Filtering the NPP-VIIRS Nighttime Light Data for Improved Detection of Settlements in Africa
"> Figure 1
<p>Study area (shown with black slant lines). The dotted red line delineates the Sahel region defined by mean annual rainfall between 100 mm in the north and around 600 mm in the south.</p> "> Figure 2
<p>Locations of reference settlements (red dots) data in the study area collected from the global land-cover and land-use reference data and high-resolution Google Earth images; 22 regions were used for background noise removal.</p> "> Figure 3
<p>Workflow to filter the National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) nighttime light monthly data and generate the new 2016 annual nighttime light image.</p> "> Figure 4
<p>Schematic diagram of eight-connected component labeling method. For any pixel P where radiance > 0, a–h are the eight adjacent pixels of P (as the arrows show, i.e., top left, top, top right, left, right, bottom left, bottom, and bottom right). Any pixel in the patch of more than one pixel must be connected with at least one other neighbor pixel.</p> "> Figure 5
<p>Nighttime light images in the northern Equatorial Africa and Sahel region in January 2016 before and after background noise removal and patches filtering method (PFM) processing: (<b>a1</b>–<b>4</b>) the original NPP-VIIRS monthly image, the image after background noise removal, the image after PFM processing, and the Google Earth maps, respectively, marked by lighted area in the NPP-VIIRS monthly image after PFM processing; (<b>b1</b>–<b>3</b>), (<b>c1</b>–<b>3</b>), and (<b>d1</b>–<b>3</b>) original image, image after background noise removal, and image after PFM processing for urban areas of Bobo-Dioulasso in Burkina Faso, Abuja in Nigeria, and Juba in South Sudan, respectively. (<b>b</b><b>4</b>), (<b>c4</b>), and (<b>d4</b>) Google Earth maps marked by lighted area after PFM processing in the three cities. The legend denotes the nighttime light radiance (10<sup>−9</sup> W∙cm<sup>−2</sup>∙sr<sup>−1</sup>) and settlements in the Sentinel-2 prototype Land Cover 20 m 2016 map of Africa released by the European Space Agency (ESA-S2-AFRICA-LC20), as well as the lighted areas after PFM processing.</p> "> Figure 6
<p>Monthly time series of total settlement-related nighttime lights (red line) and signals due to biomass burning (blue line) during the period from January 2015 to December 2017.</p> "> Figure 7
<p>Monthly nighttime light radiance distribution in the study area of biomass burning (difference before and after PFM) and settlement nighttime light (after PFM) during 2016: NPP-VIIRS monthly nighttime light images with biomass burning signal (green) and final monthly nighttime light image (red).</p> "> Figure 8
<p>New annual NPP-VIIRS nighttime light image (<b>a1</b>) and the National Center for Environmental Information (NCEI) annual NPP-VIIRS nighttime light image (<b>a2</b>) in 2016. (<b>b1</b>,<b>2</b>), (<b>c1</b>,<b>2</b>), and (<b>d1</b>,<b>2</b>) Pairs of pictures in the urban areas around Bobo-Dioulasso, Abuja, and Juba, respectively. (<b>a</b><b>1′</b>,<b>2′</b>), (<b>b1′</b>,<b>2′</b>), (<b>c1′</b>,<b>2′</b>), and (<b>d1′</b>,<b>2′</b>) Pairs of Google Earth maps marked by lighted areas in the new annual NPP-VIIRS image or the annual image from the NCEI in the study area and around Bobo-Dioulasso, Abuja, and Juba, respectively. The legend denotes the radiance due to nighttime lights and settlements mapped in ESA-S2-AFRICA-LC20.</p> "> Figure 9
<p>High-resolution Google Earth images (<b>a1</b>–<b>12</b> and <b>b1</b>–<b>12</b>) of the sample settlements that can be identified using the new NPP-VIIRS annual nighttime light image but not the NCEI image in northern Equatorial Africa and Sahel in 2016: (<b>a1</b>–<b>12</b>) man-made features in ESA-S2-AFRICA-LC20 map; (<b>b1</b>–<b>12</b>) sites related to human activities while identified as other types (such as bare land) in the ESA-S2-AFRICA-LC20 map.</p> "> Figure 10
<p>Comparison of settlement recognition rates for (green) ESA-S2-AFRICA-LC20 data, (red) the new synthesized NPP-VIIRS annual nighttime light data, and (blue) the NPP-VIIRS annual nighttime light data from the NCEI in 2016.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
2.2.1. Nighttime Light Image Data
2.2.2. Auxiliary Data
3. Methodology
3.1. Preprocessing
3.2. Background Noise Removal
3.3. Noise Patches Filtering
