Mapping the Extent of Mangrove Ecosystem Degradation by Integrating an Ecological Conceptual Model with Satellite Data
"> Figure 1
<p>(<b>A</b>) Global mangrove extent from the Global Mangrove Watch 2016 dataset. (<b>B</b>) Case study region around Shark River within the Everglades National Park in Florida. (<b>C</b>) The location of Rakhine and Ayeyarwady states (line-shaded) within Myanmar. (<b>D</b>) Case study region for Rakhine mangroves along the coast of the Rakhine state and far west coast of Ayeyarwady up to Cape Negrais.</p> "> Figure 2
<p>Simplified conceptual model of the threats and the ecological processes relevant to mapping mangrove degradation in our analysis. Red boxes indicate threats, blue ovals represent the abiotic processes, blue hexagons represent the abiotic environment, and the green hexagon represents the biotic components of the mangrove ecosystem. Pointed arrowheads indicate positive effects, rounded arrowheads indicate negative effects, and diamond arrowheads indicate context-dependent effects. Numbers show potential satellite-derived variables to be used to detect specific ecological links contributing to mangrove degradation from <a href="#remotesensing-13-02047-t001" class="html-table">Table 1</a>. A more complete model is presented in <a href="#app1-remotesensing-13-02047" class="html-app">Figure S1</a>.</p> "> Figure 3
<p>Examples of mangrove ecosystem degradation in Rakhine, Myanmar. (<b>A</b>) High resolution imagery from Google Earth (2018) of mangroves in the region around the Wunbaik Forest Reserve, Rakhine. Zoomed in images represent examples for (<b>B</b>) intact, (<b>C</b>) degraded, and (<b>D</b>) collapsed classes. Image data provided by Landsat/Copernicus, CNES/Airbus, Google, and Maxar Technologies.</p> "> Figure 4
<p>(<b>A</b>) Mapped mangrove degradation for the Rakhine case study region. Italics denote name of districts. Dot denotes the location of Sittwe, Rakhine’s state capital. (<b>B</b>) Estimated area of each mapped class and total mangrove area as mapped by Global Mangrove Watch against latitude. (<b>C</b>) Mangrove degradation for the region surrounding the Wunbaik Forest Reserve. All maps use UTM46 at 30 m resolution.</p> "> Figure 5
<p>Mapped mangrove degradation for the Shark River case-study region. (<b>A</b>) Location of Shark River study region within the Everglades National Park, showing Hurricane Irma’s track (<b>B</b>) Results of the degradation model for pre-Hurricane Irma (2016–2017) and (<b>C</b>) Post-Hurricane Irma (2017–2018).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- defining study scope and describing the ecosystems;
- identifying suitable model covariates using an ecosystem conceptual model;
- developing a training/testing dataset that represents three ordinal states of degradation;
- applying random forest classification models to each pixel in the two study areas to develop wall-to-wall maps of mangrove degradation;
- assessing the models’ performance with quantitative accuracy assessments.
2.1. Study Regions and Ecosystem Description
2.2. Conceptual Model
2.3. Training Data
- intact, representing mangrove pixels with closed canopies and no visible indication of departure from natural variability at the interannual level (maintained at more than 5 years (Figure 3B);
- degraded, representing mangrove pixels with visible degradation (departure from natural variability) but with mangrove trees still present (Figure 3C);
- collapsed, representing pixels mapped as mangrove in 2016 by GMW without any evidence of the mangrove tree presence at the time of analysis (Figure 3D).
- part of a mangrove forest patch that is at least 5 hectares (ha) in area;
- closed canopy cover with no underlying substrate observed from Google Earth imagery;
- no obvious anthropogenic structures and disturbances observed from Google Earth imagery;
- maintained the above criteria for at least 5 years.
- mangrove trees can be observed in Google Earth imagery (thus not collapsed);
- low canopy cover and/or isolated trees observed from Google Earth imagery, and/or;
- browning and/or tree death observable from Google Earth imagery.
