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Exposed soil and mineral map of the Australian
continent revealing the land at its barest
Dale Roberts 1*, John Wilford2* & Omar Ghattas 1*

Multi-spectral remote sensing has already played an important role in mapping surface

mineralogy. However, vegetation – even when relatively sparse – either covers the underlying

substrate or modifies its spectral response, making it difficult to resolve diagnostic mineral

spectral features. Here we take advantage of the petabyte-scale Landsat datasets covering

the same areas for periods exceeding 30 years combined with a novel high-dimensional

statistical technique to extract a noise-reduced, cloud-free, and robust estimate of the

spectral response of the barest state (i.e. least vegetated) across the whole continent of

Australia at 25 m2 resolution. Importantly, our method preserves the spectral relationships

between different wavelengths of the spectra. This means that our freely available

continental-scale product can be combined with machine learning for enhanced geological

mapping, mineral exploration, digital soil mapping, and establishing environmental baselines

for understanding and responding to food security, climate change, environmental degra-

dation, water scarcity, and threatened biodiversity.
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Most natural terrestrial land surfaces consist of mixtures of
vegetation, soil and bedrock. These materials reflect and
absorb radiation across different wavelengths resulting

in an observation of a spectral response. Our ability to accurately
distinguish the surface materials from these spectral signatures
depends on the spatial and spectral resolution of the instrument,
the state of the atmosphere and homogeneity of the surface rela-
tive to the resolution of the sensor. However, as green and dry
vegetation both strongly interact with electromagnetic radiation
across the same wavelength region that is used for mineral map-
ping1–3, the ability to separate – or at least recognise – the
influence of the vegetation is critical to the success of mapping the
characteristics of soil and rock. Indeed, just 10–30% vegetation
coverage can significantly impede the recognition of mineral
spectral features1,2,4,5.

Where geo-botanical relationships are strong (i.e. plant species
or communities are strongly linked to the type of bedrock or soil),
indirect measures can allow inferences to be made on the nature
of the substrate6,7. However, in the absence of geo-botanical
inference, effective mapping of soils using remote sensing is
restricted to areas where the vegetation cover is either sparse or
absent due to drought or cultivation8. As such, most remotely
sensed mineral mapping studies have covered areas of relatively
sparse vegetation cover9–12. In Australia, a significant obstacle to
geological remote sensing are fire scars in the arid zones as they
create a complex pattern of vegetation densities that makes it
difficult to map bedrock and soil13.

Recently, some studies have attempted to exploit the full time
series archive of Landsat observations, collected over the last 30
years, to produce per-pixel mosaics of the barest earth (i.e.
exposed soil)14,15. However, their approaches were only attemp-
ted in small geographic areas and their methodologies are based
on user-defined thresholds and data-mining techniques that are
unlikely to be sufficiently complex and scalable to correctly
remove all the non-bare responses in the observations. This is
especially true for a large continent such as Australia, which
exhibits a very diverse range of climates, terrestrial land surfaces

and biophysical changes through time. Scaling methods to a
continental archive of data presents a major challenge in the
analysis of big datasets called heterogeneity whereby outliers and
various states are no longer sparse but become proper
sub-populations in the data that are difficult to disentangle16.

In this paper, we tackle these technical issues and provide the first
continental-scale mosaic of Australia at its barest state using the full
temporal archive of Landsat observations. We achieve this by
proposing a statistical estimator of the barest spectra that is both
robust to contamination (such as cloud cover, shadows, detector
saturation and pixel corruption) and, most importantly, correctly
maintains the relationship between all the spectral wavelengths
enabling the application of machine learning and spatial statistics to
further separate vegetation and mineral spectra17,18. The result of
our approach is the generation of two continental-scale composite
Barest Earth mosaics of Australia, one of shorter temporal depth
using only Landsat 8 observations and the other using the full 30+
year archive combining Landsat 5, 7 and 8.

Table 1 Description and wavelength ranges (in micrometres)
of the spectral bands of the sensors aboard the three
Landsat satellites used in this study. The Landsat-8 OLI
sensor has a higher radiometric resolution of 12-bit resulting
in higher dynamic range and a greater ability to characterise
land cover state and condition.