3.4. Assessment of the Capability of Nighttime Light Images to Capture Settlements
4. Results
4.1. Denoising Performance
4.2. Quantitative Evaluation of the Capability of Nighttime Light Images to Capture Settlements
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghosh, T.; Anderson, S.J.; Elvidge, C.D.; Sutton, P.C. Using nighttime satellite imagery as a proxy measure of human well-being. Sustainability 2013, 5, 4988–5019. [Google Scholar] [CrossRef] [Green Version]
- Cauwels, P.; Pestalozzi, N.; Sornette, D. Dynamics and spatial distribution of global nighttime lights. EPJ Data Sci. 2014, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zhao, X.; Li, X. Remote sensing of human beings—A perspective from nighttime light. Geo-Spat. Inf. Sci. 2016, 19, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Croft, T. Nighttime images of the earth from space. Sci. Am. 1978, 239, 86–101. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Muller, J.P.; Elvidge, C.D. Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. Ambio 2000, 29, 157–162. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Pachauri, S. Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery. Energy Policy 2010, 38, 5661–5670. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Muller, J.P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wei, A.; Mi, X.; Sun, G. An approach of GDP spatialization in Hebei province using NPP-VIIRS nighttime light data. J. Xinyang Norm. Univ. 2016, 29, 152–156. [Google Scholar]
- Frolking, S.; Milliman, T.; Seto, K.C.; Friedl, M.A. A global fingerprint of macro-scale changes in urban structure from 1999 to 2009. Environ. Res. Lett. 2013, 8, 024004. [Google Scholar] [CrossRef]
- Xu, T.; Ma, T.; Zhou, C.; Zhou, Y. Characterizing spatio-temporal dynamics of urbanization in China using time series of DMSP/OLS night light data. Remote Sens. 2014, 6, 7708–7731. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.C.; Tateishi, R.; Hara, K.; Gharechelou, S.; Iizuka, K. Global mapping of urban built-up areas of year 2014 by combining MODIS multispectral data with VIIRS nighttime light data. Int. J. Digit. Earth 2016, 9, 1004–1020. [Google Scholar] [CrossRef]
- Cho, K.; Ito, R.; Shimoda, H.; Sakata, T. Technical note and cover fishing fleet lights and sea surface temperature distribution observed by DMSP/OLS sensor. Int. J. Remote Sens. 1999, 20, 3–9. [Google Scholar] [CrossRef]
- Guo, G.; Fan, W.; Xue, J.; Zhang, S.; Zhang, H.; Tang, F.; Cheng, T. Identification for operating pelagic light-fishing vessels based on NPP/VIIRS low light imaging data. Trans. Chin. Soc. Agric. Eng. 2017, 33, 245–251. [Google Scholar]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.; Ghosh, T. Methods for global survey of natural gas flaring from visible infrared imaging radiometer suite data. Energies 2016, 9, 14. [Google Scholar] [CrossRef]
- Ceola, S.; Laio, F.; Montanari, A. Satellite nighttime lights reveal increasing human exposure to floods worldwide. Geophys. Res. Lett. 2014, 41, 7184–7190. [Google Scholar] [CrossRef]
- Bennie, J.; Davies, T.W.; Duffy, J.P.; Inger, R.; Gaston, K.J. Contrasting trends in light pollution across Europe based on satellite observed night time lights. Sci. Rep. 2014, 4, 3789. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; He, G.; Long, T.; Liu, H. Ongoing conflict makes Yemen dark: from the perspective of nighttime light. Remote Sens. 2017, 9, 798. [Google Scholar] [CrossRef] [Green Version]
- Kloog, I.; Haim, A.; Stevens, R.G.; Barchana, M.; Portnov, B.A. Light at night co-distributes with incident breast but not lung cancer in the female population of Israel. Chronobiol. Int. 2008, 25, 65–81. [Google Scholar] [CrossRef]
- Escobar, L.E.; Peterson, A.T.; Papeş, M.; Favi, M.; Yung, V.; Restif, O.; Qiao, H.; Medina-Vogel, G. Ecological approaches in veterinary epidemiology: Mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery. Vet. Res. 2015, 46, 92. [Google Scholar] [CrossRef] [Green Version]
- Keiser, J.; Utzinger, J.; De Castro, M.C.; Smith, T.A.; Tanner, M.; Singer, B.H. Urbanization in sub-saharan Africa and implication for malaria control. Am. J. Trop. Med. Hyg. 2004, 71, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Bharti, N.; Tatem, A.J.; Ferrari, M.J.; Grais, R.F.; Djibo, A.; Grenfell, B.T. Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery. Science 2011, 334, 1424–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mveyange, A. Night Lights and Regional Income Inequality in Africa; WIDER Working Paper Series No.2015/085; United Nations University World Institute for Development Economic Research (UNU-WIDER): Helsinki, Finland, 2015. [Google Scholar]