2.4. Covariate Selection and Processing
2.5. Classification Models
2.6. Area Estimation and Accuracy Assessment
3. Results
3.1. Degradation Distribution, Area Estimation, and Accuracy Assessment of Rakhine Mangroves
3.2. Degradation Distribution, Area Estimation, and Accuracy Assessment of Shark River Mangroves
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystem and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Keith, D.A.; Rodríguez, J.P.; Rodríguez-Clark, K.M.; Nicholson, E.; Aapala, K.; Alonso, A.; Asmussen, M.; Bachman, S.; Basset, A.; Barrow, E.G.; et al. Scientific Foundations for an IUCN Red List of Ecosystems. PLoS ONE 2013, 8, e62111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and Ecosystem Services: A Multilayered Relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity Loss and Its Impact on Humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- CBD. Observations on Potential Elements for the Post-2020 Global Biodiversity Framework. In Proceedings of the Convention on Biological Diversity, Twenty-Third Meeting, Montreal, QC, Canada, 25–29 November 2019. [Google Scholar]
- UN High Commissioner for Refugees (UNHCR). The Sustainable Development Goals and Addressing Statelessness, March 2017. Available online: https://www.refworld.org/docid/58b6e3364.html (accessed on 23 May 2020).
- UN. System of Environmental-Economic Accounting 2012: Experimental Ecosystem Accounting; United Nations: New York, NY, USA, 2014. [Google Scholar]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The Ecological Economics of Land Degradation: Impacts on Ecosystem Service Values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Grantham, H.S.; Duncan, A.; Evans, T.D.; Jones, K.; Beyer, H.; Schuster, R.; Walston, J.; Ray, J.; Robinson, J.; Callow, M.; et al. Modification of Forests by People Means Only 40% of Remaining Forests Have High Ecosystem Integrity. bioRxiv 2020. Available online: https://www.biorxiv.org/content/10.1101/2020.03.05.978858v4 (accessed on 6 October 2020). [CrossRef]
- Tulloch, V.J.D.; Tulloch, A.I.T.; Visconti, P.; Halpern, B.S.; Watson, J.E.M.; Evans, M.C.; Auerbach, N.A.; Barnes, M.; Beger, M.; Chadès, I.; et al. Why Do We Map Threats? Linking Threat Mapping with Actions to Make Better Conservation Decisions. Front. Ecol. Environ. 2015, 13, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Ward, R.D.; Friess, D.A.; Day, R.H.; MacKenzie, R.A. Impacts of Climate Change on Mangrove Ecosystems: A Region by Region Overview. Ecosyst. Health Sustain. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Duncan, C.; Owen, H.J.F.; Thompson, J.R.; Koldewey, H.J.; Primavera, J.H.; Pettorelli, N. Satellite Remote Sensing to Monitor Mangrove Forest Resilience and Resistance to Sea Level Rise. Methods Ecol. Evol. 2018, 9, 1837–1852. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.U.; Adair, E.C.; Cardinale, B.J.; Byrnes, J.E.K.; Hungate, B.A.; Matulich, K.L.; Gonzalez, A.; Duffy, J.E.; Gamfeldt, L.; O’Connor, M.I. A Global Synthesis Reveals Biodiversity Loss as a Major Driver of Ecosystem Change. Nature 2012, 486, 105–108. [Google Scholar] [CrossRef]
- Reygadas, Y.; Jensen, J.L.R.; Moisen, G.G. Forest Degradation Assessment Based on Trend Analysis of MODIS-Leaf Area Index: A Case Study in Mexico. Remote Sens. 2019, 11, 2503. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.G.; Dent, D.L.; Olsson, L.; Schaepman, M.E. Proxy Global Assessment of Land Degradation. Soil Use Manag. 2008, 24, 223–234. [Google Scholar] [CrossRef]
