A Study of the Intensity of Tropical Cyclone Idai Using Dual-Polarization Sentinel-1 Data
"> Figure 1
<p>(<b>a</b>) The track of Tropical Cyclone (TC) Idai, and the pink boxes show the locations of Sentinel-1 scenes; (<b>b</b>) recorded intensity of Idai by Meteo France from 9 March 2019 to 16 March 2019. The red arrows point to the time when the synthetic aperture radar (SAR) images were acquired.</p> "> Figure 2
<p>The Sentinel-1 (S-1) SAR extra wide (EW) swath ground range detected medium (GRDM) product on 11 March 2019 before (<b>a</b>) and after (<b>b</b>) thermal noise removal in VH channel.</p> "> Figure 3
<p>TC Idai captured by a Sentinel-1 dual-polarization SAR image at 02:43 UTC on 11 March 2019 showing (<b>a</b>) VV polarization and (<b>b</b>) VH polarization, both with the NRCS (dB), given by the grey-scale values; (<b>c</b>) ECMWF wind directions recorded in the S-1 Level-2 ocean (OCN) product; (<b>d</b>) wind speeds based on ECMWF wind directions and the CMOD-IFR2 model; (<b>e</b>) wind speeds from ECMWF; and (<b>f</b>) wind speeds retrieved by the C-3PO model, all with the color bar denoting the wind speeds (m/s).</p> "> Figure 4
<p>TC Idai captured by Sentinel-1 dual-polarization SAR image at 16:04 UTC on 14 March 2019 showing (<b>a</b>) VV polarization and (<b>b</b>) VH polarization, both with the NRCS (dB) given by the grey-scale values; (<b>c</b>) ECMWF wind directions recorded in the S-1 Level-2 OCN product; (<b>d</b>) wind speeds based on the ECMWF wind directions and the CMOD-IFR2 model; (<b>e</b>) wind speeds from ECMWF; and (<b>f</b>) wind speeds retrieved by the C-3PO model, all with the color bar denoting the wind speeds (m/s).</p> "> Figure 5
<p>Combined wind speeds by CMOD-IFR2 and C-3PO model on <b>(a)</b> 11 March 2019 and (<b>b</b>) 14 March 2019.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Sets
2.1.1. Sentinel-1 SAR Data
2.1.2. External Data
2.2. Image Processing
2.3. SAR Estimates of Wind Speeds
2.4. SAR Estimates of TC Parameters
3. Results
3.1. SAR Winds of Cyclone Idai
3.2. Size Parameters of Cyclone Idai
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mozambique Cyclone Idai: Four Months After. Available online: https://reliefweb.int/report/mozambique/mozambique-cyclone-idai-four-months-after-enpt (accessed on 2 September 2019).
- Zimbabwe: Emergency Situation Report No. 9, As of 6 June 2019. Available online: https://reliefweb.int/report/zimbabwe/zimbabwe-emergency-situation-report-no-9-6-june-2019 (accessed on 27 June 2019).
- Southern Africa: Cyclone Idai Snapshot (as of 12 March 2019). Available online: https://reliefweb.int/report/malawi/southern-africa-cyclone-idai-snapshot-12-march-2019 (accessed on 4 April 2019).
