Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets
<p>A false-color map of study areas and survey plots in Guangxi Province, China. The rice planting areas are revealed as green polygons.</p> "> Figure 2
<p>The representative samples for healthy rice and rice infested with dwarf, blast, and glume blight. Plots on the right show averaged spectral reflectance and deviation (the shadows) of each class collected on 21 August and 30 October.</p> "> Figure 3
<p>The mean and standard deviations of pixel-based single-date VIs shown on (<b>left</b>) and normalized two-stage VIs shown on (<b>right</b>).</p> "> Figure 4
<p>A map of healthy and diseased rice based on the PLS-DA classifier from normalized two-stage and single-date VIs.</p> "> Figure 5
<p>The importance of VIs for the detection of rice diseases as determined by the variable importance in the projection (VIP) method. Normalized two-stage and single-date VIs are projected as VIP scores.</p> "> Figure 6
<p>Mapping results of rice diseases in a sub-region based on the optimal normalized two-stage VIs based PLS-DA.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data
2.3. Field Investigation
2.4. Mapping Various Rice Disease Infested Areas
2.4.1. Spectral Features for Mapping Diseases
2.4.2. Normalized Two-Stage Vegetation Indices
2.4.3. The Sensitivity of the Identified Spectral Features to Rice Diseases
2.4.4. Diseases Occurrence Mapping Using Partial Least Squares Discriminant Analysis (PLS-DA)
3. Results
3.1. Responses of Spectral Features to Different Infestations
3.2. Mapping Disease Infestations with PL Satellite Imagery
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Greer, C.A.; Webster, R.K. Occurrence, distribution, epidemiology, cultivar reaction, and management of rice blast disease in California. Plant Dis. 2007, 85, 1096–1102. [Google Scholar] [CrossRef]
- Jin, X.H.; Guo, Y.X.; Zheng, W.; Tai, L.M.; Zhang, Y.L. The occurrence characteristic and analysis of the trends in rice blast disease in 2007 in Heilongjiang province. North Rice 2007, 2, 57–61. [Google Scholar]
- Wang, H.D.; Chen, J.P.; Wang, A.G.; Jiang, X.H.; Adams, M.J. Studies on the epidemiology and yield losses from rice black-streaked dwarf disease in a recent epidemic in Zhejiang province, China. Plant Pathol. 2009, 58, 815–825. [Google Scholar] [CrossRef] [Green Version]
- Khush, G.S.; Pollard, L.R. Multiple disease and insect resistance for increased yield stability in rice. In Progress in Irrigated Rice Research; FAO: Rome, Italy, 1989; pp. 79–92. [Google Scholar]
- Bonman, J.M.; Estrada, B.A.; Kim, C.K.; Lee, E.J. Assessment of blast disease and yield loss in susceptible and partially resistant rice cultivars in two irrigated lowland environments. Plant Dis. 1991, 75, 462. [Google Scholar] [CrossRef]
- Hammond, N.E.B.; Hardie, D.; Hauser, C.E.; Reid, S.A. Can general surveillance detect high priority pests in the Western Australian Grains Industry? Crop Prot. 2016, 79, 8–14. [Google Scholar] [CrossRef]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, L.R. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef]
- Abdel-Rahman, E.; Richard, K.; Landmann, T.; Thiel, M.; Nyasani, J.; Le Ru, B.P. Maize pest and disease mapping using RapidEye-based vegetation indices and machine learning methods. In Proceedings of the 11th International Conference of the African Association of Remote Sensing of the Environment (AARSE), Kampala, Uganda, 24–28 October 2016; pp. 24–28. [Google Scholar]