Landsat-5 TM Landsat-7 ETM+ Landsat-8 OLI

BLUE 0.45–0.52 (B1) 0.45–0.52 (B1) 0.45–0.51 (B2)
GREEN 0.52–0.60 (B2) 0.52–0.60 (B2) 0.53–0.59 (B3)
RED 0.63–0.69 (B3) 0.52–0.60 (B3) 0.64–0.67 (B4)
NIR 0.76–0.90 (B4) 0.77–0.90 (B4) 0.85–0.88 (B5)
SWIR1 1.55–1.75 (B5) 1.55–1.75 (B5) 1.57–1.65 (B6)
SWIR2 2.08–2.35 (B7) 2.09–2.35 (B7) 2.11–2.29 (B7)
Radiometric
resolution

8-bit 8-bit 12-bit

0 750 km

a

PP-2353-8

0 750 km

b

Fig. 1 Comparison of the Landsat-8 Barest Earth mosaic to its inverse, most vegetated state, to highlight the reduction in vegetation influence. The mosaics
are coloured using shortwave infrared 1.57–1.65 µm, near infrared 0.85–0.88 µm, green 0.53–0.59 µm in the red, green and blue image channels. a Barest
Earth Landsat-8 mosaic, b Most Vegetated Landsat-8 mosaic generated by inverting the Bare Earth algorithm to get the opposite response. Remaining
green areas in the Barest Earth mosaic indicate areas of persistent vegetation.
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Results
Data and approach. The approach starts by considering ~16
billion 6-dimensional time series across the continent of Australia
where each time series represents the variation of the BLUE,
GREEN, RED, NIR, SWIR1 and SWIR2 wavelength bands in a
250-m2 pixel (see Table 1). These time series were generated from
imagery of the Australian continent collected by the Landsat
series of satellites over a period of more than 30 years. These
images were geographically aligned and stacked, so that the pixels
line up through time, to obtain a spatial-spectral-temporal (tensor)
data set. We processed all data using the Open Data Cube (pre-
viously known as Australian Geoscience Data Cube19,20). Differ-
ences between Landsat sensors were minimised by ensuring that
all observations were atmospherically, BRDF and topographically
corrected to measurements of surface reflectance using the NBAR/
T approach21. This surface reflectance correction, that uses several
ancillary datasets to get a highly accurate atmospheric reading, is
only available over the Australian continent.

For each time series, our aim is to obtain an estimate of the barest
state observed relating to either soil or exposed rock. To achieve
this, we holistically consider each pixel observation through time as
6-dimensional vector. The first ingredient of our method is to apply
a high-dimensional statistic called a weighted geometric median
(WGM) that combines ideas from the classic (one-dimensional)
weighted median22 with the high-dimensional geometric median
(GM) proposed by Weber23; see methods. Recently, the GM has
attracted significant interest in the mathematical community due to
its remarkable robustness and confidence boosting properties24–27.
These properties and mathematical results easily extend to the
weighted case (that we propose) as well. Interestingly, there are
many ways to extend the concept of a median to higher
dimensions28 but the GM is one of the more mathematically
tractable of those proposed extensions. Our motivation to include
weights into the definition of the GM, giving the WGM, is to focus
the WGM on observations through time that exhibit the least
amount of vegetation and the high level of robustness of the WGM
removes the influence of the other sub-populations in the data. A
key point is that by weighting (as opposed to filtering) we do not
throw away any information. This allows the resulting pixel
composite mosaic to be completely cloud-free and for the spectral
signature of vegetation to be minimised. This approach also behaves
well where the vegetation never achieves bareness, such as in areas
with dense tree cover, as we get a result for every pixel. In other
words, if a pixel consistently remains green through time then the
resulting mosaic will have a green response at that location. This is a
useful characteristic if a spatial model is to be applied to the product
as our mosaic does not containing any missing data. The second
ingredient to our approach is the design of an optimal weighting
scheme that ranks, as opposed to filtering, the bareness of pixels and
separate out the bare states from others, if they are present; see
methods. The weighting scheme was derived by fitting an ensemble
of regression models based on spectral features over various training
areas exhibiting a high variability of biophysical states. A single
model was derived from this ensemble using a loss function that
minimises vegetation response and variability over these areas. The
WGM then robustly summarises this bare state for each time series
as a 6-dimensional vector (pixel) and combining all these pixels
gives the continental-scale mosaic (Fig. 1).