- Noss, R.F. Indicators for Monitoring Biodiversity: A Hierarchical Approach. Conserv. Biol. 1990, 4, 355–364. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020; FAO: Rome, Italy, 2020; ISBN 978-925-132-974-0. [Google Scholar]
- Potapov, P.; Yaroshenko, A.; Turubanova, S.; Dubinin, M.; Laestadius, L.; Thies, C.; Aksenov, D.; Egorov, A.; Yesipova, Y.; Glushkov, I.; et al. Mapping the World’s Intact Forest Landscapes by Remote Sensing. Ecol. Soc. 2008, 13. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, S.; Töpper, J.P.; Evju, M.; Framstad, E.; Lyngstad, A.; Pedersen, B.; Sickel, H.; Sverdrup-Thygeson, A.; Vandvik, V.; Velle, L.G.; et al. Setting Reference Levels and Limits for Good Ecological Condition in Terrestrial Ecosystems—Insights from a Case Study Based on the IBECA Approach. Ecol. Indic. 2020, 116, 106492. [Google Scholar] [CrossRef]
- Murray, N.J.; Keith, D.A.; Bland, L.M.; Ferrari, R.; Lyons, M.B.; Lucas, R.; Pettorelli, N.; Nicholson, E. The Role of Satellite Remote Sensing in Structured Ecosystem Risk Assessments. Sci. Total Environ. 2018, 619, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Taillie, P.J.; Roman-Cuesta, R.; Lagomasino, D.; Cifuentes-Jara, M.; Fatoyinbo, T.; Ott, L.E.; Poulter, B. Widespread Mangrove Damage Resulting from the 2017 Atlantic Mega Hurricane Season. Environ. Res. Lett. 2020, 15, 064010. [Google Scholar] [CrossRef]
- Potapov, P.; Tyukavina, A.; Turubanova, S.; Talero, Y.; Hernandez-Serna, A.; Hansen, M.C.; Saah, D.; Tenneson, K.; Poortinga, A.; Aekakkararungroj, A.; et al. Annual Continuous Fields of Woody Vegetation Structure in the Lower Mekong Region from 2000–2017 Landsat Time-Series. Remote Sens. Environ. 2019, 232, 111278. [Google Scholar] [CrossRef]
- Mondal, P.; McDermid, S.S.; Qadir, A. A Reporting Framework for Sustainable Development Goal 15: Multi-Scale Monitoring of Forest Degradation Using MODIS, Landsat and Sentinel Data. Remote Sens. Environ. 2020, 237, 111592. [Google Scholar] [CrossRef]
- Yuan, J.; Cohen, M.J. Remote Detection of Ecosystem Degradation in the Everglades Ridge-Slough Landscape. Remote Sens. Environ. 2020, 247, 111917. [Google Scholar] [CrossRef]
- Zhuravleva, I.; Turubanova, S.; Potapov, P.; Hansen, M.; Tyukavina, A.; Minnemeyer, S.; Laporte, N.; Goetz, S.; Verbelen, F.; Thies, C. Satellite-Based Primary Forest Degradation Assessment in the Democratic Republic of the Congo, 2000–2010. Environ. Res. Lett. 2013, 8, 024034. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M.B.; Anderson, R.P.; Márcia Barbosa, A.; Beale, C.M.; Dormann, C.F.; Early, R.; Garcia, R.A.; Guisan, A.; Maiorano, L.; Naimi, B.; et al. Standards for Distribution Models in Biodiversity Assessments. Sci. Adv. 2019, 5, eaat4858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bland, L.B.; Keith, D.A.; Miller, R.M.; Murray, N.J.; Rodríguez, J.P. Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria; Version 1.1; IUCN: Gland, Switzerland, 2017. [Google Scholar]
- Zador, S.G.; Gaichas, S.K.; Kasperski, S.; Ward, C.L.; Blake, R.E.; Ban, N.C.; Himes-Cornell, A.; Koehn, J.Z. Linking Ecosystem Processes to Communities of Practice through Commercially Fished Species in the Gulf of Alaska. ICES J. Mar. Sci. 2017, 74, 2024–2033. [Google Scholar] [CrossRef]