- Min, B.; Gaba, K.M.; Sarr, O.F.; Agalassou, A. Detection of rural electrification in Africa using DMSP-OLS night lights imagery. Int. J. Remote Sens. 2013, 34, 8118–8141. [Google Scholar] [CrossRef]
- International Energy Agency; International Renewable Energy Agency; United Nations Statistics Division; World Bank; World Health Organization. Tracking SDG7: The Energy Progress Report 2019; World Bank: Washington, DC, USA, 2019. [Google Scholar]
- Mawhood, R. The Senegalese Rural Electrification Action Plan: ‘A Good Practice’ Model for Increasing Private Sector Participation in Sub-saharan Rural Electrification. Master’s Thesis, Imperial College London, London, UK, 2012. [Google Scholar]
- African Development Bank Grop African Development Bank to Reach 29.3 Million Africans with Electricity by 2020. Available online: https://www.afdb.org/en/news-and-events/african-development-bank-to-reach-29-3-million-africans-with-electricity-by-2020-17806/ (accessed on 22 May 2018).
- Oyuk, A.; Penar, P.H.; Howard, B. Off-grid or‘off-on’: lack of access, unreliable electricity supply still plague majority of Africans. Afrobarometer 2016, 75. Available online: http://afrobarometer.org/sites/default/files/publications/Dispatches/ab_r6_dispatchno75_electricity_in_africa_eng1.pdf (accessed on 20 April 2018).
- Baugh, K.; Elvidge, C.D.; Ghosh, T.; Ziskin, D. Development of a 2009 stable lights product using DMSP-OLS data. Proc. Asia-Pac. Adv. Netw. 2010, 30, 114–130. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Cao, Z.; Wu, Z.; Kuang, Y.; Huang, N. Correction of DMSP/OLS Night-time light images and its application in China. J. Geo-Inf. Sci. 2015, 17, 1092–1102. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Lee, T.E.; Miller, S.D.; Turk, F.J.; Schueler, C.; Julian, R.; Deyo, S.; Dills, P.; Wang, S. The NPOESS VIIRS day/night visible sensor. Bull. Am. Meteorol. Soc. 2006, 87, 191–199. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, R.; Huang, C.; Li, D. Detecting 2014 northern Iraq insurgency using night-time light imagery. Int. J. Remote Sens. 2015, 36, 3446–3458. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Responses of Suomi-NPP VIIRS-derived nighttime lights to socioeconomic activity in China’s cities. Remote Sens. Lett. 2014, 5, 165–174. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Jing, X.; Shao, X.; Cao, C.; Fu, X.; Yan, L. Comparison between the Suomi-NPP Day-Night Band and DMSP-OLS for correlating socio-economic variables at the provincial level in China. Remote Sens. 2016, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z. A Multiscale Analysis on Urban Area and Spatial Structure Based on Nighttime Light Data. Ph.D. Thesis, East China Normal University, Shanghai, China, 2017. [Google Scholar]
- Guo, W.; Lu, D.; Wu, Y.; Zhang, J. Mapping impervious surface distribution with integration of SNNP VIIRS-DNB and MODIS NDVI data. Remote Sens. 2015, 7, 12459–12477. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Xu, T.; Huang, L.; Zhou, A. A human settlement composite index (HSCI) derived from nighttime luminosity associated with imperviousness and vegetation indexes. Remote Sens. 2018, 10, 455. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Andreae, M.O. Biomass burning—Its history, use, and distribution and its impact on environmental quality and global climate. In Proceedings of the Chapman Conf on Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications, Williamsburg, VA, USA, 19–23 March 1990; Levine, J., Ed.; MIT Press: Cambridge, MA, USA, 1991; pp. 3–21. [Google Scholar]
- Hao, W.M.; Liu, M.H. Spatial and temporal distribution of tropical biomass burning. Glob. Biogeochem. Cycles 1994, 8, 495–503. [Google Scholar] [CrossRef]
- Laris, P.; Wardell, D.A. Good, bad or ‘necessary evil’? Reinterpreting the colonial burning experiments in the savanna landscapes of West Africa. Geogr. J. 2007, 172, 271–290. [Google Scholar] [CrossRef]
- Behnke, R.H.; Mortimore, M. The End of Desertification? Springer: Berlin/Heidelberg, Germany, 2016; Available online: https://link.springer.com/content/pdf/10.1007%2F978-3-642-16014-1.pdf (accessed on 23 October 2019).