Validation. We validated our Barest Earth mosaic three ways.
First, we considered a small test area in Canberra where grass is
commercially grown using pivot irrigation and then partially
harvested throughout the year. This gives observations through
time ranging from partially exposed bare soil to partial grassy
cover but where a completely bare crop circle is never observed

for any given time period (Fig. 2). Focusing on specific pixels
within this area, we show in Fig. 3 the variation in spectral
responses and our WGM estimate of the barest state. This gave
confidence that our approach was able to separate the complex
spatial-temporal-spectral dynamics into its constituents at each
pixel to obtain a consistently bare crop circle. Most surprisingly,
the resulting (synthetic) Barest Earth output in our test area is
visually indistinguishable from a true observation and displays
remarkable spatial smoothness even though the approach does
not use any spatial information. This is consistent with recent
findings29.

The second part of our validation consisted of generating two
continental-scale composite Barest Earth mosaics of Australia. The
first, Landsat-8 Barest Earth mosaic, only uses Landsat-8 OLI
(Operational Land Imager) observations (from 2013 to the present
day), and the second, Landsat 30+ Barest Earth, uses a deeper time
series from 16 March 1983 to the present day, with observations
that combine Landsat-5 Thematic Mapper (TM), Landsat-7
Enhanced Thematic Mapper+ (ETM+), and Landsat-8 OLI.
Our hypothesis was that the mosaic generated from the longer
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Fig. 2 Test area at different time epochs compared to the Barest Earth and
Most Vegated outputs. The local study area at 6 different observation times
(a–f) compared to g the Most Vegated output and h the Barest Earth
output (Landsat 30+ year). The Most Vegated output is generated by
inverting the Barest Earth algorithm to get the opposite response. The
observation times are: a 2006–02–10, b 2009–05–09, c 2011–08–26,
d 2013–05–20, e 2016–02–06, f 2016–11–04. Images are displayed with red
0.64–0.67 µm, green 0.53–0.59 µm and blue 0.45–0.51 µm in the red, green
and blue image channels. This area is located at 35°18′49.0″S 149°10′23.6″
E. We used a 12-year stack (January 2005–January 2017) comprised of
616 scenes.
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time series would have less vegetation response and less influence
from burn scars as the algorithm had more opportunity to
potentially observe a barer state over this longer time period. This
hypothesis was validated by comparing the two mosaics in various
areas across the continent. It is quite clear that the increased
temporal depth allows us to overcome the difficulty in mapping fire
prone landscapes that preserve vegetation patterns which correlate
with fire scars of different ages and intensities13. We see that this
effect is significantly reduced in the Landsat 30+mosaic
improving our ability to map soil and rock characteristics (Fig. 4).

The third stage of our validation exercise involved a
comparison with existing datasets at Geoscience Australia to
assess the effectiveness of the approach in minimising the
influence of vegetation and to ensure the spectra are consistent
with known geology, spectral endmembers collected in the field,
and national vegetation maps. As part of the exercise, we used
the National Geochemical Survey of Australia (NGSA) dataset
containing spectra from surface soil samples30. These samples
were homogenised from the upper 10 cm of soil and dried prior
to being analysed in the laboratory using spectroscopy and then
resampled to Landsat sensor band specifications. We compared
the spectra from these soil samples (n= 1059) to the 25 m2

resolution spectra obtained from the Barest Earth mosaic at each
location. We show the improvement in spectral similarity
between the Barest Earth spectra and the NGSA soil sample
spectra across Australia compared with a clear Landsat
observation exhibiting a high vegetation signal (Fig. 5). We
see little improvement in the arid area of Australia (<450 mm of
average annual rainfall) due to the sparse amount of vegetation

present. However, in the non-arid area which has a high density
of permanent and seasonal vegetation, we see significant
improvement in matching the soil spectra (Fig. 6).

Discussion
Our Barest Earth products show a significant reduction of the
influence of vegetation in the multi-spectral bands with the result
of enhancing our ability to observe responses pertaining to var-
iations in surface mineralogy. The reduced influence in vegetation
is most striking in landscapes with seasonal variations in ground
cover (Fig. 7) and in more arid fire prone landscapes (Fig. 4). This
allows us to overcome in many landscapes the largest challenges
(vegetation masking and burn scars) in mapping soil and rock
from space.