- Yuan, L.; Bao, Z.; Zhang, H.; Zhang, Y.; Liang, X. Habitat monitoring to evaluate crop disease and pest distributions based on multi-source satellite remote sensing imagery. Opt. Int. J. Light Electron Opt. 2017, 145, 66–73. [Google Scholar] [CrossRef]
- Silva, J.R.M.D.; Damásio, C.V.; Sousa, A.M.O.; Bugalho, L.; Pessanha, L.; Quaresma, P. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Guo, N.; Sha, S.; Die, H.U.; Wang, W.; Deng, Z.; Liu, W. Effect of Mixed Pixel on Monitoring Ability of Remote Sensing Drought Index. J. Arid Meteorol. 2016, 16, 407–426. [Google Scholar]
- Savage, S.L.; Lawrence, R.L.; Squires, J.R. Predicting relative species composition within mixed conifer forest pixels using zero-inflated models and Landsat imagery. Remote Sens. Environ. 2015, 171, 326–336. [Google Scholar] [CrossRef]
- Maglione, P. Very High Resolution optical satellites: An overview of the most commonly used. Am. J. Appl. Sci. 2016, 13, 91–99. [Google Scholar] [CrossRef]
- Houborg, R.; Mccabe, M.F. High-Resolution NDVI from Planet’s Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture. Remote Sens. 2016, 8, 768. [Google Scholar] [CrossRef]
- Kääb, A.; Altena, B.; Mascaro, J. Coseismic displacements of the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation. Nat. Hazards Earth Syst. Sci. 2017, 17, 1–18. [Google Scholar] [CrossRef]
- Baloloy, A.; Blanco, A.; Candido, C.; Argamosa, R.; Dumalag, J.; Dimapilis, L.; Paringit, E. Estimation of mangrove forest aboveground biomass using multispectral bands, vegetation indices and biophusical variables derived from optical satellite imageries: Repideyes, PlanetScope, and Sentinel-2. ISPRS Ann. Photogramm. Remote Sens Spat. Inf. Sci. 2018, 4, 41–45. [Google Scholar]
- Marta, A.D.; Grifoni, D.; Mancini, M.; Orlando, F.; Guasconi, F.; Orlandini, S. Durum wheat in-field monitoring and early-yield prediction: Assessment of potential use of high resolution satellite imagery in a hilly area of Tuscany, Central Italy. J. Agric. Sci. 2015, 153, 68–77. [Google Scholar] [CrossRef]
- Helmholz, P.; Rottensteiner, F.; Heipke, C. Semi-automatic verification of cropland and grassland using very high resolution mono-temporal satellite images. ISPRS J. Photogramm. Remote Sens. 2014, 97, 204–218. [Google Scholar] [CrossRef]
- Ursani, A.A.; Kpalma, K.; Lelong, C.C.D.; Ronsin, J. Fusion of Textural and Spectral Information for Tree Crop and Other Agricultural Cover Mapping with Very-High Resolution Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 225–235. [Google Scholar] [CrossRef]
- Shen, J.; Liu, J.; Lin, X.; Zhao, R.; Xu, S. Cropland Extraction from Very High Spatial Resolution Satellite Imagery by Object-Based Classification Using Improved Mean Shift and One-Class Support Vector Machines. Sens. Lett. 2011, 9, 997–1005. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.; Luo, J.; Huang, L.; Zhou, X. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis. Comput. Electron. Agric. 2017, 141, 171–180. [Google Scholar] [CrossRef]
- Whiteside, T.; Bartolo, R. Mapping Aquatic Vegetation in a Tropical Wetland Using High Spatial Resolution Multispectral Satellite Imagery. Remote Sens. 2015, 7, 11664–11694. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, Y.; Yuan, L.; Yang, G.; Chen, L.; Zhao, C. Using satellite multispectral imagery for damage mapping of armyworm (Spodoptera frugiperda) in maize at a regional scale. Pest Manag. Sci. 2016, 72, 335. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.A.; Galvão, L.S.; Santos, J.R. Relationships between Hyperion-derived vegetation indices, biophysical parameters, and elevation data in a Brazilian savannah environment. Remote Sens. Lett. 2010, 1, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.; Meng, J.; Shang, J.; Liu, J.; Wu, B.; Huffman, T. Modified vegetation index for estimating crop fraction of absorbed photosynthetically active radiation. Int. J. Remote Sens. 2015, 36, 3097–3113. [Google Scholar] [CrossRef]
