Novel Vegetation Indices for Cotton Boll Opening Status Estimation Using Sentinel-2 Data
"> Figure 1
<p>Study site: (<b>a</b>) Shihezi City, Xinjiang Uygur Autonomous Region. (<b>b</b>) Study field in Beiquan Town, Shihezi City and schematic diagram of the overall design of the experiment. (<b>c</b>) Schematic diagram of the areas occupied by a sub-research area unit and a small plot unit.</p> "> Figure 2
<p>(<b>a</b>) The dotted lines indicate the polylines connecting the multispectral reflectance of small plots with different BOR in Sentinel-2 imagery; and the triangular areas represent the areas enclosed by the reflectance of band 2 (Blue), band 4 (Red) and band 7 (Red-edge3) from Sentinel-2 imagery at 5.2%, 35.9% and 53.9% BOR. (<b>b</b>) Polylines connecting the bands’ reflectance of small plots with different BAR in Sentinel-2 imagery. (<b>c</b>) Detailed figure of polyline in visible bands.</p> "> Figure 3
<p>Relationship between vegetation indices and boll area ratio (BAR) using an unmanned aerial vehicle (UAV) and Sentinel-2 data.</p> "> Figure 4
<p>Relationship between vegetation indices and boll opening rate (BOR) using Sentinel-2 and field data.</p> "> Figure 5
<p>Scatterplots of measured boll opening rate versus predicted boll opening rate for vegetation indices with BOR field measured data and Sentinel-2 data (n = 14); dashed lines indicate 1:1 line.</p> "> Figure 6
<p>Scatters plot of boll opening rate (BOR) versus boll area ratio (BAR).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.2.1. Boll Opening Rate Measurements
2.2.2. Boll Area Ratio Measurements
2.2.3. Sentinel-2 Imagery
2.3. Methods
2.3.1. Proposed Vegetation Indices
2.3.2. Published Vegetation Indices Used in this Study
2.3.3. Analysis Method and Software
3. Results
3.1. Relationship between VIs and BAR
3.2. Relationship between VIs and BOR
3.3. Relationship between BOR and BAR
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, T.; Qian, N.; Zhu, X.; Chen, H.; Wang, S.; Mei, H.; Zhang, Y.-M. Variations and Transmission of QTL Alleles for Yield and Fiber Qualities in Upland Cotton Cultivars Developed in China. PLoS ONE 2013, 8, e57220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TSP. The Statistics Portal. Available online: https://www.statista.com/statistics/263055/cottonproduction-worldwide-by-top-countries/ (accessed on 20 December 2019).
- Xiao, Q.; Xin, F.; Lou, Z.; Zhou, T.; Wang, G.; Han, X.; Lan, Y.; Fu, W. Effect of Aviation Spray Adjuvants on Defoliant Droplet Deposition and Cotton Defoliation Efficacy Sprayed by Unmanned Aerial Vehicles. Agronomy 2019, 9, 217. [Google Scholar] [CrossRef] [Green Version]
- Siebert, J.; Stewart, A. AGRONOMY AND SOILS Correlation of Defoliation Timing Methods to Optimize Cotton Yield, Quality, and Revenue. J. Cotton Sci. 2006, 10, 146–154. [Google Scholar]
- Gormus, O.; Akdag, A.; El Sabagh, A.; Islam, M.S. Enhancement of productivity and fibre quality by defining ideal defoliation and harvesting timing in cotton. Rom. Agric. Res. 2017, 34, 225–232. [Google Scholar]
- Karademir, E.; Karademir, C.; Basbag, S. Determination the effect of defoliation timing on cotton yield and quality. J. Cent. Eur. Agric. 2007, 8, 3. [Google Scholar]
- Meng, Y.; Song, J.; Lan, Y.; Mei, G.; Liang, Z.; Han, Y. Harvest aids efficacy applied by unmanned aerial vehicles on cotton crop. Ind. Crop. Prod. 2019, 140, 111645. [Google Scholar] [CrossRef]
- WNBS.PRC. Website of National Bureau of Statistics of the People’s Republic of China. Available online: http://www.stats.gov.cn/tjsj/zxfb/201812/t20181229_1642170.html (accessed on 20 December 2019).
- Xingang, Z.L.W.C.L. Modern cultivated mode of Chinese jujube in xinjiang. J. Northwest For. Univ. 2015, 30, 139–143. [Google Scholar]
- GFET. Guidelines for the Field Efficacy Trials (II). In Part 134: Plant Growth Regulator Trials on Cotton; Standards Press of China: Beijing, China, 2004; GB/T 17980.134-2004.