- Lee, S.Y.; Primavera, J.H.; Dahdouh-Guebas, F.; McKee, K.; Bosire, J.O.; Cannicci, S.; Diele, K.; Fromard, F.; Koedam, N.; Marchand, C.; et al. Ecological Role and Services of Tropical Mangrove Ecosystems: A Reassessment. Glob. Ecol. Biogeogr. 2014, 23, 726–743. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and Drivers of Mangrove Deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veettil, B.K.; Pereira, S.F.R.; Quang, N.X. Rapidly Diminishing Mangrove Forests in Myanmar (Burma): A Review. Hydrobiologia 2018, 822, 19–35. [Google Scholar] [CrossRef]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove Forests: One of the World’s Threatened Major Tropical Environments. Bioscience 2001, 51, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, S.E.; Casey, D. Creation of a High Spatio-Temporal Resolution Global Database of Continuous Mangrove Forest Cover for the 21st Century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global Declines in Human-driven Mangrove Loss. Glob. Chang. Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef]
- Wang, W.; Fu, H.; Lee, S.Y.; Fan, H.; Wang, M. Can Strict Protection Stop the Decline of Mangrove Ecosystems in China? From Rapid Destruction to Rampant Degradation. Forests 2020, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A Review of Remote Sensing for Mangrove Forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Lucas, R.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Murray, N.J.; Keith, D.A.; Duncan, A.; Tizard, R.; Ferrer-Paris, J.R.; Worthington, T.A.; Armstrong, K.; Hlaing, N.; Htut, W.T.; Oo, A.H.; et al. Myanmar’s Terrestrial Ecosystems: Status, Threats and Conservation Opportunities. Biol. Conserv. 2020, 252, 108834. [Google Scholar] [CrossRef]
- Myint, W.; Stanley, D.O. The Mangrove Vegetation of Wunbaik Reserved Forest; FAO-UN: Rome, Italy, 2011. [Google Scholar]
- Worthington, T.A.; Zu Ermgassen, P.S.E.; Friess, D.A.; Krauss, K.W.; Lovelock, C.E.; Thorley, J.; Tingey, R.; Woodroffe, C.D.; Bunting, P.; Cormier, N.; et al. A Global Biophysical Typology of Mangroves and Its Relevance for Ecosystem Structure and Deforestation. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Saw, A.A.; Kanzaki, M. Local Livelihoods and Encroachment into a Mangrove Forest Reserve: A Case Study of the Wunbaik Reserved Mangrove Forest, Myanmar. Procedia Environ. Sci. 2015, 28, 483–492. [Google Scholar] [CrossRef] [Green Version]
- De Alban, J.D.T.; Jamaludin, J.; Wong de Wen, D.; Than, M.M.; Webb, E.L. Improved Estimates of Mangrove Cover and Change Reveal Catastrophic Deforestation in Myanmar. Environ. Res. Lett. 2020, 15, 034034. [Google Scholar] [CrossRef]
- Storey, D. A Socio-Economic Assessment of Mangroves Areas in North Rakhine State; REACH: Geneva, Switzerland, 2015; p. 51. [Google Scholar]
- Chen, R.; Twilley, R.R. Patterns of Mangrove Forest Structure and Soil Nutrient Dynamics along the Shark River Estuary, Florida. Estuaries 1999, 22, 955. [Google Scholar] [CrossRef]
- Lagomasino, D.; Price, R.M.; Whitman, D.; Melesse, A.; Oberbauer, S.F. Spatial and Temporal Variability in Spectral-Based Surface Energy Evapotranspiration Measured from Landsat 5TM across Two Mangrove Ecotones. Agric. For. Meteorol. 2015, 213, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Feng, L.; Hu, C.; Kramer, P. Hurricane-Induced Changes in the Everglades National Park Mangrove Forest: Landsat Observations between 1985 and 2017. J. Geophys. Res. Biogeosci. 2018, 123, 3470–3488. [Google Scholar] [CrossRef]