- Houborg, R.; Soegaard, H.; Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 2007, 106, 39–58. [Google Scholar] [CrossRef]
- Raper, T.B.; Varco, J.J.; Hubbard, K.J. Canopy-Based Normalized Difference Vegetation Index Sensors for Monitoring Cotton Nitrogen Status. Agron. J. 2013, 105, 1345. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Zhang, J.; Nie, C.; Wei, L.; Yang, G.; Wang, J. Selection of Spectral Channels for Satellite Sensors in Monitoring Yellow Rust Disease of Winter Wheat. Intell. Autom. Soft Comput. 2013, 19, 501–511. [Google Scholar] [CrossRef]
- Lehnert, L.W.; Meyer, H.; Wang, Y.; Miehe, G.; Thies, B.; Reudenbach, C.; Bendix, J. Retrieval of grassland plant coverage on the Tibetan Plateau based on a multi-scale, multi-sensor and multi-method approach. Remote Sens. Environ. 2015, 164, 197–207. [Google Scholar] [CrossRef]
- Feng, T.; Brandt, M.; Liu, Y.Y.; Verger, A.; Tagesson, T.; Diouf, A.A.; Rasmussen, K.; Mbow, C.; Wang, Y.; Fensholt, R. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 2016, 177, 265–276. [Google Scholar] [Green Version]
- Zhao, K.; Valle, D.; Popescu, S.; Zhang, X.; Mallick, B. Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. Remote Sens. Environ. 2013, 132, 102–119. [Google Scholar] [CrossRef]
- Shao, T.T.; Song, K.S.; Jia, D.U.; Yang, G.; Zeng, L.H.; Lei, X.C.; Wu, Y.Q. Hyperspectral Remote Sensing Modeling of FPAR for Corn Based on Partial Least Squares (PLS) Regression Analysis. Geogr. Geo-Inf. Sci. 2012, 3, 9. [Google Scholar]
- Gil, A.; Yu, Q.; Lobo, A.; Lourenço, P.; Silva, L.; Calado, H. Assessing the effectiveness of high resolution satellite imagery for vegetation mapping in small islands protected areas. J. Coast. Res. 2011, 64, 1663–1667. [Google Scholar]
- White, J.C.; Wulder, M.A.; Grills, D. Detecting and mapping mountain pine beetle red-attack damage with SPOT5 10-m multispectral imagery. BC J. Ecosyst. Manag. 2006, 7, 105–118. [Google Scholar]
- Franke, J.; Menz, G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis. Agric. 2007, 8, 161–172. [Google Scholar] [CrossRef]
- Song, K.; Lu, D.; Li, L.; Li, S.; Wang, Z.; Du, J. Remote sensing of chlorophyll- a concentration for drinking water source using genetic algorithms (GA)-partial least square (PLS) modeling. Ecol. Inf. 2012, 10, 25–36. [Google Scholar] [CrossRef]
- Yin, X.J.; Zhao, S.F. Remote Sensing Estimation of Pigment Contents in Diseased Leaves Using PLS Algorithm. Remote Sens. Inf. 2012, 27, 50–56. [Google Scholar]
- Song, S. PLS Wavelength Selection by Hyperspectral Remote Sensing in Rice. Geomat. Inf. Sci. Wuhan Univ. 2010, 35, 219–223. [Google Scholar]
- Williams, P.J.; Geladi, P.; Britz, T.J.; Manley, M. Investigation of fungal development in maize kernels using NIR hyperspectral imaging and multivariate data analysis. J. Cereal Sci. 2012, 55, 272–278. [Google Scholar] [CrossRef]
- Laurin, G.V.; Chen, Q.; Lindsell, J.A.; Coomes, D.A.; Frate, F.D.; Guerriero, L.; Pirotti, F.; Valentini, R. Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS J. Photogramm. Remote Sens. 2014, 89, 49–58. [Google Scholar] [CrossRef]
- Peerbhay, K.Y.; Mutanga, O.; Ismail, R. Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu–Natal, South Africa. ISPRS J. Photogramm. Remote Sens. 2013, 79, 19–28. [Google Scholar] [CrossRef]