- Cui, B.Z.Q.; Huang, W.; Song, X.; Ye, H.; Zhou, X. A New Integrated Vegetation Index for the Estimation of Winter Wheat Leaf Chlorophyll Content. Remote Sens. 2019, 11, 974. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Huang, W.; Liu, J.; Chen, P.; Ye, H.; Peng, D.; Dong, Y.; Mortimer, A. Estimation of canopy carotenoid content of winter wheat using multi-angle hyperspectral data. Adv. Space Res. 2017, 60, 1988–2000. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, W.; Kong, W.; Ye, H.; Dong, Y.; Casa, R. Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 24–35. [Google Scholar] [CrossRef]
- Dong, Y.; Ji-Hua, W.; Cun-Jun, L.; Yang, G.-J.; Song, X.; Xiao-He, G.; Wen-Jiang, H. Estimating leaf area index from remote sensing data: Based on data segmentation and principal component analysis. J. Infrared Millim. Waves 2011, 30, 124–130. [Google Scholar] [CrossRef]
- Xie, Q.-Y.; Dash, J.; Huete, A.; Jiang, A.; Yin, G.; Ding, Y.; Peng, D.; Hall, C.; Brown, L.; Shi, Y.; et al. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 187–195. [Google Scholar] [CrossRef]
- Xing, N.; Huang, W.; Xie, Q.-y.; Shi, Y.; Ye, H.; Dong, Y.; Wu, M.; Sun, G.; Jiao, Q. A Transformed Triangular Vegetation Index for Estimating Winter Wheat Leaf Area Index. Remote Sens. 2019, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Huang, W.; Huang, S.; Wu, B.; Dong, Y.; Bei, C. Remote Estimation of Nitrogen Vertical Distribution by Consideration of Maize Geometry Characteristics. Remote Sens. 2018, 10, 1995. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Dong, Y.; Huang, W.; Du, X.; Luo, J.; Shi, Y.; Ma, H. Enhanced Regional Monitoring of Wheat Powdery Mildew Based on an Instance-Based Transfer Learning Method. Remote Sens. 2019, 11, 298. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Huang, W.; Jing, Y.; Yang, C.; Han, L.; Dong, Y.; Ye, H.; Shi, Y.; Zheng, Q.; Liu, L.; et al. Integrating Growth and Environmental Parameters to Discriminate Powdery Mildew and Aphid of Winter Wheat Using Bi-Temporal Landsat-8 Imagery. Remote Sens. 2019, 11, 846. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Huang, W.; Ye, H.; Ruan, C.; Xing, N.; Geng, Y.; Dong, Y.; Peng, D. Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets. Sensors 2018, 18, 1901. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Huang, W.; Cui, X.; Shi, Y.; Liu, L. New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery. Sensors 2018, 18, 868. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Lu, J.; Ye, H.; Kong, W.; Mortimer, A.; Shi, Y. Quantitative identification of crop disease and nitrogen-water stress in winter wheat using continuous wavelet analysis. Int. J. Agric. Biol. Eng. 2018, 11, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Li, J.; Li, S. Monitoring the Plant Density of Cotton with Remotely Sensed Data. IFIP Adv. Inf. Commun. Technol. 2010, 345, 90–101. [Google Scholar]
- Zhang, H.; Lan, Y.; Suh, C.; Westbrook, J.; Lacey, R.; Hoffmann, W. Differentiation of Cotton from Other Crops at Different Growth Stages Using Spectral Properties and Discriminant Analysis. Trans. ASABE 2012, 55, 1623–1630. [Google Scholar] [CrossRef]
- Zhang, H.; Lan, Y.; Suh, C.; Westbrook, J.; Hoffmann, W.; Yang, C. Fusion of remotely sensed data from airborne and ground-based sensors to enhance detection of cotton plants. Comput. Electron. Agric. 2013, 93, 55–59. [Google Scholar] [CrossRef]
- Zhuang, L.; Wang, J.; Bai, L.; Jiang, G.; Sun, S.; Yang, P.; Wang, S. Cotton yield estimation based on hyperspectral remote sensing in arid region of China. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2011, 27, 176–181. [Google Scholar] [CrossRef]