- Van Beusekom, M.M. From underpopulation to overpopulation: French perceptions of population, environment, and agricultural development in French Soudan (Mali), 1900–1960. Environ. Hist. 1999, 4, 198–219. [Google Scholar] [CrossRef]
- Dawelbait, M.; Morari, F. Monitoring desertification in a Savannah region in Sudan using Landsat images and spectral mixture analysis. J. Arid Environ. 2012, 80, 45–55. [Google Scholar] [CrossRef]
- He, Y.; Yao, Y.; Tang, H.; Chen, Y.; Chen, Z.; Yang, P.; Yu, S. An overview on progress of land use and land cover change dynamics. Chinese Agric. Sci. Bull. 2013, 29, 190–195. [Google Scholar]
- Mariano, D.A.; dos Santos, C.A.C.; Wardlow, B.D.; Anderson, M.C.; Schiltmeyer, A.V.; Tadesse, T.; Svoboda, M.D. Use of remote sensing indicators to assess effects of drought and human-induced land degradation on ecosystem health in Northeastern Brazil. Remote Sens. Environ. 2018, 213, 129–143. [Google Scholar] [CrossRef]
- Park, J.Y.; Bader, J.; Matei, D. Anthropogenic Mediterranean warming essential driver for present and future Sahel rainfall. Nat. Clim. Chang. 2016, 6, 941–945. [Google Scholar] [CrossRef]
- Mao, R.; Gong, D.; Fang, Q. Comparison analysis of environmental changes between Sahel and Agro-pastoral Zone in Northern China. Prog. Geogr. 2007, 26, 51–63. [Google Scholar]
- Hibbard, K.; Janetos, A.; van Vuuren, D.P.; Pongratz, J.; Rose, S.K.; Betts, R.; Herold, M.; Feddema, J.J. Research priorities in land use and land-cover change for the earth system and integrated assessment modelling. Int. J. Climatol. 2010, 30, 2118–2128. [Google Scholar] [CrossRef] [Green Version]
- Karlson, M.; Ostwald, M. Remote sensing of vegetation in the Sudano-Sahelian zone: a literature review from 1975 to 2014. J. Arid Environ. 2016, 124, 257–269. [Google Scholar] [CrossRef] [Green Version]
- Hillger, D.; Kopp, T. First-light imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 2013, 94, 1019–1029. [Google Scholar] [CrossRef]
- Liao, L.B.; Weiss, S.; Mills, S.; Hauss, B. Suomi NPP VIIRS Day-Night Band on-orbit performance. J. Geophys. Res. Atmos. 2013, 118, 12705–12718. [Google Scholar] [CrossRef]
- NASA Visible Infrared Imaging Radiometer Suite Level-1B Product User Guide. 2018. Available online: http://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/viirs/NASA_VIIRS_L1B_UG_May_2018.pdf (accessed on 30 October 2019).
- Fritz, S.; See, L.; Perger, C.; McCallum, I.; Schill, C.; Schepaschenko, D.; Duerauer, M.; Karner, M.; Dresel, C.; Laso-Bayas, J.C.; et al. A global dataset of crowdsourced land cover and land use reference data. Sci. Data 2017, 4, 170075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesiv, M.; Fritz, S.; McCallum, I.; Tsendbazar, N.; Herold, M.; Pekel, J.-F.; Buchhorn, M.; Smets, B.; Van De Kerchove, R. Evaluation of ESA CCI Prototype Land Cover Map at 20 m; IIASA Working Paper Series, WP-17-021; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2017. [Google Scholar]
- Shapiro, L.G. Connected component labeling and adjacency graph construction. Mach. Intell. Pattern Recognit. 1996, 19, 1–30. [Google Scholar]
- Yates, F.; Sc, D. Systematic sampling. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 241, 345–377. [Google Scholar] [CrossRef]
- Govender, N.; Trollope, W.S.W.; Van Wilgen, B.W. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 2006, 43, 748–758. [Google Scholar] [CrossRef]
- Archibald, S.; Staver, A.C.; Levin, S.A. Evolution of human-driven fire regimes in Africa. Proc. Natl. Acad. Sci. USA 2012, 109, 847–852. [Google Scholar] [CrossRef] [Green Version]
- Pyne, S. How Plants Use Fire (and Are Used by It). Available online: https://www.pbs.org/wgbh/nova/fire/plants.html (accessed on 23 August 2019).