- Wilson, N.; Greenberg, J.; Jumpasut, A.; Collison, A. In-Orbit Radiometric Calibration of the Planet Dove Constellation. In Proceedings of the Conference on Characterization and Radiometric Calibration for Remote Sensing (CALCON), Logan, UT, USA, 21–24 August 2017. [Google Scholar]
- Traganos, D.; Cerra, D.; Reinartz, P. Cubesat-Derived Detection of Seagrasses Using Planet Imagery Following Unmixing-Based Denoising: Is Small the Next Big? ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 283–287. [Google Scholar] [CrossRef]
- Fukushi, T.; Shikata, E.; Kimura, I. Some morphological characters of rice dwarf virus. Virology 1962, 18, 192–205. [Google Scholar] [CrossRef]
- Phadikar, S. Classification of Rice Leaf Diseases Based on Morphological Changes. Int. J. Geogr. Inf. Sci. 2012, 2, 61–66. [Google Scholar]
- Phadikar, S.; Sil, J.; Das, A.K. Rice diseases classification using feature selection and rule generation techniques. Comput. Electron. Agric. 2013, 90, 76–85. [Google Scholar] [CrossRef]
- Rouse J.W., Jr; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. Nasa Spec. Publ. 1974, 351, 309–313. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- De Tomás, A.; Nieto, H.; Guzinski, R.; Mendiguren, G.; Sandholt, I.; Berline, P. In Multi-scale approach of the surface temperature/vegetation index triangle method for estimating evapotranspiration over heterogeneous landscapes. EGU Gen. Assem. 2012, 101, 131–138. [Google Scholar]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 2014, 22, 229–242. [Google Scholar] [CrossRef]
- Peñuelas, J.; Inoue, Y. Reflectance Indices Indicative of Changes in Water and Pigment Contents of Peanut and Wheat Leaves. Photosynthetica 1999, 36, 355–360. [Google Scholar] [CrossRef]
- Husson, E.; Ecke, F.; Reese, H. Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images. Remote Sens. 2016, 8, 724. [Google Scholar] [CrossRef]
- Satoh, K.; Shimizu, T.; Kondoh, H.; Hiraguri, A.; Sasaya, T.; Choi, I.R.; Omura, T.; Kikuchi, S. Relationship between Symptoms and Gene Expression Induced by the Infection of Three Strains of Rice dwarf virus. PLoS ONE 2011, 6, e18094. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, K.; Panja, B.N. Glume blight disease of high yielding boro (summer) rice from sub-Himalayan terai zone of West Bengal. Environ. Ecol. 2001, 19, 249–250. [Google Scholar]
- Suryadi, Y.; Susilowati, D.N.; Riana, E.; Mubarik, N.R. Management of rice blast disease (Pyricularia oryzae) using formulated bacterial consortium. Emir. J. Food Agric. 2012, 23, 349. [Google Scholar]
- Qin, Z.; Zhang, M.; Christensen, T.; Li, W. In Remote sensing analysis of rice disease stresses for farm pest management using wide-band airborne data. Geosci. Remote Sens. Symp. IGARSS 2003, 4, 2215–2217. [Google Scholar]
- Qin, Z.; Zhang, M. Detection of rice sheath blight for in-season disease management using multispectral remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 115–128. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Huang, J.F.; Shi, J.J.; Tao, R.X.; Wan, Z.; Zhang, L.L. Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression. J. Zhejiang Univ.-Sci. B (Biomed. Biotechnol.) 2007, 8, 738–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahlein, A.K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plümer, L.; Steiner, U.; Oerke, E.C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
Parameters | Information |
---|---|
Sensor | PlanetScope |