- Attia, A.; Rajan, N. Within-Season Growth and Spectral Reflectance of Cotton and their Relation to Lint Yield. Crop Sci. 2016, 56. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Maas, S.; Detar, W. Spider Mite Detection and Canopy Component Mapping in Cotton Using Hyperspectral Imagery and Spectral Mixture Analysis. Precis. Agric. 2004, 5, 275–289. [Google Scholar] [CrossRef]
- Jing, X.; Huang, W.-J.; Wang, J.-H.; Wang, J.-D.; Wang, K.-R. Hyperspectral Inversion Models on Verticillium Wilt Severity of Cotton Leaf. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu 2009, 29, 3348–3352. [Google Scholar] [CrossRef]
- Wu, M.; Yang, C.; Song, X.; Hoffmann, W.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Yu, B. Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Li, C.; Paterson, A.; Jiang, Y.; Sun, S.; Robertson, J. Aerial Images and Convolutional Neural Network for Cotton Bloom Detection. Front. Plant Sci. 2018, 8, 2235. [Google Scholar] [CrossRef] [Green Version]
- Westbrook, J.; Suh, C.; Yang, C.; Lan, Y.; Eyster, R. Airborne multispectral detection of regrowth cotton fields. J. Appl. Remote Sens. 2015, 9, 096081. [Google Scholar] [CrossRef] [Green Version]
- Marino, S.; Alvino, A. Agronomic Traits Analysis of Ten Winter Wheat Cultivars Clustered by UAV-Derived Vegetation Indices. Remote Sens. 2020, 12, 249. [Google Scholar] [CrossRef] [Green Version]
- Naser, M.; Khosla, R.; Longchamps, L.; Dahal, S. Using NDVI to Differentiate Wheat Genotypes Productivity Under Dryland and Irrigated Conditions. Remote Sens. 2020, 12, 824. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Greenberg, S.; Everitt, J.; Sappington, T.W., Jr. Evaluation of cotton defoliation strategies using airborne multispectral imagery. Trans. ASAE Am. Soc. Agric. Eng. 2003, 46, 869–876. [Google Scholar] [CrossRef]
- Yang, C.; Greenberg, S.M.; Everitt, J.H.; Norman, J.W. Assessing Cotton Stalk Destruction with Herbicides Using Remote Sensing Technology. J. Cotton Sci. 2006, 10. [Google Scholar]
- Yeom, J.; Jung, J.; Chang, A.; Maeda, M.; Landivar, J. Automated Open Cotton Boll Detection for Yield Estimation Using Unmanned Aircraft Vehicle (UAV) Data. Remote Sens. 2018, 10, 1895. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, L.; Hadi, H.; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Tucker, C. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8. [Google Scholar] [CrossRef] [Green Version]
- Haboudane, D.; Miller, J.; Pattey, E.; Zarco-Tejada, P.; Strachan, I. Hyperspectral vegetation indices and Novel Algorithms for Predicting Green LAI of crop canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 1, 309–317. [Google Scholar]
- Jordan, C. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Chen, J. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 257. [Google Scholar] [CrossRef]
- Datt, B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total Carotenoid Content in Eucalyptus Leaves. Remote Sens. Environ. 1998, 66, 111–121. [Google Scholar] [CrossRef]
- Daughtry, C.; Walthall, C.; Kim, M.S.; Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.; Tremblay, N.; Zarco-Tejada, P.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Berger, K.; Atzberger, C.; Hank, T.; Mauser, W. Derivation of biophysical variables from Earth Observation data: Validation and statistical measures. J. Appl. Remote Sens. 2012, 6, 3557. [Google Scholar] [CrossRef]
- Shi, Y. Research on Multi-Scale Remote Sensing Monitoring and Forecasting Methods of Crop Diseases and Pests; University of Chinese Academy of Sciences: Beijing, China, 2019. [Google Scholar]