At one extreme, we have dense vegetation cover, corresponding
to closed forest and closed shrub lands. In these areas, it is
unlikely that exposed ground will be seen unless the vegetation is
removed by land clearing. In areas of less dense vegetation cover
(open woodlands where the crowns of trees do not touch, open
shrub lands and grasslands), we have a much higher probability
of estimating the bare spectral response through the time series.
Periods of increased bareness commonly relate to seasonal drying,
drought, the phenological cycle, fires, erosion and land clearing.
For example, in agricultural landscapes where there is a pressing
requirement to map and monitor soil health31 we see a dramatic
increase in bareness an consequently our ability to map soils
directly (Fig. 7). A less obvious, but apparent at the 25 m2 reso-
lution, is a reduction in vegetation response in areas of relatively
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Fig. 3 Spectral responses through time at a specific pixel location compared to the estimated Barest Earth spectra. The pixel location is identified with tick
markers in Fig. 3. The first plot shows the observation spectra through time with the Barest Earth (magenta) and Most Vegated (green) shown with dashed
lines, the second plot shows the observation spectra but scaled (as x=jjxjj for observation vector x to remove parallel albedo shifts due to atmospheric effects).
The Most Vegated output is generated by inverting the Bare Earth algorithm to get the opposite response. The third plot shows the normalised difference
vegetation index (NDVI) time series of the observations coloured using the Barest Earth weighting model. Horizontal lines show the normalised difference
vegetation index of the Barest Earth (magenta) and the Most Vegated (green). Vertical lines show the presence of missing data due to cloud masking or LS7
SLC-off gaps.
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low vegetation density corresponding to the central arid and
semi-arid zone (Fig. 6). These arid zones cover ~70% of the
Australian continent and, on average, have vegetation densities of
the order of 10–30%, with local areas up to 60% being common13.

From a soil and geological perspective, especially in areas
where rocks and soil are exposed, multi-spectral remote sensing
with Earth observation satellites has proven effective in mapping
lithologies (e.g. individual or groups of minerals), geochemistry,
bedrock structure and the nature of the regolith (i.e. weathered
bedrock and sediments)9,17,32–34. Subtle geochemical alteration

patterns associated with mineral deposits have been also mapped
using satellite imagery9,35–37. Mineral spectra associated with
soils have been used to identify different soil types38 and provide
proxies to infer soil properties, such as cation exchange capa-
city39. However, these remote sensing approaches have always
been limited by vegetation cover and burn scars in the landscape.
Our continental-scale Barest Earth products now provide the
ability to more accurately map soil and rock spectra over large
areas that were previously masked by vegetation. Importantly, due to
the multivariate nature of our technique, the spectral integrity

a

b

PP-2353-10

 50 km0

Fig. 4 Comparison between the Landsat 8 Barest Earth and the Landsat 30+ Year Barest Earth mosaic over the north-west of Australia. The second phase
of our validation consisted of a continental-scale comparison between the two products that have different temporal ranges for the input data. We show
both images in true colour (red 0.64–0.67 µm, green 0.53–0.59 µm, blue 0.45–0.51 µm in the red, green, blue image channels). a Landsat 8 Barest Earth
product exhibiting the vegetation patterns in the landscape (dark and light) that correlate with fire scars of different ages and intensities. b Landsat 30
+Year Barest Earth product showing the removal of the effect of fire scars.
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(e.g. relationships between bands) is maintained across all wave-
lengths. This makes possible the extraction of mineral features based
on their spectral signatures using well-established band ratios and
principal component analysis11,17,40, or to apply machine learning
algorithms for automated classification of mineralogy in the observed

landscape. An advantage of our approach is that methods previously
only effective on individual clear scenes with sparse vegetation cover
can now be holistically calibrated and applied at a continental scale.
This includes edge detection, band ratioing, and several statistical and
spectral analysis techniques that are well-known for further separ-
ating and classifying vegetation and mineral spectra (e.g., directed
principle component analysis18, spectral unmixing41, decorrelation
stretching and saturation enhancement17). For example, see Fig. 8.

Our approach has produced the first Barest Earth mosaics for
the Australian continent. They have broad application in mineral
exploration, agriculture and in understanding the nature and
processes operating within the life-sustaining critical zone
between tree tops and groundwater aquifers42. These thematic
maps will be powerful covariates in machine-learning algorithms
used for predictive mapping of soil properties43 and surface
geochemistry44 and will improve the detection of often subtle
mineral alteration patterns associated with mineral deposits.
These enhanced products will be integrated with other geological
datasets that capture information from the deeper crust and
upper mantle, as part of a national and holistic research initiative
called UNCOVER45 to support mineral exploration in Australia.
Furthermore, as our method can be applied over any epoch of
time, for example annually, it may be used to monitor bareness
through time or deviations from its long-term observations can
be assessed with direct applications in establishing environmental
baselines, assessing impacts of climate change, and monitoring
soil health and land degradation.