Acquisition date | 21 August 2017 and 30 October 2017 |
Orbit altitude | 475 km |
Spatial resolution (m) | 3 |
Revisit time (days) | 1 |
Wavelength range (nm) | |
Band 1 | Blue: 455–515 |
Band 2 | Green: 500–590 |
Band 3 | Red: 590–670 |
Band 4 | NIR: 780–860 |
Signal-to-noise ratio (SNR) | 68.8 |
Definition | Related Bands and Equations | Sensitive to | Reference |
---|---|---|---|
Normalized difference vegetation index, NDVI | (RNIR − RR)/(RNIR + RR) | Green biomass | [47] |
Soil-adjusted vegetation index, SAVI | (1 + L) × (RNIR − RR)/(RNIR + RR + L); L = 0.5 | Canopy structure | [48] |
Triangular vegetation index, TVI | 0.5 × [120 × (RNIR − RG) − 200 × (RR − RG)] | Radiant absorption of chlorophyll | [49] |
Re-normalize difference vegetation index, RDVI | (RNIR − RR)/(RNIR + RR)0.5 | Vegetation coverage | [50] |
Modified Simple Ratio, MSR | (RNIR/RR)/(RNIR/RR)0.5 | Leaf area, Biomass | [51] |
Structural Independent Pigment Index, SIPI | (RNIR − RB)/(RNIR − RR) | Pigments content | [52] |
Means of Normalized Two-Stage VIs | Means on 30 October | |||||||
---|---|---|---|---|---|---|---|---|
Healthy Rice | Rice Dwarf | Rice Blast | Glume Blight | Healthy Rice | Rice Dwarf | Rice Blast | Glume Blight | |
NDVI | ** | ** | ** | ** | ** | * | ** | * |
SAVI | *** | * | *** | * | * | ** | ** | * |
TVI | ** | * | *** | ** | ** | * | ** | * |
RDVI | ** | ** | *** | ** | * | * | ** | * |
MSR | ** | ** | *** | ** | * | * | ** | * |
SIPI | *** | *** | ** | *** | * | * | ** | ** |
Means of Normalized Two-Stage VIs | Means on 30 October | |||||||
---|---|---|---|---|---|---|---|---|
Healthy Rice | Rice Dwarf | Rice Blast | Glume Blight | Healthy Rice | Rice Dwarf | Rice Blast | Glume Blight | |
NDVI | 0.032 ** | 0.014 ** | 0.058 | 0.065 | 0.078 * | 0.018 ** | 0.08 * | 0.102 |
SAVI | 0.047 * | 0.046 * | 0.036 * | 0.079 | 0.032 * | 0.031 * | 0.166 | 0.052 * |
TVI | 0.032 * | 0.02 ** | 0.04 * | 0.012 ** | 0.037 * | 0.104 | 0.142 | 0.051 * |
RDVI | 0.01 * | 0.009 ** | 0.045 * | 0.066 | 0.048 * | 0.074 * | 0.125 | 0.091 |
MSR | 0.057 | 0.095 | 0.027 ** | 0.091 | 0.073 | 0.125 | 0.077 | 0.054 * |
SIPI | 0.039 * | 0.027 * | 0.087 | 0.036 * | 0.056 * | 0.124 | 0.145 | 0.09 |
Predicted Class | Healthy Rice | Rice Dwarf | Rice Blast | Glume Blight | User’s Accuracy (%) | Overall Accuracy (%) | Kappa Coefficient |
---|---|---|---|---|---|---|---|
Normalized two-stage VIs | |||||||
Healthy rice | 54 | 0 | 6 | 2 | 87.1 | 75.62 | 0.47 |
Rice dwarf | 4 | 60 | 5 | 9 | 76.92 | ||
Rice blast | 11 | 4 | 48 | 5 | 70.59 | ||
Glume blight | 5 | 8 | 2 | 27 | 64.29 | ||
Producer’s accuracy (%) | 72.97 | 83.33 | 78.69 | 62.79 | |||
single-date VIs | |||||||
Healthy rice | 47 | 3 | 8 | 4 | 75.81 | 61.67 | 0.27 |
Rice dwarf | 8 | 48 | 5 | 17 | 61.54 | ||
Rice blast | 16 | 6 | 39 | 7 | 57.35 | ||
Glume blight | 7 | 11 | 4 | 20 | 47.62 | ||
Producer’s accuracy (%) | 60.26 | 70.59 | 69.64 | 41.67 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Huang, W.; Ye, H.; Ruan, C.; Xing, N.; Geng, Y.; Dong, Y.; Peng, D. Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets. Sensors 2018, 18, 1901. https://doi.org/10.3390/s18061901
Shi Y, Huang W, Ye H, Ruan C, Xing N, Geng Y, Dong Y, Peng D. Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets. Sensors. 2018; 18(6):1901. https://doi.org/10.3390/s18061901
Chicago/Turabian StyleShi, Yue, Wenjiang Huang, Huichun Ye, Chao Ruan, Naichen Xing, Yun Geng, Yingying Dong, and Dailiang Peng. 2018. "Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets" Sensors 18, no. 6: 1901. https://doi.org/10.3390/s18061901