Multispectral Models from Bare Soil Composites for Mapping Topsoil Properties over Europe
"> Figure 1
<p>(<b>a</b>) Full synthetic soil image (SYSI) of croplands, over the European extent; (<b>b</b>) the equivalent bare soil frequency (SF).</p> "> Figure 2
<p>(<b>a</b>) Example of original scenes (true color composition) and bare soil masks from the Landsat collection (left panels), in this case considering the Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI), centered at the three LUCAS sampling points and with a circle buffer of 1000 m; (<b>b</b>) Dispersion of the full SYSI reflectance for the same sites, where the minimum, 0.25 percentile, median, 0.75 percentile and maximum values are provided. Full SYSI reflectance is defined by the median estimate, attenuating the influence of extreme values. Soil site characteristics are provided together with the spectral patterns.</p> "> Figure 3
<p>(<b>a</b>) Soil European clay map using the full synthetic soil image (SYSI) as model predictor; (<b>b</b>) the clay uncertainty map.</p> "> Figure 4
<p>(<b>a</b>) Soil European CaCO<sub>3</sub> map using the full synthetic soil image (SYSI) as model predictor; (<b>b</b>) the CaCO<sub>3</sub> uncertainty map.</p> "> Figure 5
<p>(<b>a</b>) Regional clay map (left) and uncertainty (right) near Demmin, Germany; (<b>b</b>) regional clay map (left) and uncertainty (right) near Rodalquilar, Spain; (<b>c</b>) regional clay map (left) and uncertainty (right) near Reims, France; (<b>d</b>) regional clay map (left) and uncertainty (right) near Grosseto, Italy. Note: the regional maps were masked by croplands of the CORINE 2012 map.</p> "> Figure A1
<p>Boxplot and density plot of spectral indices calculated from the convolved reflectance measurements of LUCAS topsoil samples. Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ration 2 index (NBR2) are used to identify potential soil pixels on satellite images.</p> "> Figure A2
<p>Location of sampling points (n = 7142) used in this study, which are a subset from the LUCAS dataset of 2009 and were split in training (80%) and testing (20%) samples.</p> "> Figure A3
<p>Regional maps of full SYSI represented by the true color composite, for the same sites of <a href="#remotesensing-12-01369-f005" class="html-fig">Figure 5</a> (Germany, France, Spain and Italy).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bare Soil Composites
2.2. Reflectance Evaluation and Soil Dataset
2.3. Prediction Models of Soil Properties
2.4. Spatial Prediction and Uncertainty
3. Results
3.1. Bare Soil Composites
3.2. Soil Dataset and Reflectance Evaluation
3.3. Prediction Models
3.4. Spatial Predictions and Uncertainty
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Common Name 1 | Landsat 4 TM 2 | Landsat 5 TM 3 | Landsat 7 ETM+ 4 | Landsat 8 OLI 5 |
---|---|---|---|---|
Blue | 1 (450–520 nm) | 1 (450–520 nm) | 1 (450–520 nm) | 2 (452–512 nm) |
Green | 2 (520–600 nm) | 2 (520–600 nm) | 2 (520–600 nm) | 3 (533–590 nm) |
Red | 3 (630–690 nm) | 3 (630–690 nm) | 3 (630–690 nm) | 4 (636–673 nm) |
NIR | 4 (770–900 nm) | 4 (770–900 nm) | 4 (770–900 nm) | 5 (851–879 nm) |
SWIR1 | 5 (1550–1750 nm) | 5 (1550–1750 nm) | 5 (1550–1750 nm) | 6 (1566–1651 nm) |
SWIR2 | 7 (2080–2350 nm) | 7 (2080–2350 nm) | 7 (2080–2350 nm) | 7 (2107–2294 nm) |
Soil Attribute 1 | Reflectance Source 2 | Seed | LR 3 | NE 4 | MF 5 | MD 6 | MSS 7 | MSL 8 |
---|---|---|---|---|---|---|---|---|
Clay | Original | 1993 | 0.10 | 500 | 1 | 10 | 50 | 20 |