Methods
Weighted geometric median. We consider our space-time stack of observations
over the Australian continent as a collection of time series, where Xij is the time
series of observations at pixel location (i, j) and n :¼ nij is the number of obser-
vations at that location. This is possible because all pixels are aligned through time
due to the ortho-rectification and registration of all images in our archive. The
observations in the (i, j)’th p-dimensional time series are written

Xij ¼ x 1ð Þ
ij ; x 2ð Þ

ij ; ¼ ; x nð Þ
ij

h iT
:

This means that Xij can be viewed as a data matrix with dimension n × p, wherein
p is the number of bands (so in the case of Landsat data, p = 6).

As our approach does not consider neighbouring values or the spatial context
around each pixel, we may describe the model for a single time series without loss
of generality, with the understanding that an identical process is carried out for
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Fig. 5 Distance between all the National Geochemical Survey Australia soil
spectras to the Barest Earth and vegated spectras at the same locations.
The cosine distance between the Barest Earth spectra and the NGSA soil
sample (a) and between a clear observation exhibiting a high vegetation
signal, denoted VEG, and the NGSA soil sample (b). We show this distance
as a scatter plot with respect to a local vegetation index chosen as the
maximum NDVI in a 75-m2 neighbourhood (3 × 3 pixel) around the
location. This shows, as one would expect, that areas with low vegetation
have a small distance between the spectra of the Barest Earth, the clear
observation and the NGSA soil sample. And vice versa, in areas with high
amount of local vegetation we have a higher chance of obtaining a smaller
distance between the Barest Earth spectra and the NGSA sample compared
to the clear observation. This due to the fact that our Barest Earth model
can never obtain a bare soil estimate in areas of permanent vegetation, for
example. On the right, we show a map displaying the sample locations
coloured based on the the difference between the cosine distance of the
Barest Earth spectra to the NGSA spectra and the cosine distance of the
VEG spectra compared to the NGSA spectra. We see that the areas
showing the largest improvement are in the vegetated areas of Australia
located outside the arid area center. We note that the NGSA dataset does
not contain samples from some areas of Australia due to land access
restrictions.
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each time series in our dataset. As such, we omit the “ij” subscript and write X for
the time series (or data matrix) and x(t) for the t-th pixel observation in X to avoid
notational clutter. Given X; we compute a weighted geometric median (WGM) of
the component observations by solving the following optimisation problem

mw :¼ argminx2Rp
Xn
t¼1

wt x � xðtÞ
�� ��

where �k k is the Euclidean norm on Rp and wt 2 Rp is the weight of the t-th
observation. This is a generalisation of the geometric median (GM), which is
obtained from the WGM when wt= 1 for every t. The resulting quantity mw is a

p-dimensional vector and, by following the mathematical proofs in Kemperman46,
it can be shown that mw always exists for a set of observations. The weight function
w that assigns the weight wt for observation t can be thought of as an unsupervised
classifier that allocates a higher value to the biophysical state that we are interested
in and a lower value to other states.

Designing the weighting scheme. The choice of weight wt 2 0; 1½ � allows us to
penalise or accentuate certain observations through time at every pixel location
(i, j). Since the weight function can be viewed as an unsupervised classifier of the
biophysical state, this implies that even though our overall methodology can be
applied to any sensor, the weight function will need to be redesigned for each case.
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Fig. 6 Comparison of soil spectra to the Barest Earth spectra and a vegetated observation at various locations across Australia. a A selection of the NGSA
sample spectra (black) across the continent compared to the Barest Earth (magenta) and the clear vegetated observation (green). Spectra have been
normalised as x=jjxjj for observation vector x to remove parallel albedo shifts. b Sample locations where the sample identifiers are given and can be
referenced back to the NGSA dataset.