- Zhang, B.; William, P. High Wind Speed Retrieval from Multi-polarization SAR. In Hurricane Monitoring with Spaceborne Synthetic Aperture Radar; Li, X., Ed.; Springer: Singapore, 2017; pp. 85–98. [Google Scholar]
- Zhang, B.; Perrie, W.; Zhang, J.A.; Uhlhorn, E.W.; He, Y. High-Resolution Hurricane Vector Winds from C-Band Dual-Polarization SAR Observations. J. Atmos. Ocean. Technol. 2014, 31, 272–286. [Google Scholar] [CrossRef]
- Quilfen, Y.; Chapron, B.; Elfouhaily, T.; Katsaros, K.; Tournadre, J. Observation of tropical cyclones by high-resolution scatterometry. J. Geophys. Res. Ocean. 1998, 103, 7767–7786. [Google Scholar] [CrossRef]
- Hersbach, H. Comparison of C-Band Scatterometer CMOD5.N Equivalent Neutral Winds with ECMWF. J. Atmos. Ocean. Technol. 2010, 27, 721–736. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; de Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. Ocean. 2007, 112. [Google Scholar] [CrossRef]
- Stoffelen, A.; Anderson, D. Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res. Ocean. 1997, 102, 5767–5780. [Google Scholar] [CrossRef]
- Stoffelen, A.; Verspeek, J.A.; Vogelzang, J.; Verhoef, A. The CMOD7 Geophysical Model Function for ASCAT and ERS Wind Retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2123–2134. [Google Scholar] [CrossRef]
- De Kloe, J.; Stoffelen, A.; Verhoef, A. Improved Use of Scatterometer Measurements by Using Stress-Equivalent Reference Winds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2340–2347. [Google Scholar] [CrossRef]
- Donnelly, W.J.; Carswell, J.R.; McIntosh, R.E.; Chang, P.S.; Wilkerson, J.; Marks, F.; Black, P.G. Revised ocean backscatter models at C and Ku band under high-wind conditions. J. Geophys. Res. Ocean. 1999, 104, 11485–11497. [Google Scholar] [CrossRef]
- Quilfen, Y.; Prigent, C.; Chapron, B.; Mouche, A.A.; Houti, N. The potential of QuikSCAT and WindSat observations for the estimation of sea surface wind vector under severe weather conditions. J. Geophys. Res. Ocean. 2007, 112. [Google Scholar] [CrossRef]
- Shen, H.; He, Y.; Perrie, W. Speed ambiguity in hurricane wind retrieval from SAR imagery. Int. J. Remote Sens. 2009, 30, 2827–2836. [Google Scholar] [CrossRef]
- Donelan, M.A.; Haus, B.K.; Reul, N.; Plant, W.J.; Stiassnie, M.; Graber, H.C.; Brown, O.B.; Saltzman, E.S. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Koch, W. Directional analysis of SAR images aiming at wind direction. IEEE Trans. Geosci. Remote Sens. 2004, 42, 702–710. [Google Scholar] [CrossRef]
- Kudryavtsev, V.; Kozlov, I.; Chapron, B.; Johannessen, J.A. Quad-polarization SAR features of ocean currents. J. Geophys. Res. Ocean. 2014, 119, 6046–6065. [Google Scholar] [CrossRef]
- Hwang, P.A.; Zhang, B.; Perrie, W. Depolarized radar return for breaking wave measurement and hurricane wind retrieval. Geophys. Res. Lett. 2010, 37, L01604. [Google Scholar] [CrossRef]
- Fois, F.; Hoogeboom, P.; Le Chevalier, F.; Stoffelen, A. Future Ocean Scatterometry: On the Use of Cross-Polar Scattering to Observe Very High Winds. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5009–5020. [Google Scholar] [CrossRef]
- Mouche, A.A.; Chapron, B.; Zhang, B.; Husson, R. Combined Co- and Cross-Polarized SAR Measurements Under Extreme Wind Conditions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6746–6755. [Google Scholar] [CrossRef]
- Stoffelen, A.; Aaboe, S.; Calvet, J.; Cotton, J.; De Chiara, G.; Saldana, J.F.; Mouche, A.A.; Portabella, M.; Scipal, K.; Wagner, W. Scientific Developments and the EPS-SG Scatterometer. IEEE Trans. Geosci. Remote Sens. 2017, 10, 2086–2097. [Google Scholar] [CrossRef]
- Merrill, R.T. A Comparison of Large and Small Tropical Cyclones. Mon. Weather Rev. 1984, 112, 1408–1418. [Google Scholar] [CrossRef]
- Kimball, S.K.; Mulekar, M.S. A 15-Year Climatology of North Atlantic Tropical Cyclones. Part I: Size Parameters. J. Clim. 2004, 17, 3555–3575. [Google Scholar] [CrossRef]
- Guo, X.; Tan, Z. Tropical cyclone fullness: A new concept for interpreting storm intensity. Geophys. Res. Lett. 2017, 44, 4324–4331. [Google Scholar] [CrossRef]
- Cazals, C.; Rapinel, S.; Frison, P.; Bonis, A.; Mercier, G.; Mallet, C.; Corgne, S.; Rudant, J. Mapping and Characterization of Hydrological Dynamics in a Coastal Marsh Using High Temporal Resolution Sentinel-1A Images. Remote Sens. 2016, 8, 570. [Google Scholar] [CrossRef]
- Sentinel-1 Product Definition. Available online: https://sentinels.copernicus.eu/documents/247904/1877131/Sentinel-1-Product-Definition (accessed on 19 May 2019).