Resampled | 1993 | 0.20 | 500 | 6 | 10 | 50 | 10 | |
Framed SYSI | 1993 | 0.10 | 250 | 6 | 5 | 100 | 20 | |
Full SYSI | 1993 | 0.15 | 500 | 4 | 8 | 200 | 20 | |
Sand | Original | 1993 | 0.10 | 250 | 5 | 8 | 50 | 10 |
Resampled | 1993 | 0.10 | 500 | 4 | 10 | 50 | 20 | |
Framed SYSI | 1993 | 0.10 | 250 | 4 | 10 | 100 | 5 | |
Full SYSI | 1993 | 0.15 | 500 | 2 | 10 | 50 | 10 | |
SOC | Original | 1993 | 0.10 | 100 | 1 | 10 | 200 | 5 |
Resampled | 1993 | 0.10 | 500 | 6 | 5 | 50 | 20 | |
Framed SYSI | 1993 | 0.10 | 100 | 2 | 5 | 100 | 20 | |
Full SYSI | 1993 | 0.10 | 100 | 4 | 8 | 50 | 20 | |
CaCO3 | Original | 1993 | 0.10 | 100 | 1 | 5 | 100 | 20 |
Resampled | 1993 | 0.20 | 500 | 2 | 8 | 50 | 20 | |
Framed SYSI | 1993 | 0.10 | 100 | 4 | 8 | 100 | 20 | |
Full SYSI | 1993 | 0.10 | 100 | 4 | 10 | 200 | 5 | |
PH H2O | Original | 1993 | 0.10 | 100 | 1 | 10 | 50 | 10 |
Resampled | 1993 | 0.10 | 500 | 6 | 8 | 50 | 20 | |
Framed SYSI | 1993 | 0.15 | 250 | 4 | 10 | 100 | 20 | |
Full SYSI | 1993 | 0.15 | 250 | 4 | 8 | 200 | 20 | |
CEC | Original | 1193 | 0.10 | 250 | 1 | 10 | 50 | 20 |
Resampled | 1993 | 0.10 | 500 | 6 | 10 | 50 | 20 | |
Framed SYSI | 1993 | 0.10 | 100 | 4 | 8 | 200 | 20 | |
Full SYSI | 1993 | 0.10 | 500 | 4 | 8 | 200 | 20 |
References
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using Imaging Spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Summers, D.; Lewis, M.; Ostendorf, B.; Chittleborough, D. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecol. Indic. 2011, 11, 123–131. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Nocita, M.; Stevens, A.; Toth, G.; Panagos, P.; van Wesemael, B.; Montanarella, L. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biol. Biochem. 2014, 68, 337–347. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Saberioon, M.; Carmon, N.; Boruvka, L.; Ben-Dor, E. Examining the Performance of PARACUDA-II Data-Mining Engine versus Selected Techniques to Model Soil Carbon from Reflectance Spectra. Remote Sens. 2018, 10, 1172. [Google Scholar] [CrossRef] [Green Version]
- Demattê, J.A.M.; Dotto, A.C.; Paiva, A.F.S.; Sato, M.V.; Dalmolin, R.S.D.; de Araújo, M.d.S.B.; da Silva, E.B.; Nanni, M.R.; ten Caten, A.; Noronha, N.C.; et al. The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges. Geoderma 2019, 354, 113793. [Google Scholar]
- Ng, W.; Minasny, B.; Montazerolghaem, M.; Padarian, J.; Ferguson, R.; Bailey, S.; McBratney, A.B. Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma 2019, 352, 251–267. [Google Scholar] [CrossRef]
- Ramirez-Lopez, L.; Wadoux, A.M.J.-C.; Franceschini, M.H.D.; Terra, F.S.; Marques, K.P.P.; Sayão, V.M.; Demattê, J.A.M. Robust soil mapping at the farm scale with vis–NIR spectroscopy. Eur. J. Soil Sci. 2019, 70, 378–393. [Google Scholar] [CrossRef] [Green Version]
- Ben-Dor, E.; Ong, C.; Lau, I.C. Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma 2015, 245–246, 112–124. [Google Scholar] [CrossRef]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging Spectroscopy for Soil Mapping and Monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef] [Green Version]
- Lagacherie, P.; Baret, F.; Feret, J.-B.; Madeira Netto, J.; Robbez-Masson, J.M. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sens. Environ. 2008, 112, 825–835. [Google Scholar] [CrossRef]