Fig. 7 Comparison between the Barest Earth output and a single vegetated observation over an agricultural district in south-eastern Australia. Split screen
view from National Map (http://nationalmap.gov.au/) showing the difference between our Barest Earth product (left) and (right) a single clear Landsat-8
observation (31/08/2019) in true colour. Location is 46.53550°S 145.18917°E.
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In this paper, we consider the case of Landsat data; thus, we take p= 6 and so for a
fixed spatial location (i, j), the t-th observation, x tð Þ ¼ X, in X, is a vector of
surface reflectance values relating to each sensor, i.e. X ¼
½xBLUExGREEN; xRED; xNIR ; xSWIR1; xSWIR2�T : Our aim is then to identify a suitable,
data dependent, weighting scheme that maps X to a value between [0, 1]. The
weighting scheme consists of two steps: firstly the choice of an (unnormalised)
weighting function ~w�Rp ! R, which is applied to each of the n observations,
and secondly a step that takes these transformed values ~w x 1ð Þ� �

; ¼ ; ~w x nð Þ� �
and

normalises them relative to each other, so that the final weights through time
w1; ¼ ;wn take values between 0 and 1, giving a weight vector W ¼
½w1; ¼ ;wn�T ; where wt is the weight assigned to the t-th observation in the
definition of the WGM. We note that a simple way to normalise values is to
identify the minimum wmin, and maximum wmax elements of ~w x 1ð Þ� �

; ¼ ; ~w x nð Þ� �
and to calculate wt ¼ ðwt � wminÞ=ðwmax � wminÞ to ensure that weights are
between 0 and 1; however, this does not lead to the most optimal result.

The first step is the choice of a weighting function ~w that penalises or
accentuates each observation based on its biophysical class at that point in time.
We started by generating simple features with which to separate various
biophysical classes, based on the spectral information in the pixel

X ¼ ½x1; x2; ¼ ; xp�T . In the most general case, these features have the functional
form

f Xð Þ ¼ xi � μxj þ ζ

νxi þ xj þ ξ

 !
α1 x1 � γ1
� �þ � � � þ αp xp � γp

� �
þ ρ

β1 x1 � σ1ð Þ þ � � � þ βp xp � σp

� �
þ δ

0
@

1
A ð1Þ

for some choice of i, j with i≠ j and for vectors α ¼ ðα1; ¼ ; αpÞT ,
γ ¼ ðγ1; ¼ ; γpÞT , β ¼ ðβ1; ¼ ; βpÞT , σ ¼ ðσ1; ¼ ; σpÞT and constants ρ, δ, v, ζ, ξ,
μ. Features of this form are often called ratio or normalised difference
transformations of the bands and are commonly used in remote sensing. Classic
examples include the Normalised Difference Vegetation Index
NDVI ¼ ðxNIR � xREDÞ=ðxNIR þ xREDÞ, the Green Normalised Difference
Vegetation Index GDVI ¼ ðxNIR � xGREENÞ=ðxNIR þ xGREENÞ, the Green Soil
Adjusted Vegetation Index GSAVI ¼ ððxNIR � xGREENÞÞ=ðxNIR þ xGREEN þ 0:5Þ
ð1þ 0:5Þ, the Ratio Vegetation Index RVI ¼ xNIR=xRED and the Soil Adjusted
Vegetation Index SAVI ¼ ðxNIR � xREDÞ=ðxNIR þ xRED þ 0:5Þð1þ 0:5Þ. We also
considered more recent contributions to the literature on separating soil classes.
The Ratio Index for Bright Soil (RIBS)47 is a composite band ratio designed to
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Fig. 8 Perspective view of a enhanced Barest Earth output showing variations in surface mineralogy. We used enhanced mineral mapping techniques to
produce a thematic mineral map of the Australian continent using the Barest Earth mosaic, a subset of north central Western Australia is shown above (a).
The second principal component of ratio bands NIR/RED and SWIR1/SWIR2 is used to highlight clays (red); the SWIR1/NIR ratio represents iron oxides
(green) and the addition of BLUE and SWIR2 represents highly reflective materials, such as silica-rich bedrock or quartz sand. This is perspective draped
over a digital elevation model of the region. Key features (b) include: (1) alluvial sands and clays, (2) colluvial sediments including iron gravels, sand and
clay, (3) colluvial clays, (4) proterozoic mudstone and siltstone, (5) proterozoic dolerite and gabbro and (6) reworked lateritic colluvial gravels. Mineral
enhanced 3-D perspective drape with clays in red; iron oxides in green and highly reflective materials like silica-rich bedrock or quartz sand in blue.
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assign lower weights to bright soil land cover. It is given by RIBS ¼ xNDSI=NTC1
where48 NDSI ¼ ðxGREEN � xSWIR1Þ=ðxGREEN þ xSWIR1Þ and NTC1 is the
normalised first Taselled Cap Transformation49. The Product Index for Dark Soil47

(PIDS) is designed to assign lower weight to darker soils and is given by PIDS =
TCl × NDVI. We can then define our (unnormalised) weight function as