- Li, X. The first Sentinel-1 SAR image of a typhoon. Acta Oceanol. Sin. 2015, 34, 1–2. [Google Scholar] [CrossRef]
- ECMWF Meteorological Bulletin 3.1. Available online: https://www.ecmwf.int/sites/default/files/3.1.pdf (accessed on 19 October 2019).
- Sentinel-1 Ocean Wind Fields (OWI) Algorithm Definition. Available online: https://sentinel.esa.int/documents/247904/3861173/Sentinel-1-Ocean-Wind-Fields-OWI-ATBD.pdf (accessed on 19 June 2019).
- Park, J.; Won, J.; Korosov, A.A.; Babiker, M.; Miranda, N. Textural Noise Correction for Sentinel-1 TOPSAR Cross-Polarization Channel Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4040–4049. [Google Scholar] [CrossRef]
- Thermal Denoising of Products Generated by the S-1 IPF. Available online: https://sentinel.esa.int/documents/247904/2142675/Thermal-Denoising-of-Products-Generated-by-Sentinel-1-IPF (accessed on 19 July 2019).
- Karvonen, J. Baltic Sea Ice Concentration Estimation Using SENTINEL-1 SAR and AMSR2 Microwave Radiometer Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2871–2883. [Google Scholar] [CrossRef]
- Tan, W.; Li, J.; Xu, L.; Chapman, M.A. Semiautomated Segmentation of Sentinel-1 SAR Imagery for Mapping Sea Ice in Labrador Coast. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1419–1432. [Google Scholar] [CrossRef]
- Vachon, P.W.; Wolfe, J. C-Band Cross-Polarization Wind Speed Retrieval. IEEE Geosci. Remote Sens. Lett. 2011, 8, 456–459. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W. Cross-Polarized Synthetic Aperture Radar: A New Potential Measurement Technique for Hurricanes. Bull. Am. Meteorol. Soc. 2012, 93, 531–541. [Google Scholar] [CrossRef]
- Van Zadelhoff, G.J.; Stoffelen, A.; Vachon, P.W.; Wolfe, J.; Horstmann, J.; Belmonte Rivas, M. Retrieving hurricane wind speeds using cross-polarization C-band measurements. Atmos. Meas. Tech. 2014, 7, 437–449. [Google Scholar] [CrossRef]
- Hwang, P.A.; Stoffelen, A.; van Zadelhoff, G.; Perrie, W.; Zhang, B.; Li, H.; Shen, H. Cross-polarization geophysical model function for C-band radar backscattering from the ocean surface and wind speed retrieval. J. Geophys. Res. Ocean. 2015, 120, 893–909. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Perrie, W.; Hwang, P.A.; Zhang, B.; Yang, X. A Hurricane Wind Speed Retrieval Model for C-Band RADARSAT-2 Cross-Polarization ScanSAR Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4766–4774. [Google Scholar] [CrossRef]
- Horstmann, J.; Falchetti, S.; Wackerman, C.; Maresca, S.; Caruso, M.J.; Graber, H.C. Tropical Cyclone Winds Retrieved From C-Band Cross-Polarized Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2887–2898. [Google Scholar] [CrossRef] [Green Version]
- Portabella, M.; Stoffelen, A.; Johannessen, J.A. Toward an optimal inversion method for synthetic aperture radar wind retrieval. J. Geophys. Res. Ocean. 2002, 107, 1–13. [Google Scholar] [CrossRef]
- Christiansen, M.B.; Koch, W.; Horstmann, J.; Hasager, C.B.; Nielsen, M. Wind resource assessment from C-band SAR. Remote Sens. Environ. 2006, 105, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Yang, X.; Li, Z.; Yu, Y.; Bi, H.; Ma, S.; Li, X. Estimation of tropical cyclone parameters and wind fields from SAR images. Sci. China Earth Sci. 2013, 56, 1977–1987. [Google Scholar] [CrossRef]