- Diek, S.; Chabrillat, S.; Nocita, M.; Schaepman, M.E.; de Jong, R. Minimizing soil moisture variations in multi-temporal airborne imaging spectrometer data for digital soil mapping. Geoderma 2019, 337, 607–621. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Don, A.; van Wesemael, B. Soil Organic Carbon Mapping Using LUCAS Topsoil Database and Sentinel-2 Data: An Approach to Reduce Soil Moisture and Crop Residue Effects. Remote Sens. 2019, 11, 2121. [Google Scholar] [CrossRef] [Green Version]
- Ustin, S.L.; Roberts, D.A.; Gamon, J.A.; Asner, G.P.; Green, R.O. Using Imaging Spectroscopy to Study Ecosystem Processes and Properties. Bioscience 2004, 54, 523–534. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Granot, A.; Notesco, G. A simple apparatus to measure soil spectral information in the field under stable conditions. Geoderma 2017, 306, 73–80. [Google Scholar] [CrossRef]
- Diek, S.; Fornallaz, F.; Schaepman, M.E.; de Jong, R. Barest Pixel Composite for agricultural areas using landsat time series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef] [Green Version]
- Rogge, D.; Bauer, A.; Zeidler, J.; Mueller, A.; Esch, T.; Heiden, U. Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sens. Environ. 2018, 205, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Demattê, J.A.M.; Fongaro, C.T.; Rizzo, R.; Safanelli, J.L. Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens. Environ. 2018, 212, 161–175. [Google Scholar] [CrossRef]
- Tao, C.; Wang, Y.; Cui, W.; Zou, B.; Zou, Z.; Tu, Y. A transferable spectroscopic diagnosis model for predicting arsenic contamination in soil. Sci. Total Environ. 2019, 669, 964–972. [Google Scholar] [CrossRef]
- Liu, L.; Ji, M.; Buchroithner, M. Transfer Learning for Soil Spectroscopy Based on Convolutional Neural Networks and Its Application in Soil Clay Content Mapping Using Hyperspectral Imagery. Sensors 2018, 18, 3169. [Google Scholar] [CrossRef] [Green Version]
- Andrew, A.; Fearn, T. Transfer by orthogonal projection: Making near-infrared calibrations robust to between-instrument variation. Chemom. Intell. Lab. Syst. 2004, 72, 51–56. [Google Scholar] [CrossRef]
- Feudale, R.N.; Woody, N.A.; Tan, H.; Myles, A.J.; Brown, S.D.; Ferré, J. Transfer of multivariate calibration models: A review. Chemom. Intell. Lab. Syst. 2002, 64, 181–192. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Gallo, B.; Demattê, J.; Rizzo, R.; Safanelli, J.; Mendes, W.; Lepsch, I.; Sato, M.; Romero, D.; Lacerda, M. Multi-Temporal Satellite Images on Topsoil Attribute Quantification and the Relationship with Soil Classes and Geology. Remote Sens. 2018, 10, 1571. [Google Scholar] [CrossRef]
- Poppiel, R.R.; Lacerda, M.P.C.; Safanelli, J.L.; Rizzo, R.; Oliveira, M.P.; Novais, J.J.; Demattê, J.A.M. Mapping at 30 m Resolution of Soil Attributes at Multiple Depths in Midwest Brazil. Remote Sens. 2019, 11, 2905. [Google Scholar] [CrossRef] [Green Version]
- Fongaro, C.; Demattê, J.; Rizzo, R.; Lucas Safanelli, J.; Mendes, W.; Dotto, A.; Vicente, L.; Franceschini, M.; Ustin, S. Improvement of Clay and Sand Quantification Based on a Novel Approach with a Focus on Multispectral Satellite Images. Remote Sens. 2018, 10, 1555. [Google Scholar] [CrossRef] [Green Version]
- USGS. Landsat 8 Surface Reflectance Code LaSRC Product Guide. Available online: https://www.usgs.gov/media/files/landsat-8-surface-reflectance-code-lasrc-product-guide (accessed on 11 March 2019).
- USGS. Landsat 4–7 Surface Reflectance Code LEDAPS Product Guide. Available online: https://www.usgs.gov/media/files/landsat-4-7-surface-reflectance-code-ledaps-product-guide (accessed on 11 March 2019).