~w Xð Þ ¼ c1f1 Xð Þ þ � � � þ cmfmðXÞ ð2Þ
where c1; ¼ ; cm are the constants to be determined and f1 Xð Þ; ¼ ; fm Xð Þ are
features (as defined above). The simplest cases are when ck ¼ 1 or ck ¼ �1 and
ci ¼ 0 for i≠ k. Once the unnormalised weights ~wðXð1ÞÞ; ¼ ; ~wðXðnÞÞ have been
assigned to all the observations through time, we then normalise them using the
softmax function, which gives

wt ¼
e~w X tð Þð ÞPn
i¼1 e

~w X ið Þð Þ ; t 2 f1; 2; ¼ ; ng: ð3Þ

This forces each wt to take values in the range [0, 1] and also results in all of the
weights w1; ¼ ;wn summing to 1, so that (Eq. 2) is a convex combination of
features. Figure 9 shows the effect of some model choices on the resulting pixel
composite mosaic across an area to the west of Canberra (Australia).

Fitting an optimal model. Given m features f1; ¼ ; fm of the form (Eq. 1), a model
for bareness is defined in terms of our (unnormalised) weight function ~w given by Eq.
(2). This means that weights c1; ¼ ; cm need to be identified to obtain an optimal
model. The difficulty is identifying a model that works well at a continental scale.
Specifically, Australia has a large geographical size and extremely varied climate. The
south-east and south-west corners have a temperate climate and moderately fertile
soil. The northern part of the country has a tropical climate, varying between tropical
rainforests, grasslands and desert. This means that a model that works well in some

areas may not be optimal in others. Moreover, due to the enormous range of soil types
across Australia, developing a model that classifies bare soil can be difficult. Our
model circumvents this ranking (instead of classifying) the observations through time
at each pixel based on the relative presence of vegetation.

To reduce the potential of overfitting our weight model, we propose an
approach that can be viewed as fitting an ensemble of regression models based on
spectral features from which we derive a single model from this ensemble through a
loss function that minimises average NDVI and variability over our training sites.
We now describe this more precisely.

We fit an optimal model given features f1; ¼ ; fm , in order to fine tune our
approach to specific (smaller) regions or as a way to determine the optimal model
for a continental-scale output. The fitting approach starts by identifying spatial
areas that exhibit a large amount of spectral change through time. At the i′th area,
obtain the spatial-spectral-temporal stack of observations Ai . For simplicity, we
explain our approach under the assumption that we only have one area A of
dimensions ðny ; nx ; p; ntÞ, where p is the number of bands, nt is the number of
observations through time and ðny ; nxÞ denote the number of spatial pixels.

Let θ ¼ ðc1; ¼ ; cmÞ be the parameter vector for our choice of model ~w. We
define our loss function, which we are trying to minimise, as

‘ θ;Að Þ ¼ � meany;xB
stddevy;xB

where B ¼ �NDVI BARE A; θð Þð Þ. The function BARE, given a spatial-spectral-
temporal stack A; calculates the Barest Earth model using ~w; given parameters θ
(as described in the previous section) and outputs a ðny ; nx ; pÞ-dimensional pixel
composite mosaic (PCM). The function NDVI, given a ðny ; nx; pÞ-dimensional
image, calculates the Normalised Difference Vegetation Index NDVI ¼ ðxNIR �
xREDÞ=ðxNIR þ xREDÞ and returns a ðny ; nxÞ dimensional image. The functions
meany;x and stddevy;x calculate the mean and standard deviation across the (y, x)
dimensions and returns a number. As NDVI takes values in between [−1, 1] and
increases as vegetation increases, B will be an ðny ; nxÞ grayscale image with larger
values at each pixel, meaning less vegetation (as we take the negative NDVI). This
means that the meany;x will increase as the PCM has reduced vegetation response.
However, we also want to penalise outputs that appear more pixelated, so we divide
by stddevy;x . The term meany;xB=stddevy;xB is our reward or utility function, but
we multiply this by −1 to obtain a loss function.