- Xu, Q.; Li, X.; Bao, S.; Zhang, G. Tropical Cyclone Eye Morphology and Extratropical-Cyclone-Forced Mountain Lee Waves on SAR Imagery. In Hurricane Monitoring with Spaceborne Synthetic Aperture Radar; Li, X., Ed.; Springer: Singapore, 2017; pp. 373–398. [Google Scholar]
- Alpers, W.; Zhang, B.; Mouche, A.; Zeng, K.; Chan, P.W. Rain footprints on C-band synthetic aperture radar images of the ocean–Revisited. Remote Sens. Environ. 2016, 187, 169–185. [Google Scholar] [CrossRef]
- Tournadre, J.; Quilfen, Y. Impact of rain cell on scatterometer data: 1. Theory and modeling. J. Geophys. Res. Ocean 2003, 108. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X.; Perrie, W.; Zhang, B.; Wang, L. Rain effects on the hurricane observations over the ocean by C-band Synthetic Aperture Radar. J. Geophys. Res. Ocean. 2016, 121, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Tropical Cyclone IDAI Impact Overview-Emergency Response Coordination Centre (ERCC)-DG ECHO Daily Map 18/03/2019. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/ECDM_20190318_TC_IDAI_update.pdf (accessed on 10 April 2019).
- Chung, H.; Liu, C.; Cheng, I.; Lee, Y.; Shieh, M. Rapid Response to a Typhoon-Induced Flood with an SAR-Derived Map of Inundated Areas: Case Study and Validation. Remote Sens. 2015, 7, 11954–11973. [Google Scholar] [CrossRef] [Green Version]
- Chini, M.; Hostache, R.; Giustarini, L.; Matgen, P. A Hierarchical Split-Based Approach for Parametric Thresholding of SAR Images: Flood Inundation as a Test Case. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6975–6988. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Pierdicca, N.; Boni, G.; Fiorini, M.; Rudari, R. Flood Damage Assessment Through Multitemporal COSMO-SkyMed Data and Hydrodynamic Models: The Albania 2010 Case Study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2848–2855. [Google Scholar] [CrossRef]
Time | TC Intensity-Vmax(m/s) | ||||||
C2011 | C2014 | C-3PO | CMOD-IFR2 | CMOD7 | ECMWF | Best track | |
02:43 11 March | 30.7 | 53.5 | 40.3 | 27.4 | 50 | 31.6 | 45.8 |
16:04 14 March | 28.5 | 47.9 | 36.9 | 27.6 | 33.9 | 39.3 | 42.8 |
Time | RMW (km) | R17 (km) | TCF | |
---|---|---|---|---|
Combined Method | 02:43 11 March | 20.3 | 120.9 | 0.83 |
16:04 14 March | 39.4 | 184.4 | 0.79 | |
Track Data | 00:00 11 March | 19 | ||
06:00 11 March | 19 | |||
12:00 14 March | 56 | |||
18:00 14 March | 37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Johannessen, J.A.; Yan, X.-H.; Geng, X.; Zhong, X.; Zhu, L. A Study of the Intensity of Tropical Cyclone Idai Using Dual-Polarization Sentinel-1 Data. Remote Sens. 2019, 11, 2837. https://doi.org/10.3390/rs11232837
Yu P, Johannessen JA, Yan X-H, Geng X, Zhong X, Zhu L. A Study of the Intensity of Tropical Cyclone Idai Using Dual-Polarization Sentinel-1 Data. Remote Sensing. 2019; 11(23):2837. https://doi.org/10.3390/rs11232837
Chicago/Turabian StyleYu, Peng, Johnny A. Johannessen, Xiao-Hai Yan, Xupu Geng, Xiaojing Zhong, and Lin Zhu. 2019. "A Study of the Intensity of Tropical Cyclone Idai Using Dual-Polarization Sentinel-1 Data" Remote Sensing 11, no. 23: 2837. https://doi.org/10.3390/rs11232837