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global Landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Chastain, R.; Housman, I.; Goldstein, J.; Finco, M.; Tenneson, K. Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States. Remote Sens. Environ. 2019, 221, 274–285. [Google Scholar] [CrossRef]
- Roberts, D.; Wilford, J.; Ghattas, O. Exposed soil and mineral map of the Australian continent revealing the land at its barest. Nat. Commun. 2019, 10, 5297. [Google Scholar] [CrossRef] [Green Version]
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 751, ISBN 1118553292. [Google Scholar]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Ben-Dor, E.; Banin, A. Evaluation of several soil properties using convolved TM spectra. In Monitoring Soils in the Environment with Remote Sensing and GIS; ORSTOM: Paris, France, 1996; pp. 135–149. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Folberth, C.; Baklanov, A.; Balkovič, J.; Skalský, R.; Khabarov, N.; Obersteiner, M. Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning. Agric. For. Meteorol. 2019, 264, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Schratz, P.; Muenchow, J.; Iturritxa, E.; Richter, J.; Brenning, A. Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecol. Modell. 2019, 406, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Dev, V.A.; Eden, M.R. Formation lithology classification using scalable gradient boosted decision trees. Comput. Chem. Eng. 2019, 128, 392–404. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.M.; Stein, A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 2004, 120, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Malone, B.P.; Minasny, B.; McBratney, A.B. Using R for Digital Soil Mapping; Progress in Soil Science; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-44325-6. [Google Scholar]
- European Landscape Dynamics; Feranec, J.; Soukup, T.; Hazeu, G.; Jaffrain, G. (Eds.) CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781315372860. [Google Scholar]
- Escribano, P.; Schmid, T.; Chabrillat, S.; Rodríguez-Caballero, E.; García, M. Optical Remote Sensing for Soil Mapping and Monitoring. In Soil Mapping and Process Modeling for Sustainable Land Use Management; Elsevier: Chennai, India, 2017; pp. 87–125. [Google Scholar]
- Bianchini, S.; Solari, L.; Soldato, M.D.; Raspini, F.; Montalti, R.; Ciampalini, A.; Casagli, N. Ground Subsidence Susceptibility (GSS) Mapping in Grosseto Plain (Tuscany, Italy) Based on Satellite InSAR Data Using Frequency Ratio and Fuzzy Logic. Remote Sens. 2019, 11, 2015. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, A.; Chabrillat, S.; Stevens, A.; Segl, K.; Foerster, S. Prediction of Common Surface Soil Properties Based on Vis-NIR Airborne and Simulated EnMAP Imaging Spectroscopy Data: Prediction Accuracy and Influence of Spatial Resolution. Remote Sens. 2016, 8, 613. [Google Scholar] [CrossRef] [Green Version]
- Meersmans, J.; Martin, M.P.; Lacarce, E.; De Baets, S.; Jolivet, C.; Boulonne, L.; Lehmann, S.; Saby, N.P.A.; Bispo, A.; Arrouays, D. A high resolution map of French soil organic carbon. Agron. Sustain. Dev. 2012, 32, 841–851. [Google Scholar] [CrossRef]
- Python Software Foundation. Python Language Reference, Version 3.6. 2016. Available online: https://www.python.org/ (accessed on 11 March 2019).
- GDAL/OGR Contributors. GDAL/OGR Geospatial Data Abstraction Software Library. 2019. Available online: https://gdal.org (accessed on 11 March 2019).
- R Core Team. R: A Language and Environment for Statistical Computing. 2018. Available online: https://www.r-project.org/ (accessed on 11 March 2019).
- QGIS Development Team. QGIS Geographic Information System. 2019. Available online: http://qgis.osgeo.org (accessed on 11 March 2019).