- Zhang, C.; Durgan, S.D.; Lagomasino, D. Modeling Risk of Mangroves to Tropical Cyclones: A Case Study of Hurricane Irma. Estuar. Coast. Shelf Sci. 2019, 224, 108–116. [Google Scholar] [CrossRef]
- Lagomasino, D.; Fatoyinbo, L.; Castaneda, E.; Cook, B.; Montesano, P.; Neigh, C.; Corp, L.; Ott, L.; Chavez, S.; Morton, D. Storm Surge, Not Wind, Caused Mangrove Dieback in Southwest Florida Following Hurricane Irma. EarthArXiv 2020. Available online: https://eartharxiv.org/repository/view/159/ (accessed on 22 July 2020). [CrossRef]
- Kovacs, J.M.; Flores-Verdugo, F.; Wang, J.; Aspden, L.P. Estimating Leaf Area Index of a Degraded Mangrove Forest Using High Spatial Resolution Satellite Data. Aquat. Bot. 2004, 80, 13–22. [Google Scholar] [CrossRef]
- Lucas, R.; Van De Kerchove, R.; Otero, V.; Lagomasino, D.; Fatoyinbo, L.; Omar, H.; Satyanarayana, B.; Dahdouh-Guebas, F. Structural Characterisation of Mangrove Forests Achieved through Combining Multiple Sources of Remote Sensing Data. Remote Sens. Environ. 2020, 237, 111543. [Google Scholar] [CrossRef]
- Verbesselt, J.; Umlauf, N.; Hirota, M.; Holmgren, M.; Van Nes, E.H.; Herold, M.; Zeileis, A.; Scheffer, M. Remotely Sensed Resilience of Tropical Forests. Nat. Clim. Chang. 2016, 6, 1028–1031. [Google Scholar] [CrossRef]
- Cornforth, W.; Fatoyinbo, T.; Freemantle, T.; Pettorelli, N. Advanced Land Observing Satellite Phased Array Type L-Band SAR (ALOS PALSAR) to Inform the Conservation of Mangroves: Sundarbans as a Case Study. Remote Sens. 2013, 5, 224–237. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote Sensing of Mangrove Ecosystems: A Review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Qiu, S.; He, B.; Deng, C. Cloud and Cloud Shadow Detection for Landsat Images: The Fundamental Basis for Analyzing Landsat Time Series. In Remote Sensing Time Series Image Processing; CRC Press: Boca Raton, FL, USA, 2018; pp. 25–46. [Google Scholar]
- JAXA. Global 25 m Resolution PALSAR-2/PALSAR Mosaic and Forest/Non-Forest Map (FNF) Dataset Description 2019. Available online: https://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/DatasetDescription_PALSAR2_Mosaic_FNF_revJ.pdf (accessed on 20 May 2021).
- Yommy, A.S.; Liu, R.; Wu, A.S. SAR Image Despeckling Using Refined Lee Filter. In Proceedings of the 7th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 26–27 August 2015; Volume 2, pp. 260–265. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Thomas, N.; Bunting, P.; Lucas, R.; Hardy, A.; Rosenqvist, A.; Fatoyinbo, T. Mapping Mangrove Extent and Change: A Globally Applicable Approach. Remote Sens. 2018, 10, 1466. [Google Scholar] [CrossRef] [Green Version]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Janitza, S.; Tutz, G.; Boulesteix, A.-L. Random Forest for Ordinal Responses: Prediction and Variable Selection. Comput. Stat. Data Anal. 2016, 96, 57–73. [Google Scholar] [CrossRef]
- Menze, B.H.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A Comparison of Random Forest and Its Gini Importance with Standard Chemometric Methods for the Feature Selection and Classification of Spectral Data. BMC Bioinform. 2009, 10, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The Global Distribution and Trajectory of Tidal Flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Fleiss, J.L. Measuring Nominal Scale Agreement among Many Raters. Psychol. Bull. 1971, 76, 378–382. [Google Scholar] [CrossRef]