- Crutzen, P.J.; Andreae, M.O. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 1990, 250, 1669–1678. [Google Scholar] [CrossRef]
- Kershaw, A.P.; Bush, M.B.; Hope, G.S.; Goldammer, J.G.; Sanford, R. The Contribution of Humans to Past Biomass Burning in the Tropics; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, L.; Feng, D.; Peng, D.; Li, C.; Huang, X.; Lu, H.; Gong, P. Comparisons of three recent moderate resolution African land cover datasets: CGLS-LC100, ESA-S2-LC20, and FROM-GLC-Africa30. Int. J. Remote Sens. 2019, 40, 6185–6202. [Google Scholar] [CrossRef]
- Xie, M.; Jean, N.; Burke, M.; Lobell, D.; Ermon, S. Transfer learning from deep features for remote sensing and poverty mapping. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 3929–3935. [Google Scholar]
- Chai, B.; Seto, K.C. Conceptualizing and characterizing micro-urbanization: a new perspective applied to Africa. Landsc. Urban Plan. 2019, 190, 103595. [Google Scholar] [CrossRef]
- Falchetta, G.; Pachauri, S.; Parkinson, S.; Byers, E. A high-resolution gridded dataset to assess electrification in sub-saharan Africa. Sci. Data 2019, 6, 110. [Google Scholar] [CrossRef] [PubMed]
Parameters | NPP-VIIRS |
---|---|
Operator | The Earth Observation Group (EOG) at NOAA/NCEI |
Orbit | Polar orbit satellite |
Swath width | 3040 km |
Spatial resolution (m) | 742 m (across full scan) |
Field of view | 112.56° |
Spectral coverage | 0.5–0.9 μm |
Spectrally integrated radiance | W∙cm−2∙sr−1 |
Dynamic range Minimum detectable radiance | 3 × 10−9 W∙cm−2∙sr−1 to 0.02 W∙cm−2∙sr−1 0.2 × 10−9 W∙cm−2∙sr−1 [58] |
Scale | Settlements | Size (km2) | Reference Settlement Number |
---|---|---|---|
Class1 | Big cities | ≥125 | 20 |
Class2 | Mid-sized cities | 25–125 | 37 |
Class3 | Small cities | 2.5–25 | 52 |
Class4 | Rural settlements | 0.25–2.5 | 53 |
Class5 | Scattered settlements | 0.25 | 63 |
Scale | NLRI New Annual Image | NLRI NCEI Annual Image |
---|---|---|
Class1 | 1 | 0.9548 |
Class2 | 0.9965 | 0.8813 |
Class3 | 0.9037 | 0.7873 |
Class4 | 0.6818 | 0.5435 |
Class5 | 0.3432 | 0.2501 |
Study area | 0.7303 | 0.6247 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Jia, L.; Menenti, M.; Zhou, J.; Chen, Q. Filtering the NPP-VIIRS Nighttime Light Data for Improved Detection of Settlements in Africa. Remote Sens. 2019, 11, 3002. https://doi.org/10.3390/rs11243002
Yuan X, Jia L, Menenti M, Zhou J, Chen Q. Filtering the NPP-VIIRS Nighttime Light Data for Improved Detection of Settlements in Africa. Remote Sensing. 2019; 11(24):3002. https://doi.org/10.3390/rs11243002
Chicago/Turabian StyleYuan, Xiaotian, Li Jia, Massimo Menenti, Jie Zhou, and Qiting Chen. 2019. "Filtering the NPP-VIIRS Nighttime Light Data for Improved Detection of Settlements in Africa" Remote Sensing 11, no. 24: 3002. https://doi.org/10.3390/rs11243002