- Harris, F.A.; English, P.J.; Sudbrink, D.L.; Nichols, S.P.; Snipes, C.E.; Hanks, J.; Wills, G. Remote-sensing Measures of Cotton Maturity–Cutout and Boll Opening. In Proceedings of the 2004 Beltwide Cotton Conferences, San Antonio, TX, USA, 5–9 January 2004; pp. 1869–1875. [Google Scholar]
- Zhang, G. Study on the Law and Effect of Mechanical Cotton Defoliation and Ripening; Shihezi University: Xinjiang, China, 2019. [Google Scholar]
- Oosterhuis, D.; Bourland, F.; Tugwell, N.P.; Cochran, M.J.; Danforth, D. Terminology and Concepts Related to the COTMAN Crop Monitoring System. In Cotman Crop Management System; Derrick, M., Oosterhuis, F.M.B., Eds.; University of Arkansas Division of Agriculture and Cotton Incorporated: Fayetteville, AR, USA, 2008; Volume 14, p. 109. [Google Scholar]
Spectral Band | p-Value (BAR) | p-Value (BOR) | |
---|---|---|---|
B1 | Coastal aerosol | Not significant | Not significant |
B2 | Blue(B) | *** | *** |
B3 | Green(G) | Not significant | Not significant |
B4 | Red(R) | *** | *** |
B5 | Red-edge1(Re1) | Not significant | Not significant |
B6 | Red-edge2(Re2) | *** | *** |
B7 | Red-edge3(Re3) | *** | *** |
B8 | Near infrared (NIR) | *** | *** |
B8a | Near infrared narrow (NIRn) | *** | *** |
B9 | Water vapor | Not significant | Not significant |
B10 | Shortwave infrared/Cirrus | Not significant | Not significant |
B11 | Shortwave infrared1(SWIR1) | ** | * |
B12 | Shortwave infrared (SWIR2) | *** | * |
Index | Formula | Reference |
---|---|---|
Difference vegetation index (DVI) | [39] | |
Modified triangular vegetation index 1 (MTVI1) | [40] | |
Modified soil adjusted vegetation index (MSAVI) | [41] | |
Normalized difference vegetation index (NDVI) | [42] | |
Simple ratio (SR) | [43] | |
Modified simple ratio index (MSR) | [44] | |
MERIS terrestrial chlorophyll index (MTCI) | [45] | |
Reflectance band ratio index (RBRI) | [46] | |
The modified chlorophyll absorption ratio index/optimized soil-adjusted vegetation index (MCARI/OSAVI) | [47] | |
The transformed chlorophyll absorption in the reflectance index/optimized soil-adjusted vegetation index (TCARI/OSAVI) | [48] |
VIs | Rank | R2 | RMSE (%) |
---|---|---|---|
DVI | 9 | 0.357 ** | 0.842 |
MTVI1 | 8 | 0.378 ** | 0.706 |
MSAVI | 10 | 0.163 | 0.981 |
NDVI | 5 | 0.613 *** | 0.481 |
SR | 3 | 0.617 *** | 0.636 |
MTCI | 2 | 0.701 *** | 0.265 |
MSR | 4 | 0.615 *** | 0.583 |
BARI | 1 | 0.706 *** | 0.500 |
BORI | 6 | 0.502 *** | 0.607 |
RBRI | 12 | 0.0353 | 1.99 |
MCARI/OSAVI | 11 | 0.0372 | 0.678 |
TCARI/OSAVI | 7 | 0.459 ** | 0.484 |
VIs | Rank | R2 | RMSE (%) |
---|---|---|---|
DVI | 10 | 0.282 ** | 3.56 |
MTVI1 | 9 | 0.319 ** | 3.27 |
MSAVI | 8 | 0.372 | 3.15 |
NDVI | 5 | 0.446 *** | 2.83 |
SR | 7 | 0.435 *** | 3.34 |
MSR | 6 | 0.439 *** | 3.20 |
MTCI | 12 | 0.0187 *** | 3.19 |
BARI | 3 | 0.574 *** | 3.25 |
BORI | 1 | 0.616 *** | 2.79 |
RBRI | 4 | 0.491 | 2.91 |
MCARI/OSAVI | 2 | 0.596 | 2.28 |
TCARI/OSAVI | 11 | 0.0480 ** | 1.71 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Meng, Y.; Huang, W.; Ye, H.; Han, Y.; Kong, W.; Zhou, X.; Cui, B.; Xing, N.; Guo, A.; et al. Novel Vegetation Indices for Cotton Boll Opening Status Estimation Using Sentinel-2 Data. Remote Sens. 2020, 12, 1712. https://doi.org/10.3390/rs12111712
Ren Y, Meng Y, Huang W, Ye H, Han Y, Kong W, Zhou X, Cui B, Xing N, Guo A, et al. Novel Vegetation Indices for Cotton Boll Opening Status Estimation Using Sentinel-2 Data. Remote Sensing. 2020; 12(11):1712. https://doi.org/10.3390/rs12111712
Chicago/Turabian StyleRen, Yu, Yanhua Meng, Wenjiang Huang, Huichun Ye, Yuxing Han, Weiping Kong, Xianfeng Zhou, Bei Cui, Naichen Xing, Anting Guo, and et al. 2020. "Novel Vegetation Indices for Cotton Boll Opening Status Estimation Using Sentinel-2 Data" Remote Sensing 12, no. 11: 1712. https://doi.org/10.3390/rs12111712