- Jones, A.; Panagos, P.; Barcelo, S.; Bouraoui, F.; Bosco, C.; Dewitte, O.; Gardi, C.; Erhard, M.; Hervás, J.; Hiederer, R. The State of Soil in Europe; A Contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report; European Commission: Luxembourg, 2012. [Google Scholar]
- Ben-Dor, E.; Banin, A. Near-Infrared Reflectance Analysis of Carbonate Concentration in Soils. Appl. Spectrosc. 1990, 44, 1064–1069. [Google Scholar] [CrossRef]
- Gomez, C.; Lagacherie, P.; Coulouma, G. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma 2008, 148, 141–148. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Banin, A. Quantitative analysis of convolved Thematic Mapper spectra of soils in the visible near-infrared and shortwave-infrared spectral regions (0.4–2.5 μm). Int. J. Remote Sens. 1995, 16, 3509–3528. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Transfer learning to localise a continental soil vis-NIR calibration model. Geoderma 2019, 340, 279–288. [Google Scholar] [CrossRef]
- Lobell, D.B.; Lesch, S.M.; Corwin, D.L.; Ulmer, M.G.; Anderson, K.A.; Potts, D.J.; Doolittle, J.A.; Matos, M.R.; Baltes, M.J. Regional-scale Assessment of Soil Salinity in the Red River Valley Using Multi-year MODIS EVI and NDVI. J. Environ. Qual. 2010, 39, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Chabrillat, S.; Jones, A.; Vreys, K.; Bomans, B.; van Wesemael, B. Soil Organic Carbon Estimation in Croplands by Hyperspectral Remote APEX Data Using the LUCAS Topsoil Database. Remote Sens. 2018, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Ben-Dor, E.; Patkin, K.; Banin, A.; Karnieli, A. Mapping of several soil properties using DAIS-7915 hyperspectral scanner data—A case study over clayey soils in Israel. Int. J. Remote Sens. 2002, 23, 1043–1062. [Google Scholar] [CrossRef]
- Loizzo, R.; Guarini, R.; Longo, F.; Scopa, T.; Formaro, R.; Facchinetti, C.; Varacalli, G. Prisma: The Italian Hyperspectral Mission. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 175–178. [Google Scholar]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef] [Green Version]
Variable 1 | Min. 2 | Mean | SD 3 | Median | IQR 4 | Max. 5 |
---|---|---|---|---|---|---|
Soil Attributes | ||||||
Clay (%) | 1.00 | 21.94 | 12.58 | 21.00 | 16.00 | 79.00 |
Sand (%) | 1.00 | 36.02 | 25.12 | 31.00 | 41.00 | 97.00 |
SOC (%) | 0.00 | 1.68 | 1.56 | 1.38 | 0.94 | 43.84 |
CaCO3 (%) | 0.00 | 9.01 | 15.91 | 0.30 | 11.30 | 88.20 |
pH H2O | 3.55 | 7.05 | 1.01 | 7.33 | 1.58 | 8.93 |
CEC (cmolc kg−1) | 0.00 | 15.30 | 9.40 | 13.80 | 11.30 | 188.10 |
Resampled reflectance from laboratory | ||||||
Blue | 0.03 | 0.15 | 0.05 | 0.14 | 0.05 | 0.50 |
Green | 0.04 | 0.21 | 0.06 | 0.20 | 0.08 | 0.61 |
Red | 0.05 | 0.27 | 0.07 | 0.27 | 0.10 | 0.67 |
NIR | 0.10 | 0.36 | 0.08 | 0.36 | 0.10 | 0.75 |
SWIR1 | 0.17 | 0.48 | 0.08 | 0.48 | 0.10 | 0.81 |
SWIR2 | 0.15 | 0.45 | 0.07 | 0.45 | 0.09 | 0.74 |
Reflectance from framed SYSI 6 | ||||||
Blue | 0.03 | 0.08 | 0.02 | 0.08 | 0.02 | 0.15 |
Green | 0.04 | 0.12 | 0.03 | 0.12 | 0.03 | 0.23 |
Red | 0.03 | 0.15 | 0.04 | 0.15 | 0.05 | 0.33 |
