10.3390/rs13163141