- Ghazoul, J.; Burivalova, Z.; Garcia-Ulloa, J.; King, L.A. Conceptualizing Forest Degradation. Trends Ecol. Evol. 2015, 30, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S.L.; Cazalis, V.; Dudley, N.; Hoffmann, M.; Rodrigues, A.S.L.; Stolton, S.; Visconti, P.; Woodley, S.; Kingston, N.; Lewis, E.; et al. Area-Based Conservation in the Twenty-First Century. Nature 2020, 586, 217–227. [Google Scholar] [CrossRef]
- Lugo, A.E. Mangrove Ecosystems: Successional or Steady State? Biotropica 1980, 12, 65. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Korhonen, L.; Korhonen, K.T.; Rautiainen, M.; Stenberg, P. Estimation of Forest Canopy Cover: A Comparison of Field Measurement Techniques. Silva Fenn. 2006, 40, 577–588. [Google Scholar] [CrossRef] [Green Version]
- Butchart, S.H.M.; Walpole, M.; Collen, B.; van Strien, A.; Scharlemann, J.P.W.; Almond, R.E.A.; Baillie, J.E.M.; Bomhard, B.; Brown, C.; Bruno, J.; et al. Global Biodiversity: Indicators of Recent Declines. Science 2010, 328, 1164–1168. [Google Scholar] [CrossRef]
- UNFCCC. Key Decisions Relevant for Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD+); United Nations Framework Convention on Climate Change Secretariat: Bonn, Germany, 2016. [Google Scholar]
Ecological Link | Potential Satellite-Derived Variable | Biotic/Abiotic | Example Satellite/Sensors | Earliest Available Year | Frequency | Spatial Resolution | |
---|---|---|---|---|---|---|---|
1 | Defoliation | Vegetation indices | Biotic | Landsat satellites, Sentinel-2 | 1972 | 10–16 days per satellite | 10–80 m |
Moisture indices | Landsat satellites, Sentinel-2 | 1972 | 10–16 days per satellite | 10–80 m | |||
2 | Dieback | Change in land cover class | Biotic | Landsat satellites, Sentinel-2 | 1972 | 10–16 days per satellite | 10–80 m |
Vegetation indices | Landsat satellites, Sentinel-2 | 1972 | 10–16 days per satellite | 10–80 m | |||
3 | Reduced branch density | Vegetation indices | Biotic | Landsat satellites, Sentinel-2 | 1972 | 10–16 days per satellite | 10–80 m |
Moisture indices | Landsat satellites, Sentinel-2 | 1972 | 10–16 days per satellite | 10–80 m | |||
LiDAR waveform derived indices | GEDI | 2019 | Variable | 25 m | |||
L–band Radar backscatter | JERS-1 SAR, ALOS PALSAR, ALOS-2 PALSAR-2 | 1992 | 14–46 days | 10–100 m | |||
4 | Reduced photosynthetic capacity | Vegetation indices | Biotic | Landsat satellites, Sentinel-2 | 1972 | 10–16 days per satellite | 10–80 m |
Solar induced fluorescence | OCO-2 | 2014 | 16 days | 0.05° | |||
5 | Stunted growth, leaf number, and emergence | Vegetation indices | Biotic | Landsat satellites, Sentinel-2 | 1972 | 10–16 days per satellite | 10–80 m |
LiDAR waveform derived indices | GEDI | 2019 | Variable | 25 m | |||
6 | Evaporative stress | Evapotranspiration | Biotic | ECOSTRESS | 2018 | 1–7 days over target areas | 70 m |
7 | Changes in hydroperiod | Bare-earth topography | Abiotic | SRTM | 2000 | – | 30 m |
Water indices | Landsat satellites, Sentinel-2 | 1972 | 10–16 days per satellite | 10–80 m | |||
Sea surface height | TOPEX/Poseidon, Jason | 1992 | 10 days | 11.2 km × 5.1 km |
Covariate | Proposed Mechanism | Reference |
---|---|---|
Annual NDVI mean | Intact mangrove forests have higher mean NDVI as they are more photosynthetically active and have higher canopy cover and LAI. | [50] |
Annual NDVI SD | Intact mangroves have a more stable NDVI as they are productive and throughout the year as evergreen trees. | [52] |