NIR | 0.05 | 0.23 | 0.05 | 0.23 | 0.07 | 0.43 |
SWIR1 | 0.02 | 0.30 | 0.06 | 0.29 | 0.08 | 0.54 |
SWIR2 | 0.02 | 0.24 | 0.05 | 0.24 | 0.07 | 0.43 |
Reflectance from full SYSI | ||||||
Blue | 0.04 | 0.08 | 0.02 | 0.08 | 0.02 | 0.14 |
Green | 0.04 | 0.12 | 0.03 | 0.12 | 0.03 | 0.22 |
Red | 0.04 | 0.15 | 0.04 | 0.15 | 0.05 | 0.33 |
NIR | 0.05 | 0.23 | 0.05 | 0.23 | 0.06 | 0.43 |
SWIR1 | 0.03 | 0.29 | 0.06 | 0.29 | 0.08 | 0.53 |
SWIR2 | 0.03 | 0.24 | 0.05 | 0.24 | 0.06 | 0.42 |
Correlation 1 | Blue | Green | Red | NIR | SWIR1 | SWIR2 |
---|---|---|---|---|---|---|
Resampled~Framed SYSI | 0.60 | 0.62 | 0.62 | 0.60 | 0.59 | 0.49 |
Resampled~Full SYSI | 0.63 | 0.66 | 0.66 | 0.65 | 0.63 | 0.53 |
Framed SYSI~Full SYSI | 0.90 | 0.93 | 0.94 | 0.93 | 0.94 | 0.93 |
Attribute 1 | Reflectance Data 2 | 3 R2 | RMSE 4 | RPIQ 5 | R2 | RMSE | RPIQ |
---|---|---|---|---|---|---|---|
Training Set (80%) | Testing Set (20%) | ||||||
Clay (%) | Original | 0.80 | 5.57 | 2.87 | 0.58 | 8.35 | 2.04 |
Resampled | 0.78 | 5.80 | 2.76 | 0.49 | 9.18 | 1.85 | |
Framed SYSI | 0.53 | 8.58 | 1.87 | 0.36 | 10.28 | 1.65 | |
Full SYSI | 0.67 | 7.20 | 2.22 | 0.44 | 9.59 | 1.77 | |
Sand (%) | Original | 0.66 | 14.57 | 2.81 | 0.42 | 19.26 | 2.23 |
Resampled | 0.72 | 13.27 | 3.01 | 0.37 | 20.07 | 2.14 | |
Framed SYSI | 0.56 | 16.54 | 2.42 | 0.22 | 22.39 | 1.92 | |
Full SYSI | 0.68 | 14.10 | 2.84 | 0.25 | 21.93 | 1.96 | |
SOC (%) | Original | 0.35 | 1.09 | 0.86 | 0.24 | 1.52 | 0.58 |
Resampled | 0.25 | 1.31 | 0.72 | 0.13 | 1.62 | 0.54 | |
Framed SYSI | 0.10 | 1.44 | 0.66 | 0.04 | 1.69 | 0.52 | |
Full SYSI | 0.16 | 1.39 | 0.68 | 0.06 | 1.68 | 0.52 | |
CaCO3 (%) | Original | 0.59 | 10.97 | 1.70 | 0.54 | 11.89 | 1.82 |
Resampled | 0.76 | 8.48 | 2.30 | 0.47 | 12.70 | 1.70 | |
Framed SYSI | 0.47 | 12.56 | 1.55 | 0.31 | 14.50 | 1.49 | |
Full SYSI | 0.51 | 12.18 | 1.60 | 0.36 | 13.99 | 1.54 | |
pH H2O | Original | 0.62 | 0.63 | 2.48 | 0.39 | 0.80 | 2.05 |
Resampled | 0.62 | 0.62 | 2.52 | 0.31 | 0.85 | 1.93 | |
Framed SYSI | 0.46 | 0.74 | 2.10 | 0.14 | 0.94 | 1.73 | |
Full SYSI | 0.45 | 0.75 | 2.08 | 0.21 | 0.90 | 1.80 | |
CEC (cmolc kg−1) | Original | 0.70 | 4.38 | 2.32 | 0.38 | 7.66 | 1.46 |
Resampled | 0.66 | 5.35 | 2.11 | 0.32 | 8.02 | 1.39 | |
Framed SYSI | 0.39 | 7.16 | 1.58 | 0.22 | 8.60 | 1.30 | |
Full SYSI | 0.54 | 6.24 | 1.81 | 0.28 | 8.25 | 1.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safanelli, J.L.; Chabrillat, S.; Ben-Dor, E.; Demattê, J.A.M. Multispectral Models from Bare Soil Composites for Mapping Topsoil Properties over Europe. Remote Sens. 2020, 12, 1369. https://doi.org/10.3390/rs12091369
Safanelli JL, Chabrillat S, Ben-Dor E, Demattê JAM. Multispectral Models from Bare Soil Composites for Mapping Topsoil Properties over Europe. Remote Sensing. 2020; 12(9):1369. https://doi.org/10.3390/rs12091369
Chicago/Turabian StyleSafanelli, José Lucas, Sabine Chabrillat, Eyal Ben-Dor, and José A. M. Demattê. 2020. "Multispectral Models from Bare Soil Composites for Mapping Topsoil Properties over Europe" Remote Sensing 12, no. 9: 1369. https://doi.org/10.3390/rs12091369