In the simple case where m= 1, we have θ= c1 and only one choice of feature
f1. Supplementary Fig. 1 shows the loss function ‘ for various choices of simple
one-feature models. Remarkably, we observe a very smooth relationship between
the parameter θ= c1 and our loss function ‘. This makes it very easy to identify
the optimal θ that minimises the loss. The case of m > 1 is more complicated and
involves minimising ‘ θð Þ over a m-dimensional surface θ ¼ c1; ¼ ; cmð Þ. As we
have (empirically) observed that ‘ is smooth in each coordinate of θ, an efficient
approach for minimising ‘ can be achieved through the use of Bayesian
optimisation using a Gaussian process prior. Fitting over N training areas
simultaneously can be easily achieved by defining the loss function as ‘ Að Þ ¼
‘ θ;A1ð Þ þ � � � þ ‘ θ;ANð Þ where A1; ¼ ;AN are the spatial-spectral-temporal
stacks of observations for these N training areas.

Differences between the Barest Earth products. Comparison of histograms
between the two continental-scale products highlight some interesting differences.
Landsat-8’s OLI sensor provides improved signal-to-noise radiometric (SNR)
performance quantised over a 12-bit dynamic range compared to the 8-bit dynamic
range of Landsat-5 and Landsat-7 data. This results in 4096 potential grey levels in
each band compared with only 256 in the 8-bit instruments on Landsat-5 and
Landsat-7. This means there is trade-off. The improved SNR performance in
Landsat-8 results in more accurate separation of vegetation and bare spectral
signatures through time and the resulting Barest Earth mosaic maintains the
improved SNR performance. Whereas, the Landsat 30+ product has worse SNR
performance but a greater capacity to find barest ground due to the greater
temporal depth.

Model robustness. Our approach for estimating the Barest Earth spectra is robust
in a variety of ways. First, our features within our unnormalized weightings are
robust to parallel shifts of the spectra due to the use of normalised difference ratios
between the bands. This is important so that we are robust to atmospheric effects
and residual thin cloud. Second, we recall that the breakdown point of an esti-
mator is the proportion of incorrect observations (e.g. arbitrarily large observa-
tions) an estimator can handle before giving an incorrect (e.g., arbitrarily large)
result. The geometric median is well-known to have a breakdown point50 of 50%.
We have conducted a simulation study of our model, which is a combination of a
weighting and the geometric median, to understand how it performs under a
variety of different noisy perturbations. We compare its robustness against a
model that uses a weighted mean instead of a weighted geometric median and find
that our approach is significantly more robust (see Supplementary Fig. 2). Finally,
the (weighted) geometric median is translation equivariant and orthogonal
equivariant50 which means that the relationship between the bands is maintained
under orthogonal transformations and shifts (a mathematical fact that follows

a b c

d e f

g h i

Fig. 9 Comparison of the effect of different weighting schemes on the
output of the proposed algorithm. The effect of making choices of weight
function ~w shown across an area to the west of Canberra, Australia. The
location was chosen due to the presence of urban, water, vegetation and
soil classes. The images are shown in false colour with SWIR1, NIR and
BLUE in the RGB channels to accentuate healthy vegetation in bright green,
soils in magenta and water in blue/black. The histogram stretches for all
images are the same and chosen based on a 2–98% cutoff of the histogram
of b which is an unweighted GM pixel composite mosaic. The weighting
schemes are as follows: a is NDVI, c is −1 × NDVI, d is GNDVI, e is −1 ×
GNDVI, f is −3 × GNDVI, g is SAVI, h is −1 × SAVI and i is −3 × SAVI. We
observe that c, f and i show the presence of the most soil across the image,
however, f and i preference the presence of water (over soil) in some
locations. NDVI provides good symmetry with respect to the GM case in
b, in that a provides a highly vegetated composite and c a composite
dominated by soil.
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easily due to the invariance of Euclidean norm under such transformations). This
is not true, for example, if the coordinatewise median is used (i.e., a univariate
median in each band separately). This final property is particularly important for
machine learning due to the extensive use of Principal Component Analysis
(PCA) in the analysis of satellite imagery as PCA is a statistical and data reduction
procedure that uses an orthogonal transformation to convert observations of
possibly correlated variables into a set of values of linearly uncorrelated variables
called principal components.

Data availability
Both the Landsat-8 Barest Earth mosaic and the Landsat 30+mosaic are freely available
through the web viewer https://nationalmap.gov.au. Alternatively, these mosaics (sized
around 200GB each, in Australian Albers projection, tiled, and in GeoTIFF format) can
be obtained by contacting Geoscience Australia.

Code availability
The code used to generate the Barest Earth mosaics from freely available Landsat data and
the code to validate results against the spectra of the soil samples collected in the field is
available through the GitHub repository of the first author: https://github.com/daleroberts
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