Annual NDMI mean | Intact mangroves with higher canopy cover have higher average NDMI. | [51] |
Annual NDMI SD | Intact mangroves have a more stable NDMI as they remain productive and have high cover throughout the year as evergreen trees. | [52] |
Annual NDWI mean | Intact mangrove forests have lower average NDWI as they have higher canopy cover, and multi-spectral satellites cannot typically detect underlying water. | |
L-band SAR backscatter (yearly mosaic) – HV | Intact mangroves have backscatter within a certain range. Decreased backscatter value suggests decreased biomass. HV is more sensitive to upper canopy. | [53,54] |
L-band SAR backscatter (yearly mosaic) – HH | Intact mangroves have backscatter within a certain range. Decreased backscatter value suggests decreased biomass, though double-bounce scattering on bare ground and water surfaces can also lead to higher backscatter values. HH has higher contrast when tree cover is completely lost. | [53,54] |
District | Percentage Degraded Mangrove in District (%) | Proportion of Total Mangroves in Rakhine Mangroves Case Study Region |
---|---|---|
Maungtaw | 59.0 | <0.01 |
Buthidaung | 48.1 | <0.01 |
Sittwe | 64.6 | 0.15 |
Kyaunkpyu | 48.5 | 0.56 |
Thandwe | 35.4 | 0.23 |
Bassein (Ayeyarwady) | 29.8 | 0.05 |
Class | Kappa | p-Value |
---|---|---|
Intact | 0.673 | <0.001 |
Degraded | 0.559 | <0.001 |
Collapsed | 0.844 | <0.001 |
Combined | 0.690 | <0.001 |
Intact | Degraded | Collapsed | User’s Accuracy | |
---|---|---|---|---|
Intact | 39.4% | 6.3% | 0.7% | 84.9% |
Degraded | 9.0% | 32.2% | 5.3% | 69.3% |
Collapsed | 0.1% | 1.0% | 6.0% | 85.1% |
Producer’s accuracy | 81.3% | 81.5% | 50.2% | Overall accuracy: 77.6% |
Variable | Gini Importance |
---|---|
HH | 8.506 |
HV | 14.689 |
NDMI_mean | 15.237 |
NDMI_stdDev | 24.621 |
NDVI_mean | 14.441 |
NDVI_stdDev | 15.082 |
NDWI_mean | 9.953 |
Variable | Gini Importance |
---|---|
HH | 21.615 |
HV | 19.406 |
NDMI_mean | 24.45 |
NDMI_stdDev | 19.059 |
NDVI_mean | 23.646 |
NDVI_stdDev | 18.056 |
NDWI_mean | 19.242 |
Intact | Degraded | User’s Accuracy | |
---|---|---|---|
Intact | 38.0% | 14.5% | 85.7% |
Degraded | 6.3% | 41.1% | 73.9% |
Producer’s accuracy | 72.3% | 86.7% | Overall accuracy: 79.1% |
Variable | Gini Importance |
---|---|
NDMI_mean | 8.651 |
NDMI_stdDev | 1.244 |
NDVI_mean | 9.125 |
NDVI_stdDev | 0 |
NDWI_mean | 6.488 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.K.F.; Duncan, C.; Nicholson, E.; Fatoyinbo, T.E.; Lagomasino, D.; Thomas, N.; Worthington, T.A.; Murray, N.J. Mapping the Extent of Mangrove Ecosystem Degradation by Integrating an Ecological Conceptual Model with Satellite Data. Remote Sens. 2021, 13, 2047. https://doi.org/10.3390/rs13112047
Lee CKF, Duncan C, Nicholson E, Fatoyinbo TE, Lagomasino D, Thomas N, Worthington TA, Murray NJ. Mapping the Extent of Mangrove Ecosystem Degradation by Integrating an Ecological Conceptual Model with Satellite Data. Remote Sensing. 2021; 13(11):2047. https://doi.org/10.3390/rs13112047
Chicago/Turabian StyleLee, Calvin K. F., Clare Duncan, Emily Nicholson, Temilola E. Fatoyinbo, David Lagomasino, Nathan Thomas, Thomas A. Worthington, and Nicholas J. Murray. 2021. "Mapping the Extent of Mangrove Ecosystem Degradation by Integrating an Ecological Conceptual Model with Satellite Data" Remote Sensing 13, no. 11: 2047. https://doi.org/10.3390